A Theorem on compact semi-simple groups ## Morikuni Gotô (Received Sept. 17, 1948) Let G be a topological group. We shall denote by D(G) the closure of the commutator subgroup of G, and call a connected compact group semi-simple if D(G) coincides with G. A connected compact Lie group is semi-simple in our sense if and only if it is a semi-simple Lie group. We note here the fact that any factor group of a connected compact semi-simple group is also semi-simple. In the present note we shall prove the following. **Theorem.** Let G be a connected compact semi-simple group. Then for any element x of G there corresponds a pair of elements y and z such that $$x = y^{-1}z^{-1}yz$$. Similar results have been obtained by K. Shoda¹⁾ for the special linear group over an algebraically closed field, and recently by H. Tôyama²⁾ for some types of compact simple Lie groups. Our theorem is an extension of the theorem of Tôyama. In order to prove our theorem we shall first prove a special case, namely the following **Lemma.** Let G be a connected compact semi-simple Lie group. Then any element x in G is representable in a form $y^{-1}z^{-1}yz$ for suitably enosen elements y and z. **Proof** Let A be a maximal connected commutative subgroup of G. Then A is a closed toroidal group,³⁾ and any element of G is known to be conjugate with some element of A. Hence it is sufficient to prove the case when x is contained in A. Now we introduce a system of canonical coordinates in A. Then any a of A is given by its coordinates: $$a=a(\varphi), \quad \varphi=(\varphi_1,\ldots,\varphi_n).$$ where φ_i varies over all real numbers mod. 1. Let now H be the normalizer of A in G. The transformation by an element h of H induces a ¹⁾ K. Shoda: Einige Saetze ueber Matritzen, Jap. Journ. of Math. v. XIII, 1937. ²⁾ II. Tôyama: On commutators of matrices. ³⁾ See L. Pontrjagin: Topological groups, Princeton, 1939. continuous automorphism in A: $$h^{-1}a(\varphi)h = a(\varphi^*),$$ $\varphi^* = \varphi S,$ $\varphi = (\varphi_1, \dots, \varphi_n)$ $\varphi^* = (\varphi_1^*, \dots, \varphi_n^*),$ where S=S(h) is a real matrix of degree n. The correspondence $$h \longrightarrow S(h)$$ gives obviously a linear representation of H/A. Denote by (S) the matric group composed of S(h)'s. It is well known that (S) is a finite group isomorphic with H/A: $(S) \equiv H/A$, and that (S) is determined by the local structure of G^{4} . There exists now an element S_0 of (S) such that (*) $$\det(S_0 - 1_n) \neq 0,$$ where I_n denotes the unit matrix of degree n. In fact as all compact simple infinitesimal groups and the corresponding (S)'s are known⁵, we can readily find such S_0 that satisfies (*). Let h_0 be an element of H such that $S(h_0) = S_0$. Then (*) and the relation $$a(\varphi)^{-1}h_0^{-1} \ a(\varphi) \ h_0 = a(\varphi(S_0 - 1_n))$$ imply that for a given $a(\psi)$ in A there corresponds an element $a(\varphi)$ of A so that $$a(\varphi)^{-1} h_0^{-1} a(\varphi) h_0 = a(\psi),$$ and this completes our proof. Q.E.D. Proof of the theorem. Let G be a connected compact semi-simple group. Then there exists a sequence $\{G_{\alpha}\}$ of compact semi-simple Lie groups such that G is the G_{α} -adic limit group of $\{G_{\alpha}\}$: $G=\lim_{\alpha \to \infty} G_{\alpha}$. Hence we can easily conclude the existence of connected compact semi-simple Lie groups L_{λ} such that G is homomorphic with the direct product IL_{λ} : $$(\Pi L_{\lambda})/D \equiv G$$ where D is a closed (0-dimensional) invariant subgroup of ΠL_{λ} . Accordingly the validity of the theorem for L_{λ} immediately implies that for G. Q.E.D. Remark. In connection with the theorem of Shoda mentioned above, we can prove the following results modifying the proof of our lemma: ⁴⁾ See e.g. F. Gantmacher: Canonical representations of automorphisms of a complex semisimple Lie groups, Rec. Math. v. 5, 1939. ⁵⁾ F. Gantmacher: loc. cit. Let G be a connected complex semi-simple Lie group of complex dimension r, and let C be the set of all elements of G of the form $y^{-1}z^{-1}yz$. Then the complementary set G-C of C in G is contained in a closed set of complex dimension at most r-1. Hence C contains an open, connected set, which is everywhere dense in G. Mathematical Institute, Nagoya University.