On removable singularities of an analytic function of several complex variables.

Masatsugu Tsuji.

(Received June. 18, 1947)

1. Let $u(P) = u(x_1, ..., x_n)$ be defined in a domain D in an n-dimensional space and all its partial derivatives of the second order be continuous and satisfy the equation:

$$\Delta u = \frac{\partial^2 u}{\partial x_1^2} + \dots + \frac{\partial^2 u}{\partial x_n^2} = 0, \tag{1}$$

then u(P) is called a harmonic function in D. It is easily seen that $u(P) = \overline{OP}^{n-2}$ ($n \ge 3$) is a harmonic function, where P is a variable point and O is a fixed point.

Let Σ be a sphere in an *n*-dimensional space with O as its center and R be its radius and S be its boundary. Let Q be a point of S and $\varphi(Q)$ be an integrable function on S. We define a Poisson integral with $\varphi(Q)$ as its boundary value:¹⁾

$$u(P) = \frac{1}{RS_n} \int_{S} \varphi(Q) \frac{R^2 - \overline{OP}^2}{\overline{PO}^n} d\sigma_{\zeta}, \qquad (2)$$

where S_n is the surface area of a unit sphere and $d\sigma_Q$ is the surface element of S at Q. Then u(P) is harmonic in Σ .

We can prove that u(P) tends to $\varphi(Q)$ almost everywhere on S, when P tends to Q non-tangentially to S. If $\varphi(Q)$ is continuous at Q_0 , then u(P) tends to $\varphi(Q_0)$, when P tends to Q_0 from the inside of Σ . Let u(P) be a bounded harmonic function in Σ , then $\lim u(P) = \varphi(Q)$ exists almost everywhere on S, when P tends to Q non-tangentially to S and u(P) can be expressed by $(2)^{20}$.

¹⁾ For an n-dimensional Poisson integral, c. f. C. Carathéodory: On Dirichlet problem. Amer. Jour. Math. 59(1937).

²⁾ The case n=2 is the well known theorems of Fatou and Schwarz. For the case n=3 I have proved analogous theorems in a paper: On Fatou's theorem on Poisson integrals. Jap. Jour-Math. 15(1938). The method can be applied for the general case.

We will prove:

Lemma 1. Let Σ be a sphere of radius R with O as its center and σ be a concentric sphere of radius $\rho < R$. If u(P) is harmonic in Σ and $u(P) \equiv 0$ in σ , then $u(P) \equiv 0$ in Σ .

Proof. u(P) is expressed by a Poisson ingearal:

$$u(P) = \frac{1}{R, S_n} \int_{S_1} u(Q) \frac{R_1^2 - \overline{OP}^2}{\overline{PO}^n} d\sigma_Q,$$

here S_1 is the boundary of a concentric sphere Σ_1 of radius $R_1 < R$.

If we put $r = \overline{OP}$ and θ be the angle between OP and OQ, then $\overline{PQ^2} = R_1^2 - 2 R_1 r \cos \theta + r^2$, which vanishes for $r = R_1 e^{\pm i\theta}$, so that if we consider r a complex variable,

$$\frac{R_1^2 - \overline{OP^2}}{\overline{PQ^n}} = \frac{R_1^2 - r^2}{(R_1^2 - 2R_1 r \cos\theta + r^2)^{\frac{n}{2}}}$$

is a regular function of r for |r| < R. Let Q_0 be a point on S_1 and P vary on the segment OQ_0 , then u(P) is a regular function of r for $|r| < R_1$, which, by the hypothesis, vanishes for $0 \le r \le \rho$, hence u(P) = 0 for $0 \le r \le R_1$, so that u(P) vanishes on the segment OQ_0 and since Q_0 is arbitrary, $u(P) \equiv 0$ in \sum_1 . Hence for $R_1 \to R$, we have $u(p) \equiv 0$ in \sum_1 q. e. d. From this we can deduce the following

Lemma 2 Let u(P) be harmonic in a domain D and if $u(P) \equiv 0$ in a partial domain $D_1 \subset D$, then $u(P) \equiv 0$ in D.

Theorem 1 Let \sum be a sphere and E be a closed set in \sum . Then in general $\sum -E$ consists of at most countable number of components D_i . Suppose that there exists in each componet D_i a positive harmonic function $v_i(P)$, such that $\lim v_i(P) = +\infty$, when P tends to any boundary point of D_i , which belongs to E, then

- (i) $\sum -E$ is connected, so that it consists of only one component.
- (ii) Let S_E be the part of E, which lies on the boundary S of \sum , then S_E is of surface measure zero. Hence by Fubini'i theorem, E is of measure zero, so that E has no inner points.

Proof. (i) Suppose that $\sum -E$ is not connected and consists of more than one component and let D_1 , D_2 be any two components. The boundary point of D_1 belongs to S or E. If all its boundary points belong to E, then $v_1(P) \equiv +\infty$ in D_1 , which is absurd. Hence D_1 has a boundary point on S, so that if we denote the part of the boundary of D_1 , which lies on S by S_1 , then S_1 has an inner point on S. Similarly the part S_2

of the boundary of D_2 on S has an inner point on S. We put

$$u_1(P) = \frac{1}{RS_n} \int_{S_2} \frac{R^2 - \overline{OP^2}}{\overline{PQ}^n} d\sigma_Q,$$

then $u_1(P)$ is a bounded harmonic function in Σ and $u_1(P) = 0$ on S_1 . Let for any $\varepsilon > 0$,

$$\Phi_{\varepsilon}(P) = u_{1}(P) - \varepsilon v_{1}(P)$$

then since $v_1(P) \ge 0$, we have $\Psi_{\varepsilon}(P) \le 0$ on S_1 and since $u_1(P)$ is bounded and $\lim v_1(P) = +\infty$ on E, we have $\Psi_{\varepsilon}(P) \ge 0$ on E, so that by the maximum principle, $\Psi_{\varepsilon}(\rho) \le 0$ in D_1 , hence for $\varepsilon \to 0$, $u_1(P) \le 0$ in D_1 .

Similarly considering $u_1(P) + \varepsilon v_1(P)$, we have $u_1(P) \ge 0$ in D_1 , so that $u_1(P) \equiv 0$ in D_1 , hence by Lemma 2 $u_1(P) \equiv 0$ in Σ , which is absurd, since $u_1(P)$ tends to 1, when P tends to an inner point of S_2 . Hence $\Sigma - E$ is connected.

(ii) Suppose that S_R is of positive surface measure and put

$$u(P) = \frac{1}{RS_n} \int_{S_E} \frac{R^2 - \overline{OP^2}}{\overline{PQ}^n} d\sigma_Q ,$$

then u(P) is a bounded harmonic function in Σ and tends to 1 almost everywhere on S_E , when P tends to S_E non-tangentially to S. But from the argument in (i), we see that $u(P) \equiv 0$ in Σ , which is a contradiction. Hence S_E is of surface measure zero. Hence by Fubini's theorem, E is of measure zero. q.e.d.

Theorem 2. Let E be a closed set in an n-dimensional space and D be its neig'sbourh od. Suppose that there exists a positive ha monic function v(P) in D-E, such that $\lim v(P) = +\infty$, when P tendes to any point of E. Let u(P) be a bounded harmonic function in D-E, then u(P) is harmonic on E.

Proof. Let O be a point of E and Σ be a sphere about O of radius R, which is contained in D. Then by Theorem 1, $\Sigma - E$ is connected and E has no inner points. We construct a Poisson integral with u(Q) as its boundary value:

$$u_1(P) = \frac{1}{RS_n} \int_{S-S_n} u(Q) \frac{R^2 - \overline{OP}^2}{P\overline{Q}^n} d\sigma_Q,$$

where S_E is the part of E, which lies on the boundary S of Σ . Then $u_1(P)$ is a bounded harmonic function in Σ and $u_1(P) = u(P)$ on $S - S_E$, so that $U(P) = u(P) - u_1(P)$ is a bounded harmonic function in $\Sigma - E$, which vanishes on $S - S_E$. Hence by the argument of Theorem 1 we have $U(P) \equiv 0$ in $\Sigma - E$, or $u(P) = u_1(P)$ in $\Sigma - E$. Since E has no inner points, we can continue u(P) harmonically in Σ by $u(P) = u_1(P)$, so that u(P) is harmonic on E. q.e.d.

As an application of Theorem 2, we have

Theorem 3. Let $g(z_1, \ldots, z_n)$ be a regular function of n complex variables in a 2n-dimensional domain D and E be the manifold defined by $g(z_1, \ldots, z_n) = 0$. Let $f(z_1, \ldots, z_n)$ be a bounded regular function in D-E, then $f(z_1, \ldots, z_n)$ is regular on $E^{(3)}$

Proof. It is evident that E has no inner points. If we put f=u+iv, then u, v are bounded harmonic functions in D-E. Let $|g(z_1,\ldots,z_n)| \le M$ in D, then

$$V(P) = \log \frac{M}{|g(P)|}, \quad P = (s_1, \dots, s_n)$$

is a positive harmonic function in D-E, such that $\lim V(P) = +\infty$, when P tends to any point of E, hence by Theorem 2, u and v are harmonic on E, so that f is regular on E. q.e.d From Theorem 1, we have

Theorem 4. Let $g(z_1,\ldots,z_n)$ be regular in a domain D and E be the manifold defined by $g(z_1,\ldots,z_n)=0$ and Σ be a sphere which is con ained in D and contains points of E, then $\Sigma - E$ is connected⁴⁾ and S_E is of surface m as m as m as m be a surface on the boundary S of Σ .

2. Let E be an (n-2)-dimensional manifold in an n-dimensional (x_1, \ldots, x_n) -space, which is defined by

$$x_i = \varphi_i(t_1, \dots, t_{n-2}) = \varphi_i(t) \quad (i = 1, 2, \dots, n),$$
 (1)

where $\varphi_i(t)$ are defined in an (n-2)-dimensional domain Δ in (t_1, \ldots, t_{n-2}) -space and satisfy the Lipschitz's condition:

$$|\varphi_i(t) - \varphi_i(t')| = |\varphi(t_1, \dots, t_{n-2}) - \varphi_i(t_1', \dots, t'_{n-2})| \le K \sum_{\nu=1} |t_{\nu} - t'_{\nu}|, \quad (2)$$

³⁾ Osgood: Lehrbuch d. Funktionentheorie II₁. p. 191

⁴⁾ Bochner: Functions of several complex variables (1936) p. 194. Lemma.

where K is a constant and (t), (t') are any two points of Δ . Let

$$v(P) = \int_{\Delta} \cdots \int \frac{dt_1 \dots dt_{n-2}}{\overline{PQ}^{n-2}},$$
(3)

where $P = (x_1, ..., x_n)$ is a variable point in the space and $Q = (t) = (\varphi_1(t), ..., \varphi_n(t))$ is a point of E, then v(P) is harmonic outside of E. We will prove:

Lemma 3 lim $v(P) = +\infty$, when P tends to any point of E. Proof. In the proof, we denote constants by K_1 , K_2 ,......

Let $Q_0 = (t^0)$ be any point of E, then by (2),

$$\overline{PQ^2} \ge \overline{(PQ_0 + Q_0Q)^2} \ge K_1 \left(r^2 + \sum_{\nu=1}^{n-2} \left(t_{\nu} - t_{\nu}^0\right)^2\right)$$

where $r = \overline{PQ_0}$.

By putting $r\tau_{\nu} = t_{\nu} - t_{\nu}^{0}$, we have

$$\tau(P) \geq K_2 \int_{\substack{n-2 \\ \sum_{\nu=1}^{n-2} \tau_{\nu}^2 \leq \frac{\delta^2}{r^2}}} \frac{d_{\tau_1} \dots d_{\tau_{n-2}}}{(1 + \sum_{\nu=1}^{n-2} \tau_{\nu}^2)},$$

where we take δ so small that $\sum_{\nu=1}^{n-2} (t_{\nu} - t_{\nu}^{0})^{2} \leq \delta^{2}$ is contained in Δ .

Let $\sum_{\nu=1}^{n-2} \tau_{\nu}^2 = \rho^2$, $\tau_{\nu} = a_{\nu}\rho$, then it is easily seen that

$$v(P) \ge K_3 \int_1^{\delta} \frac{\rho^{n-3} d\rho}{(1+\rho^2)^{\frac{n-2}{2}}} \ge K_4 \int_1^{\delta} \frac{d\rho}{\rho} = K_4 \log \frac{\delta}{r},$$

so that $v(P) \to +\infty$, for $P \to Q_0$, q. e. d.

From Theorem 2 we have

Theorem 5. Let E satisfy the condition of Lemma 3 and u(P) be a bounded harmonic function in a neighbourhood of E, then u(P) is harmonic on E.

Theorem 6. Let $f(z_1,...,z_n)$ be a bounded regular function of n complex variables in a neighbourhood of a (2n-2)-dimensional manifold E, which satisfies the condition of Lemma 3 (with 2n instead of n), then $f(z_1,...,z_n)$ is regular on E.

Mathematical Institute, Tokyo University.