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Introduction. This paper deals with n-dimensional projectively con-
nected spaces P, whose groups of holonomy fix a hyperquadric. For the
spaces with normal connexion, similar results as ours have been obtained inde-
pendently by S. Sasaki and K. Yano.”

In § 1, 2, we shall arrive at the fundamental equations and (24) in
the case of the spaces with no torsion, following the general method of £.
Cartan in bis famous paper.? In § 3, we shall consider the Riemannian
space R¥,; which is associated with the space £, and obtain- a relation
between these two spaces which shows that the condition in order that the
connexion of 7, be normal is equivalent to that of R¥,, being an Einstein space.
In § 4, we shall investigate the relations between the space 7, and the Rieman-
nian space R,* which is a hypersurface in R¥,;. Then, in § 5, we shall show -
that there exist a Riemannian space &R, which is projective to 7, and that,
if the connexion of £, is normal, R, is an Einstein space. Lastly, in § 6, we
shall show that R, is the space treated by E. Cartan.?

§ 1. According to E. Cartan, let R: (4, 4;) (G=12,...... 7) be a
frame of an n-dimensional space 7, with projective connexion. Then the
connexion is given by a system of Pfaffians o} (4, #=0,12,...... ,2) such
that

€)) dA=w)A+ ' A,;, dA;=wid+ ) 4,
where w'=wj. The equations of structure of Z, are
(2) (w}) ' =[w} o%]— 2%,
!2&-—0“’;98=—;—AA"‘”> [@'e?] -

where 4,*, are the components of the tensor of curvature and torsion of
the spacé. In a coordinate neighborhood (), we can use natural frames
such that the following relations hold:

3) w'=dyt, Wi —nw)=0.

Let us now represent a non degenerate hyperquadiic Q,_;, which the
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group of holonomy of P, at a given point A4, fixes, by

4) G2 =0, |G3ul=E0
in reference of the frame R°: (A}) at the point A°. Suppose that the
point does not lie on Q,_; and that the coordinates of A4° are =0 (=

1,2,...... 7). Now, if we consider a system of curves which pass through
the point A°
%) y=u't,

where «f is a constant and («*)==(0), and integrate the differential equations

d B i(at. a dt) — 0%y (at, a df) —0,
dt dt

d N x i (at, a dt) — 0w (ut, o dF)
CG— C‘; =O
dt dt
under the initial conditions 4%(0) =dg, ¢t (0) =273, then we see that the solu-
tions can be written as &3=643(y), ci=ci(y) and that & () (y) =75
Making use of these solutions, we transform our frame such that
B0=&3‘AA, Bt———bé\Ax
where 4,=A4. 1If we define &% by the relations

dBA=E,'i Bl‘-’

(6)

we get
@) O =db+ b, o
or
ar=c} dB,+ &, wi c},
because

dB,= (d63+ b, wf) Ae=d) By=d) 654,.
Since we have &} =0 along the curves (5) by virtue of (6), @} are com-
ponents of infinitesimal transformations of the group of holonomy accord-
ing to a theorem of E, Cartan® Hence @, must satisfy the equations

(8) Ggp ‘T’K'!'Ggu ‘T’§=G0Au -
where 7 is a Pfaffian form. If we represent the equations of structure of
the space with respect to the frame R : (5,) by

CORN. (@2)'—[af @}]=—2),
DVs satisfy the relations
(10) Pr=0 23 5
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because these quantities are components of a projective tensor. Differentiating
(8) exteriorly and making use of (9) we get the following relations
()Gl =Ghp (BR)'+ Gioa (@5)7
=G}, {[@y @4]—2g+ Gl i[ay at]—L%y
=—G" 20— G2 + [0 (n Gy, — G, %) ]+ [} (7 Gl — G5 )
=—G, -G, 5,

that is,

(11) Oxpgg'*'(;gw!?{:"‘ () Gl
If we put

(12) | Gus=Giy ca ¢4,
we get from [(11

(13) Gar i+ Gy i=— (1) Gy

Let us suppose that the space P, has no torsion, that is, the conditions
(14) D=2 =0 '

are satisfied. Then, if we put A=p¢=0 in [(13), we have 2G,2i=— (7)’

Gy At the point A° we have Gy=G3,ch =40 by (6’) and by our assump-

tion, hence we can suppose Gy==0 in a neighborhood of A4°. Accordingly,
we get from the above relation

(15) B=— (7).
Thus we obtain
(13 Gox (25— 012) + G 15 (LE—0525) =0

from and (19).
Substituting [(14), in the following equations which are derived
from (2) by exterior defferentiation :

(©D)'=—[2f wb]+[of 2]

we get
(16) [w* (L2i— 0i820) ]=0, [@* £7]=o0.
Hence for the case »=3 we get from and (2)
Al Al + Al y=0.

Contracting (13’) with G°*; we have £2i{—»82]=0. Hence we see that
the infinitesimal transformations associated with infinitesimal closed circuits fix
the point A and iheir dual transformations are unimodular affine. By (2),
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(3) we have £j—n2)=—[w; ©’]. Accordingly, putting

(17) ' whr—0hwy= ' =1} dy',
we get
(18) rg=rg

from the above equation and [(14).
§ 2. Let us now consider the qantity

19) DG, =dG),— &G pp— 0L Gy + 200G,
and its exterior derivative. Since
- (DGA.U-)’:_ %!J:}:Gpu'l"g:G}‘p'—z'QgGlu;

—{[w} DG, )+ [whDG),]—2[w; DG\, ]—2[¢'wf]Gay,
we get by (13’) and
(20) (DGy) =[wh DGpl+[wf DGr1—2[wh DGyl
On the other hand, by (6), we have along the curves (5) p'=du't
DG oy=G3,{dch — 0lch + wicht &+ G, ek {deh— wick+ 0t} =0

Hence, if we denote the variations of ¢ by 0 and those of « by d, we
have from [(20)

8 DGy,=¢{ DG,,+¢} DG, —2¢) DG,,

where e=w4(«* ¢4, «* 0f), or

2D

(\

DG),=

0
DG, —2— DG,.,.
ot Ao ot Aw

Since DG, ,'s satisfy the linear differential equations as above and are equal
to zero at the point A° it follows that at any point and for any variation

(22) | | DG, =O.

Thus we see that the hyperquadric G,,#*x*=0 in the tangent projective
space at each point A overlaps one upon another in the developement of

our space.
Let us now write in another form by means of [(17):
@2) 2 Gunm e Gl G1p=0
or
any )
23 —2G, =0,
(23,) 5y Co2Cn
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(23,) i Go =G0 —Gu =0,
(23,) oGl Gy = Gy =0.
k
Contracting (22') with G**, we see by means of (3) that
3 .

3 : —Oov —
GA"‘ 8yk Gl]l.= a’}/k lOg G=2P;"‘k—21';k—0)
that is, G=|G,,|=constant. G, is evidently a projective scalar. Let us

denote it by 2¢; then we have

Gro = P==Prs Py=2-

Wk
Doy Pryeveses , ¢, are obviously components of an analytic covariant projective
vector. '
From (23;) we have
]. { 8 ij 8 Gki 8 ”Gij }__
= + —_ =17 G
2 ? )/t P yi P y&: aJ Pk

and from (23,)

1 (3G, , 3Gy _ o
‘?{ 8)}5 + 8 j/j 261,} %’—Izpj Gpo'

Making use of the above relations, we get
1 (0 G 0 G 3 G,
24)  Iy=— G g oy 0 Cu 00y )G
24 79 0y 3 9

Thus we obtam the following result:
TVe parameters of connexion of our space are given by (24) in terms of
G aps conversely, in such spaces that Iy arve given by (24) the groups of

holonomy fix a hyperquadric.
§ 3. Let us now consider such an (n+4 1)—dimensiona1 Riemannian

space R¥,, that its fundamental tensor is given by
(29) G, = Gy s G¥M =g~ G,

As the quadratic form G}, »*+* is not always positive definite, this space is

8}/’8 1 —G“)

a Riemannian space in a general sense.
The Chiistoffel symbols }¥,{* f01med by G¥. are

1 ( 0 pr o 4 aaGy;v- o — _@_aﬂ.“h)+&3°+5”53 G”OG,\;»_
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From these we get

AL 1w 8 Grs O Gu 8 Gy )+G“” Ty Gij)’

2 a3y 8y o oy
; 1 ‘ 8 G a Go ) vo( ]- a GOO ) v
yik=___G* ko — P )4 Go(— —2 — G, )+,
g J 2 ay" ayk 2 ayj Jo
30t *=—G" Gp—G*" Gu+20).
(26) {B*=T3 {ht*=0.

Let us now consider the Pfaffians w*} of R},, with respect to its na-
tural frame

27 w*p={a1* &*;
then by we have
(28) w*i=w}+8% 4, w*i=dy*.
Accordingly we have for the frame (4, ¢,) the relations
dA=dy?e,,
29 dey=dy’es,

de;= ) ¢4+ % e, +dyl,,
for which we obtain (A4—¢,) =0. Thus we see that the group of holonomy
of RY¥,, fixes a point. Moreover, for the curves y*=const. we have dA=
ay’e,, dey=dy’,. Hence, these curves constitute a family of geodesics
each of which converges to a point corresponding to this fixed point O,
because we may consider from the first that Gy > 0.

Now we consider an z-dimensional hypersurface p’=const., on which
we have dd=dy'e,, de,=dy'e;,, de,=c0} ¢y+w} ¢, Then, if we put e3=4,,
we get (1). Thus we see that, if we consider at each point in R*,}, the
tangent (z+1)-dimensional Euclidean space E,,; (A4), any two neighbour-
ing spaces £,,,(A) and E,.,(A+dA) are situated such that they have the
point O in common. Moreover, the above relations show that we /Lave /e
connexion of our space P, if we project the tangent hyperplane E.(A+dA)
at A+dA onto the tangent lyperplane E,(A) at A from the point O.

Let us now determine the curvature tensor £*; of R;_;. By we
have

— Q%= (0*}) —[0*} w}*]
= (%) —[o’ wi]—[w} dp*]—[dy* &i]+0id" of]=—2},
where we put w}=0 as this may be generally admissible. And we have
by -
' Q¥i=[dy* (wr+0; &) 1+[dy* &*]=0,
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N=[eo* ?]=0.
Putting

1
(30) Pri=_

‘2-R*apv [dyp dyv,]

we obtain from the above relations
(31) R*i'\hk =A‘Akhs R*;,(,:R*g‘u,:O.

Accordingly for the Ricci tensor R*,,=R*,,. of R¥,, we have the rela-

- tions
(32) R*y =4y, R*,,=R*,,=0.
If the connexion of our space £, is normal, we have
(33) Ay =0.

Thus we see that:

The necessary and sufficient condition #iat the connexion of the space P™
may be normal is that the Riemannian space RY,. | associated to P, is an Einstein
space whose scalay curvature is equal to O.

§ 4. The equations of geodesics in R¥,,, as well known, are
q g

&y ar  ay* ay \ dy*
34 AT Dy, P D
(34) dr tid dt  dt A7
where F is a suitable function. Making use of [(26), we have from
2 0 1 J 0 0
(34) LI vy DB (DD
A dt at adit dat
2 2
(34) APy o N A =<F— 2 @) &
dt? dar dr dat dt

On the other hand, the equations of projective geodesics of Pn are
a2 :,yt +f}§c alyj (_j/

ar? dt dy a’t

From these equations we see that: ;

The geodesics of P, are those curves on the surface y*=const. whick we
obtain by projecting the geodesics of Ry.. along the geodesics through the point
corresponding to the point O.

Let us now consider the surface y’=const. as an n-dxmensmnal Riemannian
space K,* and denote its fundamental tensor by 7y;:

(35) 75=Gy
(here we suppose that |G,|==0). Then we can see that
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GY G*
ri=G"— ~
Let us denote the Christoffel symbols of R,* by A}, then we have
' G"
(36) Ai’;=[f’}——2—67 Eg,

because

1 27 o7 o 7 )
AP — i B4 e ’
i3 rh ayi 3 yi P) yk
1 ChE— G’“’ G"" )( 0 G,,J + 3Gy __ 0 Gy

) 8" 3 »*
G" G’“’/E)G,, 3 Gy 8G¢)
= h— J i J
i ) {Goo \ 3 + 3 8y
3’ ¢ }
2l ———M-——G
+ ( 3y’ ay? ‘j,)
Gho

h_______ (1}
Hoegw ¥
Hence we find by the equations of geodesics of R,* as

Fe y-i : dy{) a’y" dy‘ G o dj/t dyk
(37 r =M
(37) 7 I e i TTeom * Ty T

Z
-where M is a suitable function of »* and % From this it follows :

The neéessary and sufficient condition that #ke geodesics of P,
coincide with those of R* is [}=0 or G*=0. In the first case: by
R* becomes a totally geodesic surface in RY., and P, can be considered as a
Riemannian space with the group of holonomy whick fixes a point. Because
the connexion of 7, fixes the plane at infinity [4,,...... ,4,] and is accor-
dingly affine, and furthermore, since the group of holonomy fixes the hy-
perquadric G4 2* 2*=0 (|G,|==0), P, can be considered as a Riemannian
space. In the second case: the condition G*=0 is equivalent to the condi-

tion G,7*=0 or, by virtue of our assumption |r,;|==0, Gi,,-—_%so_ =0.
i

Thus we see that geodesics of R*, through the point corresponding to O
intersect the surface corresponding to the R,* at those points which are

apart from the fixed point by a constant distance, hence that #kis surface
wnust be lotally umébilical.
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§ 5. It is evident that we can introduce a Riemannian metric into
our space P, by means of the hyperquadric (4) which is fixed by the group
of holonomy of P,. The non-Euclidean distance with respect to the absolute:
hyperquadric (4) between 4 and 4 +dA is equal to the distance with respect
to the absolute hyperquadric G4 #*4#*=0 at the point 4 which is projective to
4). :
The homogeneous coordinates of 4 and A+4dA with respect to the
natural frame (4,) are respectively (1,0,...... 0), (1, dy,...... Ay"). Thene
let us consider the straight line passing through 4 and A+4dA in the
tangent projective space at A, and suppose that this line intersects the
hyperquadric G,; x*4#®=0 at the points /7 and V. If we put the coordinates
of these points of intersection #’=21+4py, »*=p dy* and substitute these in
Gas 2* 2°=0, we have |

BG4 200 (Goo+ Gy @Y°) + 12 (G +2G,, dy' 4Gy Ay dy') =Q

or

A G,;, 4y’ — G G, G
N =1 — io AV :t,\/___]_/\/ g Yo Jo i P
lL! GOO ( GOO GOO GOO )dy dy )

Hence we have .
Double ratio (4, A+dA, L, M)

G; _ G G G 2
LT i W N/(_“ij‘__m_ _j?_) ; j}
{ + GOO Ly 1 Goo Goo GOO dy d}/
1+2_g 2 _dyl + gjL ayt dy*

00 00

Accordingly we have

1
2+v—1

log (4, A+dA, L, M) =/ G _ Gy ﬂ)dx’ dx®+ ...
' ( Goo GOO GOO

From the above relation we now define a Riemannian metric in P, by
the equation

(38) de=e (Lo Cu Co ) gy gy
GOO GOO GOO
where € is 1 or —1 and 4 is a proper constant, and denote by R, the
corresponding Riemannian space. Since G, is an projective tensor, the
quantities '

(39) =€ A2 (_ g Mo Jo )
ST N G Gu G
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are evidently the components of an affine tensor in ordinary sense with
respect to coordinate transformations. The components g of the con-
travariant tensor conjugate to the covariant tensor g;; are obviously

)  gmelmoG,

Then let us form the Christoffel symbols {/;} of R,. From we

have
Lgi-_—e}g‘l{i_ Gy __ Gy logve dlogvy

ay* [2¢  9y* 2¢* ay' oyt ayt
__dlogve @ log«/a}
oy' ay’ ay*
hence
r 1 th( 3G 9G4 3Gy, ) 9 logve A o
Ggr=-—— + — — = or—G

tat=- 3 3y’ 3" Y @ 2
3 log~e Sh— G 9? log«/a) e O loga/p
-2 "7 (o}— 2) + (Gy—2 G 2 .

" ( ¢:) + (G ¢ a7 oyt 2"

On the other hand, we have
G, =G Gry=—G" Goo=—20G"
9% log v _ 9% ¢ 1

hence we get by (24) the following relations :
(41) =it 400 log Vg 4oy 2logvy

3y’ ay’

From we see that ‘P, and R, are mutually projective with respect to
the parameters of connexions. But this is obvious from the fact that the
geodesics of R, coincide with those of £, by our projective definition of
the metric of R,.

Now we investigate the properties of ‘R,. If we put

&%= { atdy*=w;— 0} do—p; dy*

where p=log vy, ¢,= 90 we have

< ’
b4

@)= (' —[dps &),
[ @b)=[w} wil—pulof dyl+pldp ]

Denoting by &% the curvature of R,, we have from the above equations
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—Bi= @) — [}
= () —[w? &}]—[do;— &% pr+ p: do, dY].
On the other hand, we get from (23,)
DG, =do,— % ¢,— Gy &y —2¢0=0,
hence by

) . a
doi— & putp; dp=—2— (dp— et p) —L1
, 2¢ 4¢°
=L (G & +2007) — .
2¢ 450

Substituting these equations on the right of £%, we obtain

(42) — 1= (o) —[ot of]—[w} &)= —Zguldr D]
or D= .Q”+ —-gy (4 )]
If we denote the components of the Riemann tensor of R, by

Oh— _;_ Y 4y dyF], we get from

(43) Rl=AP ; s Oh—&u 0}
and
n—1
(43) R@j Ay + € )gw

where R,j R} . are the components of the Ricci tensor of R,. When the
connexion of /#, is normal, that is, the condition 4,=0 is satisfied, we

have from (44)

Dgiy

45 R, =_€
(49) y;

This shows that the space R, is an Einstein space. Our result can be
stated in the following

THEOREM. [If a normal projectively connected space P, (n>2) has the
group of lolonomy whick fixes a hyperquadyic, the space is projective to an
Einstein space.

From we have a well known result: The necessary and sufficient
condition that P, may ée flat is that R, be a space with constant curvature.
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Next we shall consider the inverse problem. From (23,) we get

~ 1 1 1 o’
—I=—Gy+— —_
7 2¢ j+2§0 5 2¢ v 3y
€ 0 .
=7gij ap; — 1755 ontp: p5)= — @i 50 Py

where p,,, is the covariant derivative of p; with respect to 3¢ in R,. Hence
we have the following equations
5= 11§+5f 037+05 P
(46)
5= 0 é’m’*‘. i3 P Oy
Thus we obtain the result:
For a given Einstein space R, (#>2), if we consider a space with
connexion given by (46), this space has the group of holonomy which

fixes a hyperquadric.

§ 6. In this last section we compare our method with that of E.
Cartan who has introduced a Riemannian metric into the space Z,.

Since the group of holonomy of P, is transitive, we can transform the
frame R: (4,) to the other R: (4,)

E=A’ ‘;4—1:=P2 A+]>f -Aj
such that the new system of Pfaffians @; satisfies the equations (8)
G4, @L+ G2 @=1G3,

wheére @) are defined by @} pi=dpi+pp @i From these we get
( G7P _9 G G )a,,+£z°—ag_—_0,

G5 Gy G,
G?,, @+ & g)g_QEj_ @& =0
G, Ge, Go
or
- G ° Go, \ -
2 —9 20 3o ) .1+ J -0 ,
) G" G TGn (&i— 67 a3)
G = Gl - - G ~ %, ~
+ Tk (B5— 8% a7) + —1 57 + -T2 G=0.
Gy, P W+ G,
If we put
(47) | o Gga Gio =a,, G3, =a,

Go G Go Goo
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and substitute these in the above equations, we have

(48) a9k — %)) + (5 — 0% @) — (a: ap+a; an—2a;a;0,) 5" =0.

Denoting @, for the variations only secondary parameters by ¢}, we
get from (48)
@y (e5— 05 €5) + ap,(es— 0% €) =0.
On the other hand, as we assume P, has no torsion, that is,
_ (@%)! —[@*(wi—0% ®2)]=0,
it follows that
dwl=—a% (l—0) 7).

Accordingly we have

- 0(ay @ @) =2a,; & 0d'=—2a;; &'a" (efj—0{)) =0, which shows that
the form

_— o 2 2 — s G, . e
dfc—’_—_ai . 0wl = @_—# _G_L ot oi= _LL_——-@ Gjo wm’,
’ G G
00

G, G, G 0 Go 7
€ i € o
= 8 W W = — s®
# Y 4

determines a Riemannian melric defined by E. Cartan in another form and
equivalent to ours but a constant factor.

M‘:i’thematical Institute
Kyushu University.
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