On Projectively Connected Spaces whose Groups of Holonomy Fix a Hyperquadric

Tominosuke Otsuki

(Received Feb. 12, 1949)

Introduction. This paper deals with n-dimensional projectively connected spaces P_n whose groups of holonomy fix a hyperquadric. For the spaces with normal connexion, similar results as ours have been obtained independently by S. Sasaki and K. Yano.¹⁾

In § 1, 2, we shall arrive at the fundamental equations (22) and (24) in the case of the spaces with no torsion, following the general method of E. Cartan in his famous paper. In § 3, we shall consider the Riemannian space R_{n+1}^* which is associated with the space P_n and obtain a relation between these two spaces which shows that the condition in order that the connexion of P_n be normal is equivalent to that of R_{n+1}^* being an Einstein space. In § 4, we shall investigate the relations between the space P_n and the Riemannian space R_n^* which is a hypersurface in R_{n+1}^* . Then, in § 5, we shall show that there exist a Riemannian space R_n which is projective to P_n and that, if the connexion of P_n is normal, R_n is an Einstein space. Lastly, in § 6, we shall show that R_n is the space treated by E. Cartan.

§ 1. According to E. Cartan, let $R:(A, A_i)$ (i=1,2,....n) be a frame of an *n*-dimensional space P_n with projective connexion. Then the connexion is given by a system of Pfaffians $\omega_{\mu}^{\lambda}(\lambda, \mu=0,1,2,....,n)$ such that

(1)
$$dA = \omega_0^0 A + \omega^i A_i, \qquad dA_i = \omega_i^0 A + \omega_i^j A_j$$

where $\omega^i = \omega_0^i$. The equations of structure of P_n are

(2)
$$(\omega_{\lambda}^{\mu})' = [\omega_{\lambda}^{\mu} \ \omega_{\mu}^{\mu}] - \Omega_{\lambda}^{\mu},$$

$$\Omega_{\lambda}^{\mu} - \delta_{\lambda}^{\mu} \Omega_{0}^{0} = \frac{1}{2} A_{\lambda}^{\mu}{}_{ij} \ [\omega^{i} \omega^{j}]$$

where $A_{\lambda^{\mu}_{ij}}$ are the components of the tensor of curvature and torsion of the space. In a coordinate neighborhood (y^i) , we can use natural frames such that the following relations hold:

(3)
$$\omega^i = dy^i, \qquad \omega^i_i - n\omega^0_0 = 0.$$

Let us now represent a non degenerate hyperquadic Q_{n-1} , which the

group of holonomy of P_n at a given point A_0 fixes, by

$$(4) G_{\lambda u}^{0} x^{\lambda} x^{\mu} = 0, |G_{\lambda u}^{0}| \neq 0$$

in reference of the frame $R^0:(A^0_{\lambda})$ at the point A^0 . Suppose that the point does not lie on Q_{n-1} and that the coordinates of A^0 are $y^i=0$ ($i=1,2,\ldots,n$). Now, if we consider a system of curves which pass through the point A^0

$$(5) y^i = a^i t,$$

where u^i is a constant and $(u^i) \neq (0)$, and integrate the differential equations

(6)
$$\begin{cases} \frac{d}{dt} b_{\mu}^{\alpha} + b_{\mu}^{\beta} \frac{\omega_{5}^{\alpha}(at, a dt) - \delta_{5}^{\alpha} \omega_{0}^{0}(at, a dt)}{dt} = 0, \\ \frac{d}{dt} c_{\alpha}^{\lambda} - c_{5}^{\lambda} \frac{\omega_{\alpha}^{\beta}(at, a dt) - \delta_{\alpha}^{\beta} \omega_{0}^{0}(at, a dt)}{dt} = 0 \end{cases}$$

under the initial conditions $b^{\alpha}_{\mu}(O) = d^{\alpha}_{\mu}$, $c^{\lambda}_{\alpha}(O) = \delta^{\lambda}_{\alpha}$, then we see that the solutions can be written as $b^{\alpha}_{\mu} = b^{\alpha}_{\mu}(y)$, $c^{\lambda}_{\alpha} = c^{\lambda}_{\alpha}(y)$ and that $b^{\alpha}_{\lambda}(y)c^{\mu}_{\beta}(y) = \delta^{\alpha}_{\beta}$. Making use of these solutions, we transform our frame such that

$$B_0 = b_0^{\lambda} A_{\lambda}, \qquad B_i = b_i^{\lambda} A_{\lambda}$$

where $A_0 = A$. If we define $\tilde{\omega}_{\lambda}^{\mu}$ by the relations

$$dB_{\lambda} = \tilde{\omega}_{\lambda}^{\mu} B_{\mu}$$

we get

(7)
$$\tilde{\omega}^{\lambda}_{\mu}b^{\alpha}_{\lambda} = db^{\alpha}_{\mu} + b^{\beta}_{\mu} \ \omega^{\alpha}_{\beta}$$

or

$$\tilde{\omega}_{\mu}^{\lambda} = c_{\alpha}^{\lambda} db_{\mu}^{\alpha} + b_{\mu}^{\beta} \omega_{\beta}^{\alpha} c_{\beta}^{\lambda},$$

because

$$dB_{\mu} = (db_{\mu}^{\alpha} + b_{\mu}^{\beta} \ \omega_{\beta}^{\alpha}) A_{\alpha} = \widetilde{\omega}_{\mu}^{\lambda} \ B_{\lambda} = \widetilde{\omega}_{\mu}^{\lambda} \ b_{\lambda}^{\alpha} A_{\alpha}.$$

Since we have $\tilde{\omega}^{\lambda}_{\mu}=0$ along the curves (5) by virtue of (6), $\tilde{\omega}^{\lambda}_{\mu}$ are components of infinitesimal transformations of the group of holonomy according to a theorem of E, Cartan.³⁾ Hence $\tilde{\omega}^{\lambda}_{\mu}$ must satisfy the equations

(8)
$$G_{\lambda \rho}^{0} \tilde{\omega}_{\lambda}^{\rho} + G_{\rho \mu}^{0} \tilde{\omega}_{\lambda}^{\rho} = G_{\lambda \mu}^{0}$$

where π is a Pfaffian form. If we represent the equations of structure of the space with respect to the frame $R:(B_{\lambda})$ by

(9)
$$(\tilde{\omega}_{\mu}^{\lambda})' - [\tilde{\omega}_{\mu}^{\rho} \ \tilde{\omega}_{\rho}^{\lambda}] = -\tilde{\mathcal{Q}}_{\mu}^{\lambda},$$

 $\tilde{\mathcal{Q}}_{\mu}^{\lambda\prime}$ s satisfy the relations

(10)
$$\tilde{\mathcal{Q}}^{\lambda}_{\mu} = c^{\lambda}_{\alpha} \; \mathcal{Q}^{\alpha}_{\beta} \; b^{\alpha}_{\mu}$$

because these quantities are components of a projective tensor. Differentiating (8) exteriorly and making use of (9) we get the following relations

$$\begin{split} (\pi)'G^{0}_{\lambda\mu} &= G^{0}_{\lambda\rho} \; (\widetilde{\omega}^{\rho}_{\mu})' + G^{0}_{\rho\lambda} \; (\widetilde{\omega}^{\rho}_{\lambda})' \\ &= G^{0}_{\lambda\rho} \; \{ \left[\widetilde{\omega}^{\nu}_{\mu} \; \widetilde{\omega}^{\rho}_{\mu} \right] - \widetilde{\mathcal{Q}}^{\rho}_{\mu} \} + G^{0}_{\rho\mu} \; \{ \left[\widetilde{\omega}^{\nu}_{\lambda} \; \widetilde{\omega}^{\rho}_{\nu} \right] - \widetilde{\mathcal{Q}}^{\rho}_{\lambda} \} \\ &= - G^{0}_{\lambda\rho} \widetilde{\mathcal{Q}}^{\rho}_{\mu} - G^{0}_{\rho\mu} \widetilde{\mathcal{Q}}^{\rho}_{\lambda} + \left[\widetilde{\omega}^{\nu}_{\mu} (\pi G^{0}_{\lambda\nu} - G^{0}_{\rho\nu} \; \widetilde{\omega}^{\rho}_{\lambda}) \right] + \left[\widetilde{\omega}^{\nu}_{\lambda} (\pi G^{0}_{\mu\nu} - G^{0}_{\rho\nu} \widetilde{\omega}^{\rho}_{\mu}) \right] \\ &= - G^{0}_{\nu\rho} \; \widetilde{\mathcal{Q}}^{\rho}_{\mu} - G^{0}_{\rho\mu} \; \widetilde{\mathcal{Q}}^{\rho}_{\lambda}, \end{split}$$

that is,

(11)
$$G_{\lambda\rho}^{0}\tilde{\mathcal{Q}}_{\mu}^{\rho} + G_{\rho\mu}^{0}\tilde{\mathcal{Q}}_{\lambda}^{\rho} = -(\pi)' G_{\lambda\mu}^{0}.$$

If we put

$$G_{\alpha\beta} = G_{\lambda\mu}^0 c_{\alpha}^{\lambda} c_{\beta}^{\mu},$$

we get from (11)

(13)
$$G_{\alpha \tau} \mathcal{Q}_{\beta}^{\tau} + G_{\tau \beta} \mathcal{Q}_{\alpha}^{\tau} = -(\pi)' G_{\alpha \beta}.$$

Let us suppose that the space P_n has no torsion, that is, the conditions (14) $Q_0^i \equiv Q^i = 0$

are satisfied. Then, if we put $\lambda = \mu = 0$ in (13), we have $2G_{00}\Omega_0^0 = -(\pi)'$ G_{00} . At the point A^0 we have $G_{00} = G_{\lambda\mu}^0 c_0^{\lambda} c_0^{\mu} = 0$ by (6') and by our assumption, hence we can suppose $G_{00} = 0$ in a neighborhood of A^0 . Accordingly, we get from the above relation

$$\Omega_0^0 = -(\pi)'.$$

Thus we obtain

(13')
$$G_{\alpha\gamma}(\mathcal{Q}^{\gamma}_{\beta} - \delta^{\gamma}_{\beta}\mathcal{Q}^{0}_{0}) + G_{\gamma\beta}(\mathcal{Q}^{\gamma}_{\alpha} - \delta^{\gamma}_{\alpha}\mathcal{Q}^{0}_{0}) = 0$$

from (13) and (15).

Substituting (14), (15) in the following equations which are derived from (2) by exterior defferentiation:

$$(\mathcal{Q}_{\mu}^{\lambda})' = -[\mathcal{Q}_{\mu}^{\rho} \ \omega_{\rho}^{\lambda}] + [\omega_{\mu}^{\rho} \ \mathcal{Q}_{\rho}^{\lambda}]$$

we get

(16)
$$\left[\omega^{k}\left(\mathcal{Q}_{k}^{i}-\delta_{k}^{i}\mathcal{Q}_{0}^{0}\right)\right]=o, \qquad \left[\omega^{k} \mathcal{Q}_{k}^{0}\right]=o.$$

Hence for the case $n \ge 3$ we get from (16) and (2)

$$A_{ijk}^{\lambda} + A_{jki}^{\lambda} + A_{kij}^{\lambda} = 0.$$

Contracting (13') with $G^{\alpha\beta}$; we have $\Omega_i^i - n\Omega_0^{\gamma} = 0$. Hence we see that the infinitesimal transformations associated with infinitesimal closed circuits fix the point A and their dual transformations are unimodular affine. By (2),

(3) we have $\Omega_i^i - n\Omega_0^0 = -[\omega_i^0 \ \omega^i]$. Accordingly, putting

(17)
$$\omega_{\mu}^{\lambda} - \delta_{\mu}^{\lambda} \omega_{0}^{0} = \Gamma_{\mu i}^{\lambda} \omega^{i} = \Gamma_{\mu i}^{\lambda} dy^{i},$$

we get

(18)
$$\Gamma_{ij}^{\lambda} = \Gamma_{ji}^{\lambda}$$

from the above equation and (14).

§ 2. Let us now consider the quntity

(19)
$$DG_{\lambda\mu} = dG_{\lambda\mu} - \omega_{\lambda}^{\rho} G_{\rho\mu} - \omega_{\mu}^{\rho} G_{\lambda\rho} + 2\omega_{0}^{0} G_{\lambda\mu}$$

and its exterior derivative. Since

$$-(DG_{\lambda\mu})' = -\{\mathcal{Q}_{\lambda}^{r}G_{\rho\mu} + \mathcal{Q}_{\mu}^{\rho}G_{\lambda\rho} - 2\mathcal{Q}_{0}^{0}G_{\lambda\mu}\}$$
$$-\{[\omega_{\lambda}^{\rho} DG_{\rho\mu}] + [\omega_{\mu}^{\rho}DG_{\lambda\rho}] - 2[\omega_{0}^{0} DG_{\lambda\mu}] - 2[\omega^{i}\omega_{i}^{0}]G_{\lambda\mu}\}$$

we get by (13') and (18)

$$(20) (DG_{\lambda\mu})' = \left[\omega_{\lambda}^{\rho} DG_{\rho\mu}\right] + \left[\omega_{\mu}^{\rho} DG_{\lambda\rho}\right] - 2\left[\omega_{0}^{\rho} DG_{\lambda\mu}\right].$$

On the other hand, by (6), we have along the curves (5) $y^i = a^i t$

$$DG_{\alpha\beta} = G_{\lambda\mu}^{0} \{ dc_{\alpha}^{\lambda} - \omega_{\alpha}^{\mathsf{T}} c_{\mathbf{T}}^{\lambda} + \omega_{0}^{0} c_{\alpha}^{\lambda} \} \quad c_{\beta}^{\mu} + G_{\lambda\mu}^{0} \quad c_{\alpha}^{\lambda} \{ dc_{\beta}^{\mu} - \omega_{\beta}^{\mathsf{T}} c_{\mathbf{T}}^{\mu} + \omega_{0}^{0} c_{\beta}^{\mu} \} = 0$$

Hence, if we denote the variations of t by δ and those of u^t by d, we have from (20)

$$\delta DG_{\lambda\mu} = e^{\mu} DG_{\mu\mu} + e^{\mu} DG_{\lambda\mu} - 2e^{\mu} DG_{\lambda\mu}$$

where $e^{\mu}_{\lambda} = \omega^{\mu}_{\lambda}(u^{i} t, u^{i} \delta t)$, or

(21)
$$\frac{\partial}{\partial t} DG_{\lambda\mu} = \frac{\ell_{\lambda}^{\rho}}{\partial t} DG_{\lambda\rho} + \frac{\ell_{\mu}^{\rho}}{\partial t} DG_{\lambda\rho} - 2 \frac{\ell_{0}^{0}}{\partial t} DG_{\lambda\mu}.$$

Since $DG_{\lambda\mu}'s$ satisfy the linear differential equations as above and are equal to zero at the point A^0 , it follows that at any point and for any variation

$$(22) DG_{\lambda\mu} = 0.$$

Thus we see that the hyperquadric $G_{\lambda\mu}x^{\lambda}x^{\mu}=0$ in the tangent projective space at each point A overlaps one upon another in the development of our space.

Let us now write (22) in another form by means of (17):

$$(22') \qquad \frac{\partial}{\partial v^k} G_{\lambda\mu} - \Gamma^{\rho}_{\lambda k} G_{\rho\mu} - \Gamma^{\rho}_{\mu k} G_{\lambda\rho} = 0$$

or

$$\frac{\partial}{\partial y^k} G_{00} - 2G_{k0} = 0,$$

$$\frac{\partial}{\partial y^k} G_{i0} - \Gamma^p_{ik} G_{p0} - G_{ik} = 0,$$

$$\frac{\partial}{\partial y_k} G_{ij} - \Gamma^{p}_{ik} G_{pj} - \Gamma^{p}_{jk} G_{ip} = 0.$$

Contracting (22') with $G^{\lambda\mu}$, we see by means of (3) that

$$G^{\lambda\mu} \frac{\partial}{\partial y^k} G_{\lambda\mu} = \frac{\partial}{\partial y^k} \log G = 2 \Gamma^{\mu}_{\mu k} = 2 I^{\prime i}_{ik} = 0,$$

that is, $G = |G_{\nu\mu}| = \text{constant}$. G_{00} is evidently a projective scalar. Let us denote it by 2φ ; then we have

$$G_{k0} = \frac{\partial}{\partial \nu_k} \varphi = \varphi_k, \qquad \varphi_0 = \varphi.$$

 φ_0 , φ_1 ,....., φ_n are obviously components of an analytic covariant projective vector.

From (23_3) we have

$$\frac{1}{2} \left\{ \frac{\partial G_{jk}}{\partial y^i} + \frac{\partial G_{ki}}{\partial y^i} - \frac{\partial G_{ij}}{\partial y^k} \right\} = \Gamma_{ij}^p G_{pk}$$

and from (23_2)

$$\frac{1}{2} \left\{ \frac{\partial G_{jo}}{\partial y^i} + \frac{\partial G_{io}}{\partial y^j} - 2G_{ij} \right\} = \Gamma^{p}_{ij} G_{po}.$$

Making use of the above relations, we get

(24)
$$\Gamma_{ij}^{\lambda} = \frac{1}{2} G^{\lambda k} \left(\frac{\partial G_{kj}}{\partial y^i} + \frac{\partial G_{ik}}{\partial y^j} - \frac{\partial G_{ij}}{\partial y^k} \right) + G_{\lambda o} \left(\frac{\partial^2 \varphi}{\partial y^i \partial y^j} - G_{ij} \right)$$

Thus we obtain the following result:

The parameters of connexion of our space are given by (24) in terms of $G_{\lambda\mu}$; conversely, in such spaces that Γ^{λ}_{ij} are given by (24) the groups of holonomy fix a hyperquadric.

§ 3. Let us now consider such an (n+1)-dimensional Riemannian space R_{n+1}^* that its fundamental tensor is given by

(25)
$$G_{\lambda\mu}^* = e^{2y^0} G_{\lambda\mu}, \qquad G^{*\lambda\mu} = e^{-2y^0} G^{\lambda\mu}.$$

As the quadratic form $G_{\lambda\mu}^* x^{\lambda} x^{\mu}$ is not always positive definite, this space is a Riemannian space in a general sense.

The Christoffel symbols $\{ \chi_{\mu} \}^*$ formed by $G_{\lambda\mu}^*$ are

$$\{ \mathring{\lambda}_{\mu} \} \ * = \frac{1}{2} G^{\nu\rho} \left(\frac{\partial G_{\lambda\rho}}{\partial y^{\hbar}} \delta^{\hbar}_{\mu} + \frac{\partial G_{\nu\mu}}{\partial y^{\hbar}} \delta^{\hbar}_{\lambda} - \frac{\partial G_{\lambda\mu}}{\partial y^{\hbar}} \delta^{\hbar}_{\lambda} \right) + \delta^{\nu}_{\lambda} \delta^{0}_{\mu} + \delta^{\nu}_{\mu} \delta^{0}_{\lambda} - G^{\nu 0} G_{\lambda\mu}.$$

From these we get

$$\begin{cases} \sum_{ij} \left\{ * = \frac{1}{2} G^{\nu k} \left(\frac{\partial G_{kj}}{\partial y^{i}} + \frac{\partial G_{ik}}{\partial y^{j}} - \frac{\partial G_{ij}}{\partial y^{k}} \right) + G^{\nu o} \left(\frac{\partial^{2} \varphi}{\partial y^{i} \partial y^{j}} - G_{ij} \right), \\ \left\{ \sum_{ij} \left\{ * = \frac{1}{2} G^{\nu k} \left(\frac{\partial G_{ko}}{\partial y^{j}} - \frac{\partial G_{jo}}{\partial y^{k}} \right) + G^{\nu o} \left(\frac{1}{2} \frac{\partial G_{00}}{\partial y^{j}} - G_{jo} \right) + \delta^{\nu}_{j}, \\ \left\{ \sum_{ij} \left\{ * = -G^{\nu k} G_{k0} - G^{\nu 0} G_{00} + 2\delta^{\nu}_{o}, \right\} \right\} \\ \left\{ \sum_{ij} \left\{ * = \Gamma^{\lambda}_{ij}, \left\{ \sum_{ij} \right\} * = \delta^{\nu}_{\mu}. \right\} \right\}$$

Let us now consider the Pfaffians $\omega^{*\lambda}_{\mu}$ of R_{n+1}^* with respect to its natural frame

(27)
$$\omega^*_{\mu} = \{^{\lambda}_{\mu_P}\}^* dy^P;$$

then by (26) we have

(28)
$$\omega^{*\lambda} = \omega_i^{\lambda} + \delta_i^{\lambda} dy^0, \qquad \omega^{*\lambda} = dy^{\lambda}.$$

Accordingly we have for the frame (A, e_{λ}) the relations

(29)
$$dA = dy^{\lambda}e_{\lambda},$$

$$de_{0} = dy^{\lambda}e_{\lambda},$$

$$de_{i} = \omega_{i}^{0} e_{0} + \omega_{i}^{k} e_{k} + dy^{0}e_{i},$$

for which we obtain $d(A-e_0)=0$. Thus we see that the group of holonomy of R_{n+1}^* fixes a point. Moreover, for the curves y^i =const. we have $dA=dy^0e_0$, $de_0=dy^0e_0$. Hence, these curves constitute a family of geodesics each of which converges to a point corresponding to this fixed point 0, because we may consider from the first that $G_{00}>0$.

Now we consider an *n*-dimensional hypersurface $y^0 = \text{const.}$, on which we have $dA = dy^i e_i$, $de_0 = dy^i e_i$, $de_i = \omega_i^0 e_0 + \omega_i^0 e_j$. Then, if we put $e_\lambda = A_\lambda$, we get (1). Thus we see that, if we consider at each point in R^*_{n+1} the tangent (n+1)-dimensional Euclidean space E_{n+1} (A), any two neighbouring spaces $E_{n+1}(A)$ and $E_{n+1}(A+dA)$ are situated such that they have the point 0 in common. Moreover, the above relations show that we have the connexion of our space P_n if we project the tangent hyperplane $E_n(A+dA)$ at A+dA onto the tangent hyperplane $E_n(A)$ at A from the point 0.

Let us now determine the curvature tensor $\mathcal{Q}^{*_{\mu}^{\lambda}}$ of R_{n-1}^{*} . By (28) we have

$$\begin{split} -\mathcal{Q}^{*\lambda}_{i} &= (\omega^{*\lambda}_{i})' - \left[\omega^{*\rho}_{i} \ \omega^{\lambda}_{\rho}^{*}\right] \\ &= (\omega^{\lambda}_{i})' - \left[\omega^{k}_{i} \ \omega^{\lambda}_{\lambda}\right] - \left[\omega^{0}_{i} \ dy^{2}\right] - \left[dy^{0} \ \omega^{\lambda}_{i}\right] + \delta^{\lambda}_{k} \left[dy^{0} \ \omega^{k}_{i}\right] = -\mathcal{Q}^{\lambda}_{i}, \end{split}$$

where we put $\omega_0^0 = 0$ as this may be generally admissible. And we have by (18)

 $Q^{*\lambda}_0 = [dy^k(\omega_k^{\lambda} + \delta_k^{\lambda} dy^0)] + [dy^0 dy^{\lambda}] = 0,$

$$\mathbf{\Omega}_0^0 = [\boldsymbol{\omega}^i \ \boldsymbol{\omega}_i^0] = 0.$$

Putting

(30)
$$\mathcal{Q}^{*\lambda}_{\mu} = \frac{1}{2} R^{*\lambda}_{\mu\rho\nu} \left[dy^{\rho} \ dy^{\nu}, \right]$$

we obtain from the above relations

$$(31) R^*_{i h k} = A_{i k h}^{\lambda}, R^*_{u \nu o} = R^*_{o u \nu} = 0.$$

Accordingly for the Ricci tensor $R^*_{\lambda\mu} = R^*_{\lambda\mu}^{\rho}$ of R^*_{n+1} we have the relations

(32)
$$R^*_{ik} = A_{ik}, \qquad R^*_{io} = R^*_{00} = 0.$$

If the connexion of our space P_n is normal, we have

$$(33) A_{ik} = 0.$$

Thus we see that:

The necessary and sufficient condition that the connexion of the space P^n may be normal is that the Riemannian space R_{r+1}^* associated to P_n is an Einstein space whose scalar curvature is equal to 0.

§ 4. The equations of geodesics in R_{n+1}^* , as well known, are

(34)
$$\frac{d^2 y^{\lambda}}{dt^2} + \left\{ \frac{\lambda}{\mu \nu} \right\} \frac{dy^{\mu}}{dt} = F\left(y, \frac{dy}{dt}\right) \frac{dy^{\lambda}}{dt}$$

where F is a suitable function. Making use of (26), we have from (34)

$$\frac{d^2 y^0}{dt^2} + \Gamma^0_{ij} \frac{dy^i}{dt^4} \frac{dy^j}{dt} = \left(F - \frac{dy^0}{dt}\right) \frac{dy^0}{dt},$$

$$\frac{d^2 y^i}{dt^2} + \Gamma^i_{jk} \frac{dy^j}{dt} = \left(F - 2 \frac{dy^0}{dt}\right) \frac{dy^i}{dt}.$$

On the other hand, the equations of projective geodesics of P_n are

$$\frac{d^2 y^i}{dt^2} + \Gamma^i_{jk} \frac{dy^j}{dt} \frac{dy^k}{dt} = H\left(y, \frac{dy}{dy}\right) \frac{dy^i}{dt}.$$

From these equations we see that:

The geodesics of P_u are those curves on the surface $y^0 = const.$ which we obtain by projecting the geodesics of R_{n+1}^* along the geodesics through the point corresponding to the point 0.

Let us now consider the surface $y^0 = \text{const.}$ as an *n*-dimensional Riemannian space R_n^* and denote its fundamental tensor by γ_{ij} :

$$\gamma_{ij} = G_{ij}$$

(here we suppose that $|G_{ij}| \neq 0$). Then we can see that

$$\gamma^{ij} = G^{ij} - \frac{G^{ij} G^{jo}}{G^{00}}.$$

Let us denote the Christoffel symbols of R_n^* by Λ_{ij}^h , then we have

(36)
$$\Lambda_{ij}^{h} = \Gamma_{ij}^{h} - \frac{G^{ho}}{2 G_{co}} \Gamma_{ij}^{0},$$

because

$$\begin{split} & A_{ij}^{h} = \frac{1}{2} \gamma^{hk} \left(\frac{\partial \gamma_{kj}}{\partial y^{i}} + \frac{\partial \gamma_{ik}}{\partial y^{i}} - \frac{\partial \gamma_{ij}}{\partial y^{k}} \right) \\ &= \frac{1}{2} \left(G^{hk} - \frac{G^{ho} G^{ko}}{G^{00}} \right) \left(\frac{\partial G_{kj}}{\partial y^{i}} + \frac{\partial G_{ik}}{\partial y^{k}} - \frac{\partial G_{ij}}{\partial y^{k}} \right) \\ &= \Gamma_{ij}^{h} - \frac{G^{ho}}{2} \left\{ \frac{G^{ko}}{G^{00}} \left(\frac{\partial G_{kj}}{\partial y^{i}} + \frac{\partial G_{ik}}{\partial y^{i}} - \frac{\partial G_{ij}}{\partial y^{k}} \right) \right. \\ &\quad + 2 \left(\frac{\partial^{2} \varphi}{\partial y^{i} \partial y^{j}} - G_{ij} \right) \right\} \\ &= \Gamma_{ij}^{h} - \frac{G^{ho}}{2G^{00}} \Gamma_{ij}^{0}. \end{split}$$

Hence we find by (36) the equations of geodesics of R_n^* as

(37)
$$\frac{d^2 y^i}{dt^2} + \Gamma_{jk}^i \frac{dy^j}{dt} \frac{dy^k}{dt} = M \frac{dy^i}{dt} + \frac{G^{io}}{2G^{00}} \Gamma_{jk}^0 \frac{dy^i}{dt} \frac{dy^k}{dt}$$

where M is a suitable function of y^i and $\frac{dy^i}{dt}$. From this it follows:

The necessary and sufficient condition that the geodesics of P_n coincide with those of R_n^* is $\Gamma_{jk}^0=0$ or $G^{io}=0$. In the first case: by (29) R_n^* becomes a totally geodesic surface in R_{n+1}^* and P_n can be considered as a Riemannian space with the group of holonomy which fixes a point. Because the connexion of P_n fixes the plane at infinity $[A_1, \ldots, A_n]$ and is accordingly affine, and furthermore, since the group of holonomy fixes the hyperquadric $G_{\alpha\beta}$ x^{α} $x^{\beta}=0$ ($|G_{ij}| \neq 0$), P_n can be considered as a Riemannian space. In the second case: the condition $G^{io}=0$ is equivalent to the condi-

tion
$$G_{ii}\gamma^{ik}=0$$
 or, by virtue of our assumption $|\gamma_{ij}| \neq 0$, $G_{io} = \frac{\partial \varphi}{\partial \gamma^i} = 0$.

Thus we see that geodesics of R_{n-1}^* through the point corresponding to O intersect the surface corresponding to the R_n^* at those points which are apart from the fixed point by a constant distance, hence that this surface must be totally umbilical.

§ 5. It is evident that we can introduce a Riemannian metric into our space P_n by means of the hyperquadric (4) which is fixed by the group of holonomy of P_n . The non-Euclidean distance with respect to the absolute hyperquadric (4) between A and A+dA is equal to the distance with respect to the absolute hyperquadric $G_{\alpha\beta} x^{\alpha} x^{\beta} = 0$ at the point A which is projective to (4).

The homogeneous coordinates of A and A+dA with respect to the natural frame (A_{λ}) are respectively $(1,0,\ldots,0)$, $(1,dy^{1},\ldots,dy^{n})$. Then let us consider the straight line passing through A and A+dA in the tangent projective space at A, and suppose that this line intersects the hyperquadric $G_{\alpha\beta}$ $x^{\alpha}x^{\beta}=0$ at the points M and N. If we put the coordinates of these points of intersection $x^{0}=\lambda+\mu$, $x^{i}=\mu$ dy and substitute these in $G_{\alpha\beta}$ x^{α} $x^{\beta}=0$, we have

$$\lambda^2 G_{00} + 2\lambda \mu (G_{00} + G_{io} \, dy^i) + \mu^2 (G_{00} + 2G_{io} \, dy^i + G_{ij} \, dy^i \, dy^j) = 0$$

or

$$\frac{\lambda}{\mu} = -1 - \frac{G_{io} \, dy^i}{G_{00}} \pm \sqrt{-1} \sqrt{\left(\frac{G_{ij}}{G_{00}} - \frac{G_{io}}{G_{00}} \right) dy^i \, dy^j}.$$

Hence we have .

Double ratio (A, A+dA, L, M)

$$=\frac{\left\{1+\frac{G_{io}}{G_{00}}dy^{i}-\sqrt{-1}\sqrt{\left(\frac{G_{ij}}{G_{00}}-\frac{G_{io}}{G_{00}}\frac{G_{jo}}{G_{00}}\right)dy^{i}dy^{j}}\right\}^{2}}{1+2\frac{G_{jo}}{G_{00}}dy^{j}+\frac{G_{jk}}{G_{00}}dy^{j}dy^{k}}.$$

Accordingly we have

$$\frac{1}{2\sqrt{-1}}\log(A, A+dA, L, M) = \sqrt{\left(\frac{G_{ik}}{G_{00}} - \frac{G_{j0}}{G_{00}} - \frac{G_{ko}}{G_{00}}\right)} dx^{j} dx^{k} + \dots$$

From the above relation we now define a Riemannian metric in P_n by the equation

(38)
$$ds^{2} = \epsilon k^{2} \left(\frac{G_{ij}}{G_{00}} - \frac{G_{io}}{G_{00}} \frac{G_{jo}}{G_{00}} \right) dy^{i} dy^{j}$$

where ϵ is 1 or -1 and k is a proper constant, and denote by R_n the corresponding Riemannian space. Since $G_{\alpha 3}$ is an projective tensor, the quantities

(39)
$$g_{ij} = \epsilon k^2 \left(\frac{G_{ij}}{G_{00}} - \frac{G_{io}}{G_{00}} \frac{G_{jo}}{G_{00}} \right)$$

are evidently the components of an affine tensor in ordinary sense with respect to coordinate transformations. The components g^{ij} of the contravariant tensor conjugate to the covariant tensor g_{ij} are obviously

$$(40) g^{ij} = \epsilon \frac{G_{00}}{K^2} G_{ij}.$$

Then let us form the Christoffel symbols $\{i_j\}$ of R_n . From (39) we have

$$\frac{\partial g_{ij}}{\partial y^{k}} = \epsilon k^{2} \left\{ \frac{1}{2\varphi} \frac{\partial G_{ij}}{\partial y^{k}} - \frac{G_{ij}}{2\varphi^{2}} - \frac{\partial^{2} \log \sqrt{\varphi}}{\partial y^{i}} \frac{\partial \log \sqrt{\varphi}}{\partial y^{k}} \frac{\partial \log \sqrt{\varphi}}{\partial y^{i}} - \frac{\partial \log \sqrt{\varphi}}{\partial y^{i}} \frac{\partial^{2} \log \sqrt{\varphi}}{\partial y^{j}} \frac{\partial^{2} \log \sqrt{\varphi}}{\partial y^{k}} \right\},$$

hence

$$\begin{aligned} \{_{ij}^{h}\} &= \frac{1}{2} G^{hk} \left(\frac{\partial G_{kj}}{\partial y^{i}} + \frac{\partial G_{ik}}{\partial y^{j}} - \frac{\partial G_{ij}}{\partial y^{k}} \right) - \frac{\partial \log \sqrt{\varphi}}{\partial y^{i}} \left(\partial_{j}^{h} - G^{ho} \varphi_{j} \right) \\ &- \frac{\partial \log \sqrt{\varphi}}{\partial y^{i}} \left(\partial_{i}^{h} - G^{ho} \varphi_{i} \right) + \left(G_{ij} - 2 \varphi \frac{\partial^{2} \log \sqrt{\varphi}}{\partial y^{i}} \partial y^{j} \right) G^{hk} \frac{\partial \log \sqrt{\varphi}}{\partial y^{k}}. \end{aligned}$$

On the other hand, we have

$$\begin{split} G^{hk}\varphi_{k} &= G^{hk} \ G_{ko} = - \ G^{ho} \ \ G_{00} = -2\varphi G^{ho} \\ & 2\varphi \frac{\partial^{2} \log \sqrt{\varphi}}{\partial y^{i} \ \partial y^{j}} = \frac{\partial^{2} \ \varphi}{\partial y^{i} \ \partial y^{j}} - \frac{1}{\varphi} \ \varphi_{i} \ \varphi_{j}, \end{split}$$

hence we get by (24) the following relations:

(41)
$$\Gamma_{ij}^{h} = \{_{ij}^{h}\} + \delta_{i}^{h} \frac{\partial \log \sqrt{\varphi}}{\partial y^{j}} + \delta_{j}^{h} \frac{\partial \log \sqrt{\varphi}}{\partial y^{i}}.$$

From (41) we see that P_n and R_n are mutually projective with respect to the parameters of connexions. But this is obvious from the fact that the geodesics of R_n coincide with those of P_n by our projective definition of the metric of R_n .

Now we investigate the properties of R_n . If we put

$$\tilde{\omega}_{i}^{h} = \{ i_{k} \} dy^{k} = \omega_{i}^{h} - \delta_{i}^{h} d\rho - \rho_{i} dy^{h}$$

where
$$\rho = \log \sqrt{\varphi}$$
, $\varphi_i = \frac{\partial \rho}{\partial y^i}$, we have
$$(\tilde{\omega}_i^h)' = (\omega_i^h)' - [d\rho_i \ dy^h],$$

$$[\tilde{\omega}_i^k \ \tilde{\omega}_k^h] = [\omega_i^k \ \omega_k^h] - \rho_k [\omega_i^k \ dy^h] + \rho_i [d\rho \ dy^h].$$

Denoting by $\tilde{\mathcal{Q}}_{i}^{k}$ the curvature of R_{n} , we have from the above equations

$$\begin{split} -\tilde{\mathcal{Q}}_{i}^{h} &= (\tilde{\omega}_{i}^{h})' - \left[\tilde{\omega}_{i}^{k} \ \tilde{\omega}_{k}^{h}\right] \\ &= (\omega_{i}^{h})' - \left[\omega_{i}^{k} \ \omega_{k}^{h}\right] - \left[d\rho_{i} - \omega_{i}^{k} \ \rho_{k} + \rho_{i} \ d\rho, \ dy^{h}\right]. \end{split}$$

On the other hand, we get from (23_2)

$$DG_{io} = d\varphi_i - \omega_i^k \varphi_k - G_{ik} dy^k - 2\varphi\omega_i^o = 0$$
,

hence by (40)

$$\begin{split} d\rho_i - \omega_i^k \ \rho_k + \rho_i \ d\rho &= \frac{1}{2\varphi} \ (d\varphi_i - \omega_i^k \ \varphi_k) - \frac{\varphi_i \ d\varphi}{4\varphi^2} \\ &= \frac{1}{2\varphi} \left(G_{ik} \ dy^k + 2\varphi \omega_i^o \right) - \frac{\varphi_i \ d\varphi}{4\varphi^2} = \omega_i^o + \frac{\varepsilon}{k^2} \ g_{ik} \ dy^k. \end{split}$$

Substituting these equations on the right of $\tilde{\mathcal{Q}}_{i}^{h}$, we obtain

$$(42) \qquad -\tilde{\mathcal{Q}}_{i}^{h} = (\omega_{i}^{h})' - [\omega_{i}^{k} \ \omega_{k}^{h}] - [\omega_{i}^{o} \ dy^{h}] - \frac{\epsilon}{k^{2}} g_{ij} [dy^{j} \ dy^{h}]$$
or
$$\tilde{\mathcal{Q}}_{i}^{h} = \mathcal{Q}_{i}^{h} + \frac{\epsilon}{k^{2}} g_{ij} [dy^{j} \ dy^{h}].$$

If we denote the components of the Riemann tensor of R_n by $\tilde{\mathcal{Q}}_i^h = \frac{1}{2} \tilde{R}_{i jk}^h \left[dy^j \ dy^k \right]$, we get from (42)

(43)
$$\tilde{R}_{ijk}^{h} = A_{ijk}^{h} + \frac{\epsilon}{k^{2}} \left(g_{ij} \ \delta_{k}^{h} - g_{ik} \ \delta_{j}^{h} \right)$$

and

(43)
$$\tilde{R}_{ij} = A_{ij} + \frac{\epsilon (n-1)}{k^2} g_{ij}$$

where $\tilde{R}_{ij} = \tilde{R}_{ijh}^{h}$ are the components of the Ricci tensor of R_n . When the connexion of P_n is normal, that is, the condition $A_{ij} = 0$ is satisfied, we have from (44)

(45)
$$\tilde{R}_{ij} = \frac{\epsilon}{k^2} (n-1)g_{ij}.$$

This shows that the space R_n is an Einstein space. Our result can be stated in the following

Theorem. If a normal projectively connected space P_n (n>2) has the group of holonomy which fixes a hyperquadric, the space is projective to an Einstein space.

From (43) we have a well known result: The necessary and sufficient condition that P_n may be flat is that R_n be a space with constant curvature.

Next we shall consider the inverse problem. From (23₂) we get

$$\begin{split} -\Gamma_{ij}^{o} &= \frac{1}{2\varphi} G_{ij} + \frac{1}{2\varphi} \Gamma_{ij}^{h} \varphi_{h} - \frac{1}{2\varphi} \frac{\partial^{2}\varphi}{\partial v^{i} \partial y^{j}} \\ &= \frac{\epsilon}{k^{2}} g_{ij} - \left(\frac{\partial \rho_{i}}{\partial y^{j}} - \Gamma_{ij}^{h} \rho_{h} + \rho_{i} \rho_{j} \right) = \frac{\epsilon}{k^{2}} g_{ij} - \varphi_{i;j} + \rho_{i} \rho_{j} \end{split}$$

where $\rho_{i;j}$ is the covariant derivative of ρ_i with respect to y^j in R_n . Hence we have the following equations

(46)
$$\begin{cases} \Gamma_{ij}^{h} = \{ {}_{ij}^{h} \} + \delta_{i}^{h} \rho_{j} + \delta_{j}^{h} \rho_{i}, \\ \Gamma_{ij}^{o} = -\frac{\epsilon}{k^{2}} g_{ij} + \rho_{i:j} - \rho_{i} \rho_{j}. \end{cases}$$

Thus we obtain the result:

For a given Einstein space R_n (n>2), if we consider a space with connexion given by (46), this space has the group of holonomy which fixes a hyperquadric.

§ 6. In this last section we compare our method with that of E. Cartan who has introduced a Riemannian metric into the space P_n .

Since the group of holonomy of P_n is transitive, we can transform the frame $R:(A_{\lambda})$ to the other $\overline{R}:(\overline{A_{\lambda}})$

$$\overline{A} = A$$
, $\overline{A}_i = p_i^o A + p_i^j A_j$

such that the new system of Pfaffians $\tilde{\omega}_{\mu}^{\lambda}$ satisfies the equations (8)

$$G_{\lambda\mu}^{\circ}$$
 $\tilde{\omega}_{\mu}^{\rho} + G_{\mu\mu}^{\circ}$ $\tilde{\omega}_{\lambda}^{\rho} = \pi G_{\lambda\mu}^{\circ}$

where $\bar{\omega}_{\mu}^{\lambda}$ are defined by $\bar{\omega}_{\mu}^{\lambda} p_{\lambda}^{\alpha} = dp_{\mu}^{\alpha} + p_{\mu}^{\beta} \omega_{\beta}^{\alpha}$. From these we get

$$\begin{split} &\left(\frac{G_{ip}^{o}}{G_{oo}}-2\frac{G_{io}^{o}}{G_{oo}^{o}}\frac{G_{po}^{o}}{G_{oo}^{o}}\right)\!\bar{\omega}_{o}^{p}+\frac{G_{po}^{o}}{G_{oo}^{o}}\bar{\omega}_{i}^{p}=0,\\ &\frac{G_{ip}^{o}}{G_{oo}^{o}}\bar{\omega}_{j}^{p}+\frac{G_{pj}^{o}}{G_{oo}^{o}}\bar{\omega}_{i}^{p}-2\frac{G_{ij}^{o}}{G_{oo}^{o}}\bar{\omega}_{o}^{p}=0 \end{split}$$

or

$$\begin{split} & \bar{\omega}_{i}^{o} = \left(\frac{G_{ij}^{o}}{G_{oo}^{o}} - 2 \frac{G_{io}^{o}}{G_{oo}^{o}} \right. \frac{G_{jo}^{o}}{G_{oo}^{o}} \right) \bar{\omega}^{j} + \frac{G_{oo}^{o}}{G_{oo}^{o}} \left. \left(\bar{\omega}_{i}^{j} - \delta_{i}^{j} \right. \bar{\omega}^{o} \right), \\ & \frac{G_{ok}^{o}}{G_{oo}^{o}} \left(\bar{\omega}_{j}^{k} - \delta_{i}^{k} \bar{\omega}^{o} \right) + \frac{G_{jo}^{o}}{G_{oo}^{o}} \left(\bar{\omega}_{i}^{k} - \delta_{i}^{k} \right. \bar{\omega}^{o} \right) + \frac{G_{io}^{o}}{G_{oo}^{o}} \left. \bar{\omega}_{j}^{o} + \frac{G_{jo}^{o}}{G_{oo}^{o}} \right. \bar{\omega}^{o}_{i} = 0. \end{split}$$

If we put

$$(47) \qquad \frac{G_{ij}^{\circ}}{G_{oo}^{\circ}} - \frac{G_{jo}^{\circ}}{G_{oo}^{\circ}} \quad \frac{G_{io}^{\circ}}{G_{oo}^{\circ}} = a_{ij}, \qquad \frac{G_{io}^{\circ}}{G_{oo}^{\circ}} = a_{i}$$

On Projectively Connected Spaces whose Groups of Holonomy etc. 263 and substitute these in the above equations, we have

(48)
$$a_{ik}(\tilde{\omega}_{j}^{k} - \delta_{j}^{k}\bar{\omega}_{o}^{o}) + a_{kj}(\tilde{\omega}_{j}^{k} - \delta_{i}^{k}\tilde{\omega}_{o}^{o}) - (a_{i} a_{jk} + a_{j} a_{ik} - 2a_{i}a_{j}a_{k})\tilde{\omega}^{k} = 0.$$

Denoting $\tilde{\omega}_{\mu}^{\lambda}$ for the variations only secondary parameters by e_{μ}^{λ} , we get from (48)

$$a_{ik}(e_{ij}^k - \delta_j^k e_o^o) + a_{kj}(e_{ki} - \delta_i^k e_o^o) = 0.$$

On the other hand, as we assume P_n has no torsion, that is,

$$(\tilde{\omega}^i)' - [\tilde{\omega}^k (\tilde{\omega}_k^i - \delta_k^i \ \tilde{\omega}_o^o)] = 0,$$

it follows that

$$\delta \bar{\omega}^j = -\bar{\omega}^k \left(e^j_k - \delta^j_k e^o_o \right).$$

Accordingly we have

 $\delta(a_{ij} \ \bar{\omega}^i \ \bar{\omega}^j) = 2a_{ij} \ \bar{\omega}^i \ \delta\bar{\omega}^j = -2a_{ij} \ \bar{\omega}^i\bar{\omega}^k \ (e_k^j - \delta_k^j e_o^j) = 0$, which shows that the form

$$d\bar{s}^{2} = a_{ij} \ \bar{\omega}^{i} \bar{\omega}^{j} = \left(\frac{G_{ij}^{o}}{G_{oo}^{o}} - \frac{G_{io}^{o}}{G_{oo}^{o}} \right) \bar{\omega}^{i} \ \bar{\omega}^{j} = \left(\frac{G_{ij}}{G_{oo}} - \frac{G_{io}}{G_{oo}} \right) \bar{\omega}^{i} \bar{\omega}^{j}.$$

$$= \frac{\epsilon}{k^{2}} g_{ij} \ \omega^{i} \ \omega^{j} = \frac{\epsilon}{k^{2}} ds^{2}$$

determines a Riemannian metric defined by E. Cartan in another form and equivalent to ours (39) but a constant factor.

Mathematical Institute

Kyushu University

Notes

¹⁾ S. Sasaki and K. Yano, On the structure of spaces with normal projective connexions whose holonomy groups fix a hyperquadric or an (n-2) dimensional quadric in a hyperplane, Tohoku Math. J, (2) 1 no. 1.

²⁾ E. Cartan, Les groupes d'holonomie des espaces généralisés, Acta Mathematica 48 (1926) pp. 1—42.

³⁾ E. Cartan, Leçon sur la théorie des espaces à connexion projective, (1937).