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RIGIDITY OF MANIFOLDS WITH BOUNDARY
UNDER A LOWER BAKRY-ÉMERY

RICCI CURVATURE BOUND

YOHEI SAKURAI
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Abstract. We study Riemannian manifolds with boundary under a lower Bakry-
Émery Ricci curvature bound. In our weighted setting, we prove several rigidity theorems
for such manifolds with boundary. We conclude a rigidity theorem for the inscribed radii, a
volume growth rigidity theorem for the metric neighborhoods of the boundaries, and various
splitting theorems. We also obtain rigidity theorems for the smallest Dirichlet eigenvalues for
the weighted p-Laplacians.

1. Introduction. For Riemannian manifolds without boundary, under a lower Bakry-
Émery Ricci curvature bound, we know several comparison results and rigidity theorems (see
e.g., [12], [32], [38] and [45]). For metric measure spaces, Lott and Villani [33], [34], and
Sturm [42], [43] have introduced the so-called curvature dimension condition that is equiva-
lent to a lower Bakry-Émery Ricci curvature bound for manifolds without boundary. Under a
curvature dimension condition, they have obtained comparison results in [34] and [42]. Under
a more restricted condition, Gigli [15], and Ketterer [24], [25] have recently studied rigidity
theorems.

In this paper, we study Riemannian manifolds with boundary under a lower Bakry-Émery
Ricci curvature bound, and under a lower mean curvature bound for the boundary. For such
manifolds with boundary, we obtain several comparison results, and we prove rigidity the-
orems. In an unweighted standard setting, for instance, Heintze and Karcher [17], and Ka-
sue [19] have obtained comparison results, and Kasue [20], [21], and the author [40] have
done rigidity theorems. We generalize them in our weighted setting.

1.1. Setting. For n ≥ 2, let M be an n-dimensional, connected complete Riemann-
ian manifold with boundary with Riemannian metric g. The boundary ∂M is assumed to be
smooth. We denote by dM the Riemannian distance on M induced from the length structure
determined by g. Let f : M → R be a smooth function. For the Riemannian volume measure
volg on M induced from g, we put mf := e− f volg.

We denote by Ricg the Ricci curvature on M defined by g. We denote by ∇ f the gradient
of f , and by Hess f the Hessian of f . For N ∈ (−∞,∞], the Bakry-Émery Ricci curvature
RicNf is defined as follows ([2], [38]): If N ∈ (−∞,∞) \ {n}, then
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RicNf := Ricg +Hess f − ∇ f ⊗ ∇ f
N − n ;

if N = ∞, then RicNf := Ricg +Hess f ; if N = n, and if f is a constant function, then RicNf :=

Ricg; if N = n, and if f is not constant, then put RicNf := −∞. For K ∈ R, by RicNf ,M ≥ K we

mean that the infimum of RicNf on the unit tangent bundle on the interior Int M of M is at least
K. For x ∈ ∂M, we denote by Hx the mean curvature on ∂M at x in M defined as the trace of
the shape operator for the unit inner normal vector ux at x. The f -mean curvature Hf ,x at x is
defined by

Hf ,x := Hx + g((∇ f )x, ux) .
For Λ ∈ R, by Hf ,∂M ≥ Λ we mean infx∈∂M Hf ,x ≥ Λ. The subject of our study is a metric
measure space (M, dM,mf ) such that for N ∈ [n,∞), and for κ, λ ∈ R, we have RicNf ,M ≥ (N −
1)κ and Hf ,∂M ≥ (N − 1)λ, or such that Ric∞f ,M ≥ 0 and Hf ,∂M ≥ 0.

1.2. Inscribed radius rigidity. For κ ∈ R, we denote by Mn
κ the n-dimensional space

form with constant curvature κ. We say that κ ∈ R and λ ∈ R satisfy the ball-condition if there
exists a closed geodesic ball Bn

κ,λ in Mn
κ with non-empty boundary ∂Bn

κ,λ such that ∂Bn
κ,λ has a

constant mean curvature (n − 1)λ. We denote by Cκ,λ the radius of Bn
κ,λ. We see that κ and λ

satisfy the ball-condition if and only if either (1) κ > 0; (2) κ = 0 and λ > 0; or (3) κ < 0 and
λ >
√|κ|. Let sκ,λ(t) be a unique solution of the so-called Jacobi-equation

φ′′(t) + κφ(t) = 0

with initial conditions φ(0) = 1 and φ′(0) = −λ. We see that κ and λ satisfy the ball-condition
if and only if the equation sκ,λ(t) = 0 has a positive solution; in particular, Cκ,λ = inf{t > 0 |
sκ,λ(t) = 0}.

Let ρ∂M : M → R be the distance function from ∂M defined as ρ∂M(p) := dM(p, ∂M).
The inscribed radius of M is defined as

D(M, ∂M) := sup
p∈M

ρ∂M(p) .

We have the following rigidity theorem for the inscribed radius:

THEOREM 1.1. Let M be an n-dimensional, connected complete Riemannian manifold
with boundary, and let f be a smooth function on M. Let κ ∈ R and λ ∈ R satisfy the ball-
condition. For N ∈ [n,∞), we suppose RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥ (N − 1)λ. Then we
have D(M, ∂M) ≤ Cκ,λ. Moreover, if there exists p ∈ M such that ρ∂M(p) = Cκ,λ, then (M, dM)
is isometric to (Bn

κ,λ, dBn
κ,λ

) and N = n; in particular, f is constant on M.

Kasue [20] has proved Theorem 1.1 in the standard case where f = 0 and N = n. We
prove Theorem 1.1 in a similar way to that in [20].

REMARK 1.1. M. Li [28] later than [20] has proved Theorem 1.1 when f = 0, N = n
and κ = 0. H. Li and Wei have proved Theorem 1.1 in [27] when κ = 0, and in [26] when κ <
0. In [26] and [27], Theorem 1.1 in the specific cases have been proved in a similar way to
that in [28].
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1.3. Volume growth rigidity. For κ ∈ R and λ ∈ R, if κ and λ satisfy the ball-
condition, then we put C̄κ,λ := Cκ,λ; otherwise, C̄κ,λ := ∞. We define a function s̄κ,λ : [0,∞)→
R by

s̄κ,λ(t) :=

⎧⎪⎪⎨⎪⎪⎩
sκ,λ(t) if t < C̄κ,λ ,

0 if t ≥ C̄κ,λ .

For N ∈ [2,∞), we define a function sN,κ,λ : (0,∞)→ R by

sN,κ,λ(r) :=
∫ r

0
s̄N−1
κ,λ (t) dt .

For r > 0, we put Br(∂M) := { p ∈ M | ρ∂M(p) ≤ r }. For x ∈ ∂M, let γx : [0, T ) → M
be the geodesic with initial conditions γx(0) = x and γ′x(0) = ux. We denote by h the induced
Riemnnian metric on ∂M. For the Riemannian volume measure volh on ∂M induced from h,
we put mf ,∂M := e− f |∂M volh. For an interval I, and for a connected component ∂M1 of ∂M, let
I × κ,λ∂M1 denote the warped product (I × ∂M1, dt2 + s2

κ,λ(t)h). We put Iκ,λ := [0, C̄κ,λ] \ {∞},
and denote by dκ,λ the Riemannian distance on Iκ,λ × κ,λ∂M.

We obtain relative volume comparison theorems of Bishop-Gromov type for the metric
neighborhoods of the boundaries (see Theorems 5.4 and 5.5). We conclude rigidity theorems
concerning the equality cases in those comparison theorems (see Subsection 5.3).

One of the volume growth rigidity results is the following:

THEOREM 1.2. Let M be an n-dimensional, connected complete Riemannian manifold
with boundary, and let f : M → R be a smooth function. Suppose that ∂M is compact. For
N ∈ [n,∞), we suppose RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥ (N − 1)λ. If we have

(1.1) lim inf
r→∞

mf (Br(∂M))

sN,κ,λ(r)
≥ mf ,∂M(∂M) ,

then (M, dM) is isometric to (Iκ,λ × κ,λ∂M, dκ,λ), and for every x ∈ ∂M we have f ◦ γx = f (x) −
(N−n) log sκ,λ on Iκ,λ. Moreover, if κ and λ satisfy the ball-condition, then (M, dM) is isometric
to (Bn

κ,λ, dBn
κ,λ

) and N = n; in particular, f is constant on M.

In [40], Theorem 1.2 has been proved when f = 0 and N = n.
In the case of N = ∞, we have the following:

THEOREM 1.3. Let M be a connected complete Riemannian manifold with boundary,
and let f : M → R be a smooth function. Suppose that ∂M is compact. Suppose Ric∞f ,M ≥ 0
and Hf ,∂M ≥ 0. If we have

(1.2) lim inf
r→∞

mf (Br(∂M))

r
≥ mf ,∂M(∂M) ,
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then (M, dM) is isometric to ([0,∞) × ∂M, d[0,∞)×∂M).

REMARK 1.2. On one hand, under the same setting as in Theorem 1.2, we always have
the following (see Lemma 5.2):

(1.3) lim sup
r→∞

mf (Br(∂M))

sN,κ,λ(r)
≤ mf ,∂M(∂M) .

On the other hand, under the same setting as in Theorem 1.3, we always have the following
(see Lemma 5.3):

(1.4) lim sup
r→∞

mf (Br(∂M))

r
≤ mf ,∂M(∂M) .

Theorems 1.2 and 1.3 are concerned with rigidity phenomena.

REMARK 1.3. In the forthcoming paper [41], we prove the same result as Theorem 1.3
under a weaker assumption that RicNf ,M ≥ 0 and Hf ,∂M ≥ 0 for N < 1. In the rigidity case, we
prove further that for every x ∈ ∂M the function f ◦ γx is constant on [0,∞) (see Theorem 1.1
in [41]).

1.4. Splitting theorems. Define a function τ : ∂M → R ∪ {∞} by

(1.5) τ(x) := sup{ t ∈ (0,∞) | ρ∂M(γx(t)) = t } .
We obtain the following splitting theorem:

THEOREM 1.4. Let M be an n-dimensional, connected complete Riemannian manifold
with boundary, and let f : M → R be a smooth function. Let κ ≤ 0 and λ :=

√|κ|. For N ∈
[n,∞), we suppose RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥ (N − 1)λ. If for some x0 ∈ ∂M we have
τ(x0) = ∞, then (M, dM) is isometric to ([0,∞) × κ,λ∂M, dκ,λ), and for all x ∈ ∂M and t ∈
[0,∞) we have ( f ◦ γx)(t) = f (x) + (N − n)λt.

In the standard case where f = 0 and N = n, Kasue [20] has proved Theorem 1.4 under
the assumption that the boundary is compact (see also the work of Croke and Kleiner [11]).
In the standard case, Theorem 1.4 itself has been proved in [40].

In the case of N = ∞, we have the following splitting theorem:

THEOREM 1.5. Let M be a connected complete Riemannian manifold with boundary,
and let f : M → R be a smooth function such that sup f (M) < ∞. Suppose Ric∞f ,M ≥ 0 and
Hf ,∂M ≥ 0. If for some x0 ∈ ∂M we have τ(x0) = ∞, then the metric space (M, dM) is isometric
to ([0,∞) × ∂M, d[0,∞)×∂M).

REMARK 1.4. In Theorem 1.5, we need the assumption sup f (M) < ∞. We denote by
Sn−1 the (n − 1)-dimensional standard unit sphere, and by ds2

n−1 the canonical metric on Sn−1.
We put

M :=
(
[0,∞) × Sn−1, dt2 + cosh2 t ds2

n−1

)
.
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Let f be a function on M defined by f (p) := (n − 1)ρ∂M(p)2. Then for all x ∈ ∂M we have
Hf ,x = Hx = 0. Take p ∈ Int M, and put l := ρ∂M(p). We choose an orthonormal basis of
{ei}ni=1 of TpM such that en = ∇ρ∂M . For all i = 1, . . . , n − 1, we have

Ricg(ei, ei) = (n − 2)
1 − sinh2 l

cosh2 l
− 1, Hess f (ei, ei) = 2(n − 1)l

sinh l
cosh l

,

and Ricg(en, en) = −(n − 1), Hess f (en, en) = 2(n − 1). For all i, j = 1, . . . , n with i � j, we
have Ricg(ei, e j) = 0 and Hess f (ei, e j) = 0. From direct computations, it follows that if n ≥
3, then Ric∞f ,M ≥ 0 and Hf ,∂M ≥ 0. On the other hand, M is not isometric to the direct product
[0,∞) × Sn−1.

REMARK 1.5. In [41], we prove the same splitting theorem as Theorem 1.5 under a
weaker assumption that RicNf ,M ≥ 0 and Hf ,∂M ≥ 0 for N < 1. In the splitting case, we show
that for every x ∈ ∂M the function f ◦ γx is constant (see Theorem 1.3 in [41]).

In Theorems 1.4 and 1.5, by applying the splitting theorems of Cheeger-Gromoll type
(cf. [10]) to the boundary, we obtain the multi-splitting theorems (see Subsection 6.3). We also
generalize the splitting theorems studied in [20] (and [11], [18]) for manifolds with boundary
whose boundaries are disconnected (see Subsection 6.4).

1.5. Eigenvalue rigidity. For p ∈ [1,∞), the (1, p)-Sobolev space W1,p
0 (M,mf ) on

(M,mf ) with compact support is defined as the completion of the set of all smooth functions
on M whose support is compact and contained in Int M with respect to the standard (1, p)-
Sobolev norm. We denote by ‖·‖ the standard norm induced from g, and by div the divergence
with respect to g. For p ∈ [1,∞), the ( f , p)-Laplacian Δ f ,p φ for φ ∈ W1,p

0 (M,mf ) is defined
by

Δ f ,p φ := −e f div
(
e− f ‖∇φ‖p−2 ∇φ

)

as a distribution on W1,p
0 (M,mf ). A real number μ is said to be an ( f , p)-Dirichlet eigenvalue

for Δ f ,p on M if there exists a non-zero function φ ∈ W1,p
0 (M,mf ) such that Δ f ,pφ = μ|φ|p−2 φ

holds on Int M in a distribution sense on W1,p
0 (M,mf ). For p ∈ [1,∞), the Rayleigh quotient

R f ,p(φ) for φ ∈ W1,p
0 (M,mf ) \ {0} is defined as

Rf ,p(φ) :=

∫
M
‖∇φ‖p d mf∫

M
|φ|p d mf

.

We put μ f ,1,p(M) := infφ Rf ,p(φ), where the infimum is taken over all non-zero functions in
W1,p

0 (M,mf ). The value μ f ,1,2(M) is equal to the infimum of the spectrum of Δ f ,2 on (M,mf ).
If M is compact, and if p ∈ (1,∞), then μ f ,1,p(M) is equal to the infimum of the set of all
( f , p)-Dirichlet eigenvalues on M.
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Let p ∈ (1,∞). For N ∈ [2,∞), κ, λ ∈ R, and D ∈ (0, C̄κ,λ] \ {∞}, let μp,N,κ,λ,D be the
positive minimum real number μ such that there exists a non-zero function φ : [0,D] → R

satisfying

(
|φ′(t)|p−2φ′(t)

)′
+ (N − 1)

s′κ,λ(t)
sκ,λ(t)

(|φ′(t)|p−2φ′(t))(1.6)

+ μ |φ(t)|p−2φ(t) = 0, φ(0) = 0, φ′(D) = 0.

For D ∈ (0,∞), let μp,∞,D be the positive minimum real number μ such that there exists a
non-zero function φ : [0,D]→ R satisfying

(1.7)
(
|φ′(t)|p−2φ′(t)

)′
+ μ |φ(t)|p−2φ(t) = 0, φ(0) = 0, φ′(D) = 0 .

We recall the notion of model spaces that has been introduced by Kasue in [21] in our
setting. We say that κ ∈ R and λ ∈ R satisfy the model-condition if the equation s′κ,λ(t) = 0
has a positive solution. We see that κ and λ satisfy the model-condition if and only if either
(1) κ > 0 and λ < 0; (2) κ = 0 and λ = 0; or (3) κ < 0 and λ ∈ (0,

√|κ|).
Let κ ∈ R and λ ∈ R satisfy the ball-condition or the model-condition. Suppose that M

is compact. For κ and λ satisfying the model-condition, we define a positive number Dκ,λ(M)
as follows: If κ = 0 and λ = 0, then Dκ,λ(M) := D(M, ∂M); otherwise, Dκ,λ(M) := {t >
0 | s′κ,λ(t) = 0}. We say that (M, dM) is a (κ, λ)-equational model space if M is isometric to
either (1) for κ and λ satisfying the ball-condition, the closed geodesic ball Bn

κ,λ; (2) for κ and
λ satisfying the model-condition, and for a connected component ∂M1 of ∂M, the warped
product [0, 2Dκ,λ(M)] × κ,λ∂M1; or (3) for κ and λ satisfying the model-condition, and for
an involutive isometry σ of ∂M without fixed points, the quotient space ([0, 2Dκ,λ(M)] ×
κ,λ∂M)/Gσ, where Gσ is the isometry group on [0, 2Dκ,λ(M)]× κ,λ∂M whose elements consist
of the identity and the involute isometry σ̂ defined by σ̂(t, x) := (2Dκ,λ(M) − t, σ(x)).

Let p ∈ (1,∞). Let M be a (κ, λ)-equational model space. From a standard argument,
we see that if M is isometric to Bn

κ,λ, then μ0,1,p(M) = μp,n,κ,λ,Cκ,λ . Furthermore, if M is not
isometric to Bn

κ,λ, then μ0,1,p(M) = μp,n,κ,λ,Dκ,λ(M) for the corresponding κ, λ and Dκ,λ(M).
We establish the following rigidity theorem for μ f ,1,p:

THEOREM 1.6. Let M be an n-dimensional, connected complete Riemannian manifold
with boundary, and let f : M → R be a smooth function. Suppose that M is compact. Let
p ∈ (1,∞). For N ∈ [n,∞), we suppose RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥ (N − 1)λ. For D ∈
(0, C̄κ,λ] \ {∞}, we assume D(M, ∂M) ≤ D. Then we have

(1.8) μ f ,1,p(M) ≥ μp,N,κ,λ,D .
If the equality in (1.8) holds, then (M, dM) is a (κ, λ)-equational model space; more precisely,
the following hold:

(1) if D = C̄κ,λ, then κ and λ satisfy the ball-condition, (M, dM) is isometric to (Bn
κ,λ, dBn

κ,λ
),

and N = n; in particular, f is constant on M;



RIGIDITY OF MANIFOLDS WITH BOUNDARY 75

(2) if D ∈ (0, C̄κ,λ), then κ and λ satisfy the model-condition, (M, dM) is a (κ, λ)-
equational model space, and f ◦ γx = f (x) − (N − n) log sκ,λ on [0,Dκ,λ(M)] for
all x ∈ ∂M.

Kasue [21] has proved Theorem 1.6 when p = 2, f = 0 and N = n. It seems that the
method of the proof in [21] does not work in our non-linear case of p � 2 (see Remark 7.3).
We prove Theorem 1.6 by a global Laplacian comparison result for ρ∂M (see Proposition 3.7)
and an inequality of Picone type for the p-Laplacian (see Lemma 7.1).

In the case of N = ∞, we have the following:

THEOREM 1.7. Let M be a connected complete Riemannian manifold with boundary,
and let f : M → R be a smooth function. Suppose that M is compact. Let p ∈ (1,∞). Suppose
Ric∞f ,M ≥ 0 and Hf ,∂M ≥ 0. For D ∈ (0,∞), we assume D(M, ∂M) ≤ D. Then we have

(1.9) μ f ,1,p(M) ≥ μp,∞,D .
If the equality in (1.9) holds, then the metric space (M, dM) is a (0, 0)-equationalmodel space,
and D(M, ∂M) = D.

REMARK 1.6. In [41], we prove the same rigidity result as Theorem 1.7 under a weaker
assumption that RicNf ,M ≥ 0 and Hf ,∂M ≥ 0 for N < 1. In the rigidity case, we also prove that
for every x ∈ ∂M the function f ◦ γx is constant on [0,D] (see Theorem 1.5 in [41]).

In Theorems 1.6 and 1.7, we have explicit lower bounds for μ f ,1,p (see Subsection 7.3).
We show some volume estimates for a relatively compact domain in M (see Proposi-

tions 8.1 and 8.2). From the volume estimates, we derive lower bounds for μ f ,1,p for mani-
folds with boundary that are not necessarily compact (see Theorems 8.4 and 8.5). By using
the estimate for μ f ,1,p, and by using Theorem 1.4, we obtain the following:

THEOREM 1.8. Let M be an n-dimensional, connected complete Riemannian manifold
with boundary. Let f : M → R be a smooth function. Suppose that ∂M is compact. Let p ∈
(1,∞). Let κ < 0 and λ :=

√|κ|. For N ∈ [n,∞), we suppose RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥
(N − 1)λ. Then we have

(1.10) μ f ,1,p(M) ≥
(

(N − 1)λ
p

)p
.

If the equality in (1.10) holds, then the metric space (M, dM) is isometric to ([0,∞) ×
κ,λ∂M, dκ,λ), and for all x ∈ ∂M and t ∈ [0,∞) we have ( f ◦ γx)(t) = f (x) + (N − n)λt.

Theorem 1.8 has been proved in [40] in the standard case where f = 0 and N = n.
1.6. Organization. In Section 2, we prepare some notations and recall the basic facts

for Riemannian manifolds with boundary. In Section 3, we show Laplacian comparison the-
orems for the distance function from the boundary. In Section 4, we prove Theorem 1.1. In
Section 5, we show several volume comparison theorems, and conclude Theorems 1.2 and
1.3. In Section 6, we prove Theorems 1.4 and 1.5, and study the variants of the splitting theo-
rems. In Section 7, we prove Theorems 1.6 and 1.7, and study explicit lower bounds for μ f ,1,p.
In Section 8, we prove Theorem 1.8.
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2. Preliminaries. We refer to [5] for the basics of metric geometry, and to [39] for
the basics of Riemannian manifolds with boundary.

2.1. Metric spaces. Let (X, dX) be a metric space with metric dX . For r > 0 and A ⊂
X, we denote by Ur(A) the open r-neighborhood of A in X, and by Br(A) the closed one. For
A1, A2 ⊂ X, we put dX(A1, A2) := infx1∈A1,x2∈A2 dX(x1, x2).

For a metric space (X, dX), the length metric d̄X is defined as follows: For two points
x1, x2 ∈ X, we put d̄X(x1, x2) to the infimum of the length of curves connecting x1 and x2 with
respect to dX . A metric space (X, dX) is said to be a length space if dX = d̄X .

Let (X, dX) be a metric space. For an interval I, we say that a curve γ : I → X is a normal
minimal geodesic if for all s, t ∈ I we have dX(γ(s), γ(t)) = |s − t|, and γ is a normal geodesic
if for each t ∈ I there exists an interval J ⊂ I with t ∈ J such that γ|J is a normal minimal
geodesic. A metric space (X, dX) is said to be a geodesic space if for every pair of points in
X, there exists a normal minimal geodesic connecting them. A metric space is proper if all
closed bounded subsets of the space are compact. The Hopf-Rinow theorem for length spaces
states that if a length space (X, dX) is complete and locally compact, and if dX < ∞, then
(X, dX) is a proper geodesic space (see e.g., Theorem 2.5.23 in [5]).

2.2. Riemannian manifolds with boundary. For n ≥ 2, let M be an n-dimensional,
connected Riemannian manifold with (smooth) boundary with Riemannian metric g. For p ∈
Int M, let TpM be the tangent space at p on M, and let UpM be the unit tangent sphere at p
on M. We denote by ‖ · ‖ the standard norm induced from g. If v1, . . . , vk ∈ TpM are linearly
independent, then we see ‖v1∧· · ·∧vk‖ =

√
det(g(vi, v j)). Let dM be the length metric induced

from g. If M is complete with respect to dM, then the Hopf-Rinow theorem for length spaces
tells us that the metric space (M, dM) is a proper geodesic space.

For i = 1, 2, let Mi be connected Riemannian manifolds with boundary with Riemannian
metric gi. For each i, the boundary ∂Mi carries the induced Riemannian metric hi. We say that
a homeomorphismΦ : M1 → M2 is a Riemannian isometry with boundary from M1 to M2 if
Φ satisfies the following conditions:

(1) Φ|Int M1 : Int M1 → Int M2 is smooth, and (Φ|Int M1 )∗(g2) = g1;
(2) Φ|∂M1 : ∂M1 → ∂M2 is smooth, and (Φ|∂M1)

∗(h2) = h1.

If Φ : M1 → M2 is a Riemannian isometry with boundary, then the inverse Φ−1 is also a
Riemannian isometry with boundary. Notice that there exists a Riemannian isometry with
boundary from M1 to M2 if and only if the metric space (M1, dM1) is isometric to (M2, dM2)
(see e.g., Section 2 in [40]).

2.3. Jacobi fields orthogonal to the boundary. Let M be a connected Riemannian
manifold with boundary with Riemannian metric g. For a point x ∈ ∂M, and for the tangent
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space Tx∂M at x on ∂M, let T⊥x ∂M be the orthogonal complement of Tx∂M in the tangent
space at x on M. Take u ∈ T⊥x ∂M. For the second fundamental form S of ∂M, let Au :
Tx∂M → Tx∂M be the shape operator for u defined as

g(Auv, w) := g(S (v, w), u) .

We denote by ux the unit inner normal vector at x. The mean curvature Hx at x is defined as
Hx := trace Aux . We denote by γx : [0, T ) → M the normal geodesic with initial conditions
γx(0) = x and γ′x(0) = ux. We say that a Jacobi field Y along γx is a ∂M-Jacobi field if Y
satisfies the following initial conditions:

Y(0) ∈ Tx∂M, Y′(0) + AuxY(0) ∈ T⊥x ∂M .

We say that γx(t0) is a conjugate point of ∂M along γx if there exists a non-zero ∂M-Jacobi
field Y along γx with Y(t0) = 0. We denote by τ1(x) the first conjugate value for ∂M along γx.
It is well-known that for all x ∈ ∂M and t > τ1(x), we have t > ρ∂M(γx(t)).

For a point x ∈ ∂M, and for a piecewise smooth vector field X along γx with X(0) ∈
Tx∂M, the index form of γx is defined as

I∂M(X, X) :=
∫ t

0
g(X′(t), X′(t)) − g(R(X(t), γ′x(t))γ

′
x(t), X(t)) dt

− g(AuxX(0), X(0)) .

LEMMA 2.1. For x ∈ ∂M, we suppose that there exists no conjugate point of ∂M on
γx|[0,t0]. Then for every piecewise smooth vector field X along γx with X(0) ∈ Tx∂M, there
exists a unique ∂M-Jacobi field Y along γx with X(t0) = Y(t0) such that

I∂M(Y, Y) ≤ I∂M(X, X) ;

the equality holds if and only if X = Y on [0, t0].

For the normal tangent bundle T⊥∂M :=
⋃

x∈∂M T⊥x ∂M of ∂M, let 0(T⊥∂M) be the zero-
section

⋃
x∈∂M{ 0x ∈ T⊥x ∂M } of T⊥∂M. On an open neighborhood of 0(T⊥∂M) in T⊥∂M, the

normal exponential map exp⊥ of ∂M is defined as exp⊥(x, u) := γx(‖u‖) for x ∈ ∂M and u ∈
T⊥x ∂M.

For x ∈ ∂M and t ∈ [0, τ1(x)), we denote by θ(t, x) the absolute value of the Jacobian
of exp⊥ at (x, tux) ∈ T⊥∂M. For each x ∈ ∂M, we choose an orthonormal basis {ex,i}n−1

i=1 of
Tx∂M. For each i, let Yx,i be the ∂M-Jacobi field along γx with initial conditions Yx,i(0) = ex,i
and Y′x,i(0) = −Auxex,i. Note that for all x ∈ ∂M and t ∈ [0, τ1(x)), we have θ(t, x) = ‖Yx,1(t) ∧
· · · ∧ Yx,n−1(t)‖. This does not depend on the choice of the orthonormal bases.

2.4. Cut locus for the boundary. We recall the basic properties of the cut locus for
the boundary. The basic properties seem to be well-known. We refer to [40] for the proofs.

Let M be a connected complete Riemannian manifold with boundary with Riemannian
metric g. For p ∈ M, we call x ∈ ∂M a foot point on ∂M of p if dM(p, x) = ρ∂M(p). Since
(M, dM) is proper, every point in M has at least one foot point on ∂M. For p ∈ Int M, let
x ∈ ∂M be a foot point on ∂M of p. Then there exists a unique normal minimal geodesic γ :
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[0, l] → M from x to p such that γ = γx|[0,l], where l = ρ∂M(p). In particular, γ′(0) = ux and
γ|(0,l] lies in Int M.

Let τ : ∂M → R∪ {∞} be the function defined as (1.5). By the property of τ1, for all x ∈
∂M we have 0 < τ(x) ≤ τ1(x). The function τ is continuous on ∂M.

We have already known the following (see e.g., Section 3 in [40]):

PROPOSITION 2.2. For every r ∈ (0,∞) we have

Br(∂M) = exp⊥
⎛⎜⎜⎜⎜⎜⎝
⋃
x∈∂M
{tux | t ∈ [0,min{r, τ(x)}]}

⎞⎟⎟⎟⎟⎟⎠ .
For the inscribed radius D(M, ∂M) of M, from the definition of τ, we deduce D(M, ∂M)

= supx∈∂M τ(x).
The continuity of τ implies the following (see e.g., Section 3 in [40]):

LEMMA 2.3. Suppose that ∂M is compact. Then D(M, ∂M) is finite if and only if M is
compact.

We put

TD∂M :=
⋃
x∈∂M
{ t ux ∈ T⊥x ∂M | t ∈ [0, τ(x)) },

TCut ∂M :=
⋃
x∈∂M
{ τ(x) ux ∈ T⊥x ∂M | τ(x) < ∞},

and define D∂M := exp⊥(TD∂M) and Cut ∂M := exp⊥(TCut ∂M). We call Cut ∂M the cut locus
for the boundary ∂M. By the continuity of τ, the set Cut ∂M is a null set of M. Furthermore,
we have

Int M = (D∂M \ ∂M) � Cut ∂M, M = D∂M � Cut ∂M .

This implies that if Cut ∂M = ∅, then ∂M is connected. The set TD∂M \0(T⊥∂M) is a maximal
domain in T⊥∂M on which exp⊥ is regular and injective.

The following has been shown in the proof of Theorem 1.3 in [40]:

LEMMA 2.4. If there exists a connected component ∂M0 of ∂M such that for all x ∈
∂M0 we have τ(x) = ∞, then ∂M is connected and Cut ∂M = ∅.

The function ρ∂M is smooth on Int M \Cut ∂M. For each p ∈ Int M \Cut ∂M, the gradient
vector ∇ρ∂M(p) of ρ∂M at p is given by ∇ρ∂M(p) = γ′(l), where γ : [0, l] → M is the normal
minimal geodesic from the foot point on ∂M of p to p.

For Ω ⊂ M, we denote by Ω̄ the closure of Ω in M, and by ∂Ω the boundary of Ω in M.
For a domain Ω in M such that ∂Ω is a smooth hypersurface in M, we denote by vol∂Ω the
canonical Riemannian volume measure on ∂Ω.

We have the following fact to avoid the cut locus for the boundary:

LEMMA 2.5. Let Ω be a domain in M such that ∂Ω is a smooth hypersurface in M.
Then there exists a sequence {Ωk}k∈N of closed subsets of Ω̄ satisfying that for every k ∈ N, the



RIGIDITY OF MANIFOLDS WITH BOUNDARY 79

set ∂Ωk is a smooth hypersurface in M except for a null set in (∂Ω, vol∂Ω), and satisfying the
following properties:

(1) for all k1, k2 ∈ N with k1 < k2, we have Ωk1 ⊂ Ωk2;
(2) Ω̄ \ Cut ∂M =

⋃
k∈N Ωk;

(3) for every k ∈ N, and for almost every point p ∈ ∂Ωk ∩ ∂Ω in (∂Ω, vol∂Ω), there exists
the unit outer normal vector for Ωk at p that coincides with the unit outer normal
vector on ∂Ω for Ω at p;

(4) for every k ∈ N, on ∂Ωk \ ∂Ω, there exists the unit outer normal vector field νk for Ωk

such that g(νk,∇ρ∂M) ≥ 0.

Moreover, if Ω̄ = M, then for every k ∈ N, the set ∂Ωk is a smooth hypersurface in M, and
satisfies ∂Ωk ∩ ∂M = ∂M.

For the cut locus for a single point, a similar result to Lemma 2.5 is well-known (see e.g.,
Theorem 4.1 in [9]). One can prove Lemma 2.5 by a similar method to that of the proof of the
result for the cut locus for a single point. We omit the proof.

2.5. Busemann functions and asymptotes. Let M be a connected complete Rie-
mannian manifold with boundary. A normal geodesic γ : [0,∞)→ M is said to be a ray if for
all s, t ∈ [0,∞) it holds that dM(γ(s), γ(t)) = |s − t|. For a ray γ : [0,∞) → M, the Busemann
function bγ : M → R of γ is defined as

bγ(p) := lim
t→∞(t − dM(p, γ(t))) .

Take a ray γ : [0,∞) → M and a point p ∈ Int M, and choose a sequence {ti} with ti →
∞. For each i, we take a normal minimal geodesic γi : [0, li] → M from p to γ(ti). Since γ
is a ray, it follows that li → ∞. Take a sequence {T j} with T j → ∞. Using the fact that M is
proper, we take a subsequence {γ1,i} of {γi}, and a normal minimal geodesic γp,1 : [0, T1] →
M from p to γp,1(T1) such that γ1,i|[0,T1] uniformly converges to γp,1. In this manner, take
a subsequence {γ2,i} of {γ1,i} and a normal minimal geodesic γp,2 : [0, T2] → M from p to
γp,2(T2) such that γ2,i|[0,T2] uniformly converges to γp,2, where γp,2|[0,T1] = γp,1. By means of a
diagonal argument, we obtain a subsequence {γk} of {γi} and a ray γp in M such that for every
t ∈ (0,∞) we have γk(t)→ γp(t) as k → ∞. We call such a ray γp an asymptote for γ from p.

The following lemmas have been shown in [40].

LEMMA 2.6. Suppose that for some x ∈ ∂M we have τ(x) = ∞. Take p ∈ Int M. If
bγx (p) = ρ∂M(p), then p � Cut ∂M. Moreover, for the unique foot point y on ∂M of p, we have
τ(y) = ∞.

LEMMA 2.7. Suppose that for some x ∈ ∂M we have τ(x) = ∞. For l ∈ (0,∞), put
p := γx(l). Then there exists ε ∈ (0,∞) such that for all q ∈ Bε(p), all asymptotes for the ray
γx from q lie in Int M.

2.6. Weighted Laplacians. Let M be a connected complete Riemannian manifold
with boundary with Riemannian metric g, and let f : M → R be a smooth function. For a
smooth function φ on M, the weighted Laplacian Δ fφ for φ is defined by
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Δ fφ := Δφ + g(∇ f ,∇φ) ,

where Δφ is the Laplacian for φ defined as the minus of the trace of its Hessian. Notice that
Δ f coincides with the ( f , 2)-Laplacian Δ f ,2.

For x ∈ ∂M and t ∈ [0, τ1(x)), we put θ f (t, x) := e− f (γx(t)) θ(t, x). For all x ∈ ∂M and t ∈
(0, τ(x)), we see

(2.1) Δ f ρ∂M(γx(t)) = −(log θ(t, x))′ + f (γx(t))′ = −
θ′f (t, x)

θ f (t, x)
.

For κ ∈ R, let sκ(t) be a unique solution of the so-called Jacobi-equation φ′′(t) + κφ(t) =
0 with initial conditions φ(0) = 0 and φ′(0) = 1. We put cκ(t) := s′κ(t).

For p ∈ M, let ρp : M → R denote the distance function from p defined as ρp(q) :=
dM(p, q).

Qian [38] has proved a Laplacian comparison inequality for the distance function from
a single point (see equation 7 in [38]). In our setting, the comparison inequality holds in the
following form:

LEMMA 2.8 ([38]). For N ∈ [n,∞), we suppose RicNf ,M ≥ (N − 1)κ. Take p ∈ Int M.
Assume that there exists q ∈ Int M \ {p} such that a normal minimal geodesic in M from p to
q lies in Int M, and ρp is smooth at q. Then

(2.2) Δ f ρp(q) ≥ −(N − 1)
cκ(ρp(q))

sκ(ρp(q))
.

REMARK 2.1. In Lemma 2.8, we choose a normal minimal geodesic γ : [0, l] → M
from p to q that lies in Int M, and an orthonormal basis {ei}ni=1 of TpM with en = γ′(0). Let
{Yi}n−1

i=1 be the Jacobi fields along γ with initial conditions Yi(0) = 0 and Y′i (0) = ei. If the
equality in (2.2) holds, then for all i we see Yi = sκ Ei on [0, l], where {Ei}n−1

i=1 are the parallel
vector fields along γ with initial condition Ei(0) = ei.

REMARK 2.2. Kasue and Kumura [23] have been proved Lemma 2.8 in the case where
N is an integer, and κ ≤ 0.

Let φ : M → R be a continuous function, and let U be a domain contained in Int M. For
p ∈ U, and for a function ψ defined on an open neighborhood of p, we say that ψ is a support
function of φ at p if we have ψ(p) = φ(p) and ψ ≤ φ. We say that φ is f -subharmonic on U if
for every p ∈ U, and for every ε ∈ (0,∞), there exists a smooth, support function ψp,ε of φ at
p such that Δ f ψp,ε(p) ≤ ε.

We recall the following maximal principle of Calabi type (see e.g., [6], and Lemma 2.4
in [12]).
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LEMMA 2.9. If an f -subharmonic function on a domain U contained in Int M takes
the maximal value at a point in U, then it must be constant on U.

Fang, Li and Zhang [12] have proved a subharmonicity of Busemann functions on man-
ifolds without boundary (see Lemma 2.1 in [12]). In our setting, the subharmonicity holds in
the following form:

LEMMA 2.10 ([12]). Assume sup f (M)<∞. Suppose Ric∞f ,M ≥ 0. Let γ : [0,∞)→ M
be a ray that lies in Int M, and let U be a domain contained in Int M such that for each p ∈
U, there exists an asymptote for γ from p that lies in Int M. Then bγ is f -subharmonic on U.

3. Laplacian comparisons. In this section, let M be an n-dimensional, connected
complete Riemannian manifold with boundary with Riemannian metric g, and let f : M → R

be a smooth function.
3.1. Basic comparisons. We prove the following basic lemma:

LEMMA 3.1. Take x ∈ ∂M. For N ∈ [n,∞), suppose that for all t ∈ (0,min{τ1(x), C̄κ,λ})
we have RicNf (γ′x(t)) ≥ (N − 1)κ, and suppose Hf ,x ≥ (N − 1)λ. Then for all t ∈ (0,min{τ1(x),
C̄κ,λ}) we have

(3.1)
θ′f (t, x)

θ f (t, x)
≤ (N − 1)

s′κ,λ(t)
sκ,λ(t)

,

and for all s, t ∈ [0,min{τ1(x), C̄κ,λ}) with s ≤ t we have

(3.2)
θ f (t, x)

θ f (s, x)
≤ sN−1

κ,λ (t)

sN−1
κ,λ (s)

;

in particular, θ f (t, x) ≤ e− f (x) sN−1
κ,λ (t).

PROOF. Put F := f ◦ γx. From direct computations, it follows that

(3.3)
θ′f (t, x)

θ f (t, x)
=
θ′(t, x)
θ(t, x)

− F′(t)

for all t ∈ (0,min{τ1(x), C̄κ,λ}). Choose an orthonormal basis {ei}n−1
i=1 of Tx∂M. For each i, we

denote by Ei the parallel vector field along γx with initial condition Ei(0) = ei. We fix t0 ∈
(0,min{τ1(x), C̄κ,λ}), and put Wi(t) := (sκ,λ(t)/sκ,λ(t0))Ei(t) for t ∈ (0,min{τ1(x), C̄κ,λ}). For a
unique ∂M-Jacobi field Yt0,i along γx|[0,t0] with initial conditions Yt0,i(t0) = Wi(t0) (= Ei(t0))
and Y′t0 ,i(0) = −AuxYt0,i(0), let θt0 (t) := ‖Yt0,1(t)∧· · ·∧Yt0 ,n−1(t)‖ for t ∈ (0,min{τ1(x), C̄κ,λ}). The
linearity of the Jacobi equations implies that for the ∂M-Jacobi field Yi along γx with initial
conditions Yi(0) = ei and Y′i (0) = −AuxYi(0), there exist some constants {ai j}n−1

j=1 satisfying
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Yi =
∑n−1

j=1 ai j Yt0 , j. Since θt0 (t0) = 1, we have θ′(t0, x)/θ(t0, x) = θ′t0 (t0). Furthermore,

(3.4) θ′t0 (t0) =
n−1∑
i=1

g(Yt0,i(t0), Y′t0,i(t0)) =
n−1∑
i=1

I∂M(Yt0,i, Yt0,i) .

We have Yt0 ,i(t0) = Wi(t0). Therefore, Lemma 2.1 implies

(3.5)
n−1∑
i=1

I∂M(Yt0,i, Yt0,i) ≤
n−1∑
i=1

I∂M(Wi,Wi) .

We assume N > n. Put φ(t) := ‖Wi(t)‖(= sκ,λ(t)/sκ,λ(t0)) for t ∈ (0,min{τ1(x), C̄κ,λ}).
Note that we have φ′(t) = ‖W′i (t)‖ for all t ∈ (0,min{τ1(x), C̄κ,λ}). From (3.3), (3.4) and (3.5),
it follows that

θ′f (t0, x)

θ f (t0, x)
≤ (n − 1)

∫ t0

0
φ′(t)2 dt −

∫ t0

0
Ricg(γ

′
x(t)) φ(t)2 dt − Hx φ(0)2 − F′(t0)

= (N − 1)
∫ t0

0
φ′(t)2 dt −

∫ t0

0
RicNf (γ′x(t)) φ(t)2 dt − Hf ,xφ(0)2

− (N − n)
∫ t0

0
φ′(t)2 dt +

∫ t0

0

(
F′′(t) − 1

N − nF
′(t)2

)
φ(t)2 dt

+ F′(0) φ(0)2 − F′(t0) .

From the curvature assumptions, we derive

(3.6)
θ′f (t0, x)

θ f (t0, x)
≤ (N − 1)

s′κ,λ(t0)

sκ,λ(t0)
− (N − n)

∫ t0

0
φ′(t)2 dt

+

∫ t0

0

(
F′′(t) − 1

N − nF
′(t)2

)
φ(t)2 dt + F′(0) φ(0)2 − F′(t0) .

By integration by parts, we have

(3.7)
∫ t0

0
F′′(t) φ(t)2 dt = F′(t0) − F′(0) φ(0)2 − 2

∫ t0

0
F′(t)φ′(t)φ(t) dt .

Furthermore, for all t ∈ (0, t0), we have

(N − n)φ′(t)2 + 2F′(t)φ′(t)φ(t) +
F′(t)2φ(t)2

N − n(3.8)

=
φ(t)2

N − n
(
(N − n)

s′κ,λ(t)
sκ,λ(t)

+ F′(t)
)2

≥ 0 .

By using (3.6), (3.7) and (3.8), we obtain (3.1).
We assume N = n. In this case, f is a constant function; in particular, Hf ,x = Hx and

F′(t0) = 0. By Lemma 2.1, we see

θ′f (t0, x)

θ f (t0, x)
≤ (n − 1)

∫ t0

0
φ′(t)2 dt −

∫ t0

0
Ricnf (γ

′
x(t)) φ(t)2 dt − Hf ,x φ(0)2 .

The curvature assumptions imply (3.1).
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By (3.1), for all t ∈ (0,min{τ1(x), C̄κ,λ}), we have

d
dt

log
sN−1
κ,λ (t)

θ f (t, x)
= (N − 1)

s′κ,λ(t)
sκ,λ(t)

−
θ′f (t, x)

θ f (t, x)
≥ 0 .

This implies the inequality (3.2). �

In [17], Lemma 3.1 has been proved when f = 0 and N = n.

REMARK 3.1. In Lemma 3.1, choose an orthonormal basis {ex,i}n−1
i=1 of Tx∂M, and let

{Yx,i}n−1
i=1 be the ∂M-Jacobi fields along γx with initial conditions Yx,i(0) = ex,i and Y′x,i(0) =

−Auxex,i. Suppose that for some t0 ∈ (0,min{τ1(x), C̄κ,λ}) the equality in (3.1) holds. Then the
equality in (3.5) also holds. By Lemma 2.1, for all i we have Yx,i = sκ,λ Ex,i on [0, t0], where
{Ex,i}n−1

i=1 are the parallel vector fields along γx with initial condition Ex,i(0) = ex,i. Moreover,
if N > n, then the equality in (3.8) holds on [0, t0]. This implies f ◦γx = f (x)− (N−n) log sκ,λ
on [0, t0].

In the case of N = ∞, we have the following:

LEMMA 3.2. Take x ∈ ∂M. Suppose that for all t ∈ (0, τ1(x)) we have Ric∞f (γ′x(t)) ≥
0, and suppose Hf ,x ≥ 0. Then for all t ∈ (0, τ1(x)), we have θ′f (t, x) ≤ 0. In particular, for all
s, t ∈ [0, τ1(x)) with s ≤ t, we have θ f (t, x) ≤ θ f (s, x).

PROOF. Let F := f ◦ γx. Choose an orthonormal basis {ei}n−1
i=1 of Tx∂M. For each i,

let Ei denote the parallel vector field along γx with initial condition Ei(0) = ei. Put φ(t) :=
‖Ei(t)‖(= 1) for t ∈ (0, τ1(x)). Fix t0 ∈ (0, τ1(x)). By Lemma 2.1, we see

θ′f (t0, x)

θ f (t0, x)
≤ −

∫ t0

0

(
Ric∞f (γ′x(t)) − F′′(t)

)
φ(t)2 dt −

(
Hf ,x − F′(0)

)
φ(0)2 − F′(t0) .

By the curvature assumptions, and by integration by parts, we have

θ′f (t0, x) ≤ θ f (t0, x)

(∫ t0

0
F′′(t) φ(t)2 dt + F′(0) φ(0)2 − F′(t0)

)
= 0 .

This proves the lemma. �

REMARK 3.2. In Lemma 3.2, choose an orthonormal basis {ex,i}n−1
i=1 of Tx∂M, and let

{Yx,i}n−1
i=1 be the ∂M-Jacobi fields along γx with initial conditions Yx,i(0) = ex,i and Y′x,i(0) =

−Auxex,i. Suppose that for some t0 ∈ (0, τ1(x)) we have θ′f (t0, x) = 0. By Lemma 2.1, for all i

we have Yx,i = Ex,i on [0, t0], where {Ex,i}n−1
i=1 are the parallel vector fields along γx with initial

condition Ex,i(0) = ex,i.

3.2. Laplacian comparisons. Combining Lemma 3.1 and (2.1), we have the follow-
ing Laplacian comparison result:

LEMMA 3.3. Take x ∈ ∂M. For N ∈ [n,∞), we suppose that for all t ∈ (0, τ(x)) we
have RicNf (γ′x(t)) ≥ (N − 1)κ, and suppose Hf ,x ≥ (N − 1)λ. Then for all t ∈ (0, τ(x)) we have

Δ f ρ∂M(γx(t)) ≥ −(N − 1)
s′κ,λ(t)
sκ,λ(t)

.
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In [19], Lemma 3.3 has been proved when f = 0 and N = n.
In the case of N = ∞, by using Lemma 3.2 and (2.1), we have:

LEMMA 3.4. Take x ∈ ∂M. Suppose that for all t ∈ (0, τ(x)) we have Ric∞f (γ′x(t)) ≥ 0,
and suppose Hf ,x ≥ 0. Then for all t ∈ (0, τ(x)) we have Δ fρ∂M(γx(t)) ≥ 0.

REMARK 3.3. The equality case in Lemma 3.3 (resp. 3.4) results into that in Lemma 3.1
(resp. 3.2) (see Remarks 3.1 and 3.2).

3.3. Distributions. From Lemma 3.3, we derive the following:

LEMMA 3.5. Take x ∈ ∂M. Let p ∈ (1,∞). For N ∈ [n,∞), we suppose that for all t ∈
(0, τ(x)) we have RicNf (γ′x(t)) ≥ (N − 1)κ, and suppose Hf ,x ≥ (N − 1)λ. Let φ : [0,∞) → R

be a monotone increasing smooth function. Then for all t ∈ (0, τ(x)) we have

(3.9) Δ f ,p (φ ◦ ρ∂M)(γx(t)) ≥ −
((
φ′

)p−1
)′

(t) − (N − 1)
s′κ,λ(t)
sκ,λ(t)

φ′(t)p−1 .

PROOF. By straightforward computations, for all t ∈ (0, τ(x))

Δ f ,p (φ ◦ ρ∂M)(γx(t)) = −
((
φ′

)p−1
)′

(t) + Δ f ,2 ρ∂M(γx(t)) φ′(t)p−1 .

This together with Lemma 3.3, we obtain (3.9). �

In the case of N = ∞, we have:

LEMMA 3.6. Take x ∈ ∂M. Let p ∈ (1,∞). Suppose that for all t ∈ (0, τ(x)) we have
Ric∞f (γ′x(t)) ≥ 0, and suppose Hf ,x ≥ 0. Let φ : [0,∞)→ R be a monotone increasing smooth
function. Then for all t ∈ (0, τ(x))

(3.10) Δ f ,p(φ ◦ ρ∂M)(γx(t)) ≥ −
((
φ′

)p−1
)′

(t) .

PROOF. For all t ∈ (0, τ(x)), we have

Δ f ,p (φ ◦ ρ∂M)(γx(t)) = −
((
φ′

)p−1
)′

(t) + Δ f ,2 ρ∂M(γx(t)) φ′(t)p−1 .

Lemma 3.4 implies (3.10). �

REMARK 3.4. The equality case in Lemma 3.5 (resp. 3.6) results into that in Lemma 3.3
(resp. 3.4) (see Remarks 3.1, 3.2 and 3.3).

By Lemma 3.5, we have the following:

PROPOSITION 3.7. Let p ∈ (1,∞). For N ∈ [n,∞), we suppose RicNf ,M ≥ (N − 1)κ and
Hf ,∂M ≥ (N − 1)λ. For a monotone increasing smooth function φ : [0,∞) → R, we put Φ :=
φ ◦ ρ∂M. Then we have

Δ f ,pΦ ≥
(
−

((
φ′

)p−1
)′ − (N − 1)

s′κ,λ
sκ,λ

(
φ′

)p−1
)
◦ ρ∂M

in a distribution sense on M. More precisely, for every non-negative smooth function ψ : M →
R whose support is compact and contained in Int M, we have
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(3.11)
∫
M
‖∇Φ‖p−2g (∇ψ,∇Φ) d mf

≥
∫
M
ψ

((
−

((
φ′

)p−1
)′ − (N − 1)

s′κ,λ
sκ,λ

(
φ′

)p−1
)
◦ ρ∂M

)
d mf .

PROOF. By Lemma 2.5, there exists a sequence {Ωk}k∈N of closed subsets of M satisfy-
ing that for every k, the set ∂Ωk is a smooth hypersurface in M, and satisfying the following:
(1) for all k1, k2 with k1 < k2, we have Ωk1 ⊂ Ωk2 ; (2) M \ Cut ∂M =

⋃
k Ωk; (3) ∂Ωk ∩ ∂M =

∂M for all k; (4) for each k, on ∂Ωk \ ∂M, there exists the unit outer normal vector field νk for
Ωk with g(νk,∇ρ∂M) ≥ 0.

For the canonical Riemannian volume measure volk on ∂Ωk \ ∂M, put mf ,k := e− f |∂Ωk \∂M
volk. Let ψ : M → R be a non-negative smooth function whose support is compact and

contained in Int M. By the Green formula, and by ∂Ωk ∩ ∂M = ∂M, we have∫
Ωk

‖∇Φ‖p−2g (∇ψ,∇Φ) d mf

=

∫
Ωk

(
−ψg

(
∇

(
‖∇Φ‖p−2

)
,∇Φ

)
+ ‖∇Φ‖p−2 ψΔ f ,2Φ

)
d mf

+

∫
∂Ωk\∂M

‖∇Φ‖p−2 ψg (νk,∇Φ) d mf ,k

=

∫
Ωk

ψΔ f ,pΦ d mf +

∫
∂Ωk\∂M

‖∇Φ‖p−2 ψg (νk,∇Φ) d mf ,k .

Lemma 3.5 and g(νk,∇ρ∂M) ≥ 0 imply∫
Ωk

‖∇Φ‖p−2g (∇ψ,∇Φ) d mf

≥
∫
Ωk

ψ

((
−

((
φ′

)p−1
)′ − (N − 1)

s′κ,λ
sκ,λ

(
φ′

)p−1
)
◦ ρ∂M

)
d mf .

Letting k → ∞, we obtain the desired inequality. �

In the case of N = ∞, we have:

PROPOSITION 3.8. Let p ∈ (1,∞). Suppose Ric∞f ,M ≥ 0 and Hf ,∂M ≥ 0. For a mono-
tone increasing smooth function φ : [0,∞)→ R, putΦ := φ ◦ ρ∂M. Then we have

Δ f ,pΦ ≥ −
((
φ′

)p−1
)′ ◦ ρ∂M

in a distribution sense on M. More precisely, for every non-negative smooth function ψ : M →
R whose support is compact and contained in Int M, we have

(3.12)
∫
M
‖∇Φ‖p−2g (∇ψ,∇Φ) d mf ≥

∫
M
ψ

(
−

((
φ′

)p−1
)′ ◦ ρ∂M)

d mf .

PROOF. Lemma 2.5 implies that there exists a sequence {Ωk}k∈N of closed subsets of
M satisfying that for every k, the set ∂Ωk is a smooth hypersurface in M, and satisfying the
following: (1) for all k1, k2 ∈ N with k1 < k2, we have Ωk1 ⊂ Ωk2 ; (2) M \ Cut ∂M =

⋃
k Ωk;
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(3) ∂Ωk ∩ ∂M = ∂M for all k; (4) for each k, on ∂Ωk \ ∂M, there exists the unit outer normal
vector field νk for Ωk with g(νk,∇ρ∂M) ≥ 0.

For the canonical Riemannian volume measure volk on ∂Ωk \ ∂M, put mf ,k := e− f |∂Ωk \∂M
volk. Let ψ : M → R be a non-negative smooth function whose support is compact and

contained in Int M. By the Green formula, and by ∂Ωk ∩ ∂M = ∂M, we see∫
Ωk

‖∇Φ‖p−2g (∇ψ,∇Φ) d mf

=

∫
Ωk

ψΔ f ,pΦ d mf +

∫
∂Ωk\∂M

‖∇Φ‖p−2 ψg (νk,∇Φ) d mf ,k .

By Lemma 3.5 and g(νk,∇ρ∂M) ≥ 0,∫
Ωk

‖∇Φ‖p−2g (∇ψ,∇Φ) d mf ≥
∫
Ωk

ψ
(
−

((
φ′

)p−1
)′ ◦ ρ∂M)

d mf .

By letting k → ∞, we complete the proof. �

REMARK 3.5. In Proposition 3.7 (resp. 3.8), assume that the equality in (3.11) (resp.
(3.12)) holds. In this case, for a fixed x ∈ ∂M we see that for every t ∈ (0, τ(x)) the equality
in (3.9) (resp. (3.10)) also holds. The equality case in Proposition 3.7 (resp. 3.8) results into
that in Lemma 3.5 (resp. 3.6) (see Remark 3.4).

REMARK 3.6. Perales [37] has proved a Laplacian comparison inequality for the dis-
tance function from the boundary in a barrier sense for manifolds with boundary of non-
negative Ricci curvature. We can prove that the Laplacian comparison inequalities for ρ∂M in
Lemmas 3.3 and 3.4 globally hold on M in a barrier sense.

4. Inscribed radius rigidity. Let M be an n-dimensional, connected complete Rie-
mannian manifold with boundary, and let f : M → R be a smooth function.

4.1. Inscribed radius comparison. From Lemma 3.1, we derive the following com-
parison result for the inscribed radius.

LEMMA 4.1. Let κ ∈ R and λ ∈ R satisfy the ball-condition. For N ∈ [n,∞), we
suppose RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥ (N − 1)λ. Then D(M, ∂M) ≤ Cκ,λ.

PROOF. Take x ∈ ∂M. We suppose Cκ,λ < τ1(x). By Lemma 3.1, for all t ∈ [0,Cκ,λ) we
have θ f (t, x) ≤ e− f (x)sN−1

κ,λ (t). Letting t → Cκ,λ, we have θ(Cκ,λ, x) = 0; in particular, γx(Cκ,λ) is
a conjugate point of ∂M along γx. This is a contradiction. Hence, we have τ1(x) ≤ Cκ,λ. The
relationship between τ and τ1 implies τ(x) ≤ Cκ,λ. Since D(M, ∂M) is equal to supx∈∂M τ(x),
we have D(M, ∂M) ≤ Cκ,λ. �

In [20], Lemma 4.1 has been proved when f = 0 and N = n.
4.2. Inscribed radius rigidity. Now, we prove Theorem 1.1.

PROOF OF THEOREM 1.1. Let κ ∈ R and λ ∈ R satisfy the ball-condition. For N ∈
[n,∞), we suppose RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥ (N − 1)λ. By Lemma 4.1, we have
D(M, ∂M) ≤ Cκ,λ.
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Take p0 ∈ M satisfying ρ∂M(p0) = Cκ,λ. We put

Ω := {p ∈ Int M \ {p0} | ρ∂M(p) + ρp0 (p) = Cκ,λ} .

Take a foot point xp0 on ∂M of p0, and the normal minimal geodesic γ0 : [0,Cκ,λ]→ M from
xp0 to p0. Then for all t ∈ (0,Cκ,λ), we have γ0(t) ∈ Ω. Therefore, Ω is a non-empty closed
subset of Int M \ {p0}.

We prove that Ω is an open subset of Int M \ {p0}. Fix p ∈ Ω, and take a foot point
xp on ∂M of p. Note that xp is also a foot point on ∂M of p0. We take the normal minimal
geodesic γ : [0,Cκ,λ] → M from xp to p0. Then γ|(0,Cκ,λ) passes through p. There exists an
open neighborhood U of p such that ρp0 and ρ∂M are smooth on U, and for every q ∈ U there
exists a unique normal minimal geodesic in M from p0 to q that lies in Int M. By Lemmas 2.8
and 3.3, for all q ∈ U

Δ f (ρ∂M + ρp0 )(q)

N − 1
≥ −

(
λcκ(ρ∂M(q)) − κsκ(ρ∂M(q))
cκ(ρ∂M(q)) + λsκ(ρ∂M(q))

+
cκ(ρp0 (q))

sκ(ρp0 (q))

)

= − sκ,λ(ρ∂M(q) + ρp0 (q))

sκ,λ(ρ∂M(q))sκ(ρp0 (q))
≥ 0 .

Lemma 2.9 implies U ⊂ Ω. We prove the openness of Ω.
Since Int M \ {p0} is connected, we have Ω = Int M \ {p0}, and hence ρ∂M + ρp0 = Cκ,λ on

M. This implies M = BCκ,λ(p0) and ∂M = ∂BCκ,λ(p0). Furthermore, we see that the cut locus
for p0 is empty, and the equality in (2.2) holds on Int M \ {p0}. For each u ∈ Up0 M, choose
an orthonormal basis {eu,i}ni=1 of Tp0M with en = u. Let {Yu,i}n−1

i=1 be the Jacobi fields along γu
with initial conditions Yu,i(0) = 0 and Y′u,i(0) = eu,i, where γu : [0,Cκ,λ] → M is the normal
geodesic with γu(0) = p0 and γ′u(0) = u. Then for all i we have Yu,i = sκ Eu,i on [0,Cκ,λ],
where {Eu,i}n−1

i=1 are the parallel vector fields along γu with initial condition Eu,i(0) = eu,i (see
Remark 2.1). Let p̃0 denote the center point of Bn

κ,λ. Choose a linear isometry I : Tp0M →
Tp̃0B

n
κ,λ. Define a map Φ : M → Bn

κ,λ by Φ(p) := expp̃0
◦I ◦ exp−1

p0
(p), where expp0

and expp̃0

are the exponential maps at p0 and at p̃0, respectively. For every p ∈ Int M the differential
map D(Φ|Int M)p of Φ|Int M at p sends an orthonormal basis of TpM to that of TΦ(p)Bn

κ,λ, and for
every x ∈ ∂M the map D(Φ|∂M)x sends an orthonormal basis of Tx∂M to that of TΦ(x)∂Bn

κ,λ.
Hence, Φ is a Riemannian isometry with boundary from M to Bn

κ,λ, and (M, dM) is isometric
to (Bn

κ,λ, dBn
κ,λ

).
Now, the equality in Lemma 3.3 holds on Int M \ {p0}. For each x ∈ ∂M we see f ◦ γx =

f (x) − (N − n) log sκ,λ on [0,Cκ,λ] (see Remark 3.3). If we suppose N > n, then f (γx(t)) tends
to infinity as t → Cκ,λ. This is a contradiction since f (γx(Cκ,λ)) = f (p0). Hence, we obtain
N = n. We complete the proof of Theorem 1.1. �

5. Volume comparisons. Let M be an n-dimensional, connected complete Riemann-
ian manifold with boundary with Riemannian metric g, and let f : M → R be a smooth
function.
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5.1. Absolute volume comparisons. Let θ̄ f : [0,∞)×∂M→ R be a function defined
by

θ̄ f (t, x) :=

⎧⎪⎪⎨⎪⎪⎩
θ f (t, x) if t < τ(x) ,

0 if t ≥ τ(x) .

By the coarea formula (see e.g., Theorem 3.2.3 in [13]), we show:

LEMMA 5.1. Suppose that ∂M is compact. Then for all r ∈ (0,∞)

(5.1) mf (Br(∂M)) =
∫
∂M

∫ r

0
θ̄ f (t, x) dt d volh ,

where h is the induced Riemannian metric on ∂M.

PROOF. Since ∂M is compact, Br(∂M) is also compact; in particular, mf (Br(∂M)) <
∞. From Proposition 2.2, we derive

Br(∂M) = exp⊥
⎛⎜⎜⎜⎜⎜⎝
⋃
x∈∂M
{tux | t ∈ [0,min{r, τ(x)}]}

⎞⎟⎟⎟⎟⎟⎠ .
The map exp⊥ is diffeomorphic on

⋃
x∈∂M{tux | t ∈ (0,min{r, τ(x)})}. Furthermore, the cut

locus Cut ∂M for the boundary is a null set of M. Hence, the coarea formula and the Fubini
theorem imply (5.1). �

Bayle [3] has stated the following absolute volume comparison inequality of Heintze-
Karcher type without proof (see Theorem E.2.2 in [3], and also [35]).

LEMMA 5.2 ([3]). Suppose that ∂M is compact. For N ∈ [n,∞), we suppose RicNf ,M
≥ (N − 1)κ and Hf ,∂M ≥ (N − 1)λ. Then for all r ∈ (0,∞)

(5.2) mf (Br(∂M)) ≤ sN,κ,λ(r)mf ,∂M(∂M) ;

in particular, we have (1.3).

PROOF. Fix r ∈ (0,∞). By Lemma 3.1, for all x ∈ ∂M and t ∈ (0, r), we have θ̄ f (t, x) ≤
s̄N−1
κ,λ (t) θ̄ f (0, x). Integrate the both sides of the inequality over (0, r) with respect to t, and then

do that over ∂M with respect to x. By Lemma 5.1, we have (5.2). �

Lemma 5.2 has been proved in [17] when f = 0 and N = n.
In the case of N = ∞, Morgan [36] has shown the following volume comparison inequal-

ity (see Theorem 2 in [36], and also [35]).

LEMMA 5.3 ([36]). Suppose that ∂M is compact. Suppose Ric∞f ,M ≥ 0 and Hf ,∂M ≥ 0.
Then for all r ∈ (0,∞)

(5.3) mf (Br(∂M)) ≤ r mf ,∂M(∂M) ;

in particular, we have (1.4).

PROOF. Fix r ∈ (0,∞). By Lemma 3.2, for all x ∈ ∂M and t ∈ (0, r), we have θ̄ f (t, x)
≤ θ̄ f (0, x). Integrate the both sides of the inequality over (0, r) with respect to t, and then do
that over ∂M with respect to x. Lemma 5.1 implies the lemma. �



RIGIDITY OF MANIFOLDS WITH BOUNDARY 89

REMARK 5.1. In Lemma 5.2 (resp. 5.3), assume that for some r > 0 the equality in
(5.2) (resp. (5.3)) holds. For each x ∈ ∂M, choose an orthonormal basis {ex,i}n−1

i=1 of Tx∂M.
Let {Yx,i}n−1

i=1 be the ∂M-Jacobi fields along γx with initial conditions Yx,i(0) = ex,i and Y′x,i(0) =
−Auxex,i. Then for all i we see Yx,i = sκ,λ Ex,i (resp. Yx,i = Ex,i) on [0,min{r, C̄κ,λ}] (resp.
[0, r]), where {Ex,i}n−1

i=1 are the parallel vector fields along γx with initial condition Ex,i(0) =
ex,i. Moreover, f ◦ γx = f (x) − (N − n) log sκ,λ on [0,min{r, C̄κ,λ}] (cf. Remarks 3.1 and 3.2).

5.2. Relative volume comparison. We have the following relative volume compari-
son theorem of Bishop-Gromov type:

THEOREM 5.4. Let M be an n-dimensional, connected complete Riemannian manifold
with boundary, and let f : M → R be a smooth function. Suppose that ∂M is compact. For
N ∈ [n,∞), we suppose RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥ (N − 1)λ. Then for all r,R ∈ (0,∞)
with r ≤ R, we have

(5.4)
mf (BR(∂M))

mf (Br(∂M))
≤ sN,κ,λ(R)

sN,κ,λ(r)
.

PROOF. Lemma 3.1 implies that for all s, t ∈ [0,∞) with s ≤ t,

(5.5) θ̄ f (t, x) s̄N−1
κ,λ (s) ≤ θ̄ f (s, x) s̄N−1

κ,λ (t) .

By integrating the both sides of (5.5) over [0, r] with respect to s, and then doing that over
[r,R] with respect to t, we conclude

∫ R

r
θ̄ f (t, x) dt∫ r

0
θ̄ f (s, x) ds

≤ sN,κ,λ(R) − sN,κ,λ(r)
sN,κ,λ(r)

.

From Lemma 5.1, we derive

mf (BR(∂M))

mf (Br(∂M))
= 1 +

∫
∂M

∫ R

r
θ̄ f (t, x) dt d volh∫

∂M

∫ r

0
θ̄ f (s, x) ds d volh

≤ 1 +
sN,κ,λ(R) − sN,κ,λ(r)

sN,κ,λ(r)
=

sN,κ,λ(R)
sN,κ,λ(r)

.

This proves the theorem. �

In [40], Theorem 5.4 has been proved when f = 0 and N = n.
In the case of N = ∞, we have:

THEOREM 5.5. Let M be a connected complete Riemannian manifold with boundary,
and let f : M → R be a smooth function. Suppose that ∂M is compact. Suppose Ric∞f ,M ≥ 0
and Hf ,∂M ≥ 0. Then for all r,R ∈ (0,∞) with r ≤ R, we have

(5.6)
mf (BR(∂M))

mf (Br(∂M))
≤ R

r
.
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PROOF. By Lemma 3.2, for all s, t ∈ [0,∞) with s ≤ t, we have θ̄ f (t, x) ≤ θ̄ f (s, x).
Integrating the both sides over [0, r] with respect to s, and then doing that over [r,R] with
respect to t, we see

r
∫ R

r
θ̄ f (t, x) dt ≤ (R − r)

∫ r

0
θ̄ f (s, x) ds .

By Lemma 5.1, we complete the proof. �

REMARK 5.2. In [40], the author has proved a measure contraction inequality around
the boundary when f = 0 and N = n. We can prove similar measure contraction inequal-
ities in our setting. The measure contraction inequalities enable us to give another proof of
Theorem 5.4, and of Theorem 5.5.

5.3. Volume growth rigidity. We have the following lemma:

LEMMA 5.6. Suppose that ∂M is compact. For N ∈ [n,∞), we suppose RicNf ,M ≥ (N −
1)κ and Hf ,∂M ≥ (N − 1)λ. Assume that there exists R ∈ (0, C̄κ,λ] \ {∞} such that for every r ∈
(0,R] the equality in (5.4) holds. Then we have τ ≥ R on ∂M.

PROOF. The proof is by contradiction. Suppose that a point x0 ∈ ∂M satisfies τ(x0) <
R. Put t0 := τ(x0), and take ε > 0 satisfying t0 + ε < R. By the continuity of τ, there exists
a closed geodesic ball B in ∂M centered at x0 such that for all x ∈ B we have τ(x) ≤ t0 + ε.
Lemma 3.1 implies that mf (BR(∂M)) is not larger than∫

∂M\B

∫ min{R,τ(x)}

0
sN−1
κ,λ (t) dt d mf ,∂M +

∫
B

∫ t0+ε

0
sN−1
κ,λ (t) dt d mf ,∂M .

This is smaller than mf ,∂M(∂M) sN,κ,λ(R). On the other hand, sN,κ,λ(R) is equal to mf (BR

(∂M))/mf ,∂M(∂M). This is a contradiction. �

In the case of N = ∞, we have:

LEMMA 5.7. Suppose that ∂M is compact. Suppose Ric∞f ,M ≥ 0 and Hf ,∂M ≥ 0. As-
sume that there exists R ∈ (0,∞) such that for every r ∈ (0,R] the equality in (5.6) holds.
Then we have τ ≥ R on ∂M.

PROOF. Suppose that for some x0 ∈ ∂M we have τ(x0) < R. Put t0 := τ(x0), and take
ε > 0 with t0 + ε < R. The continuity of τ implies that there exists a closed geodesic ball B in
∂M centered at x0 such that τ is smaller than or equal to t0 + ε on B. By Lemma 3.2,

mf (BR(∂M)) ≤ Rmf ,∂M(∂M \ B) + (t0 + ε)mf ,∂M(B) < Rmf ,∂M(∂M) .

On the other hand, mf (BR(∂M))/mf ,∂M(∂M) is equal to R. This is a contradiction. We con-
clude the lemma. �

Suppose that ∂M is compact. Suppose that for N ∈ [n,∞) we have RicNf ,M ≥ (N − 1)κ
and Hf ,∂M ≥ (N − 1)λ (resp. Ric∞f ,M ≥ 0 and Hf ,∂M ≥ 0), and that there exists R ∈ (0, C̄κ,λ] \
{∞} (resp. R ∈ (0,∞)) such that for every r ∈ (0,R] the equality in (5.4) (resp. (5.6)) holds.
In this case, for every r ∈ (0,R) the level set ρ−1

∂M(r) is an (n − 1)-dimensional submanifold of
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M (see Lemmas 5.6 and 5.7). In particular, (Br(∂M), g) is an n-dimensional (not necessarily,
connected) complete Riemannian manifold with boundary. We denote by dBr(∂M) and by dκ,λ,r
the Riemannian distances on (Br(∂M), g) and on [0, r] × κ,λ∂M, respectively.

LEMMA 5.8. Suppose that ∂M is compact. For N ∈ [n,∞), we suppose RicNf ,M ≥ (N −
1)κ and Hf ,∂M ≥ (N − 1)λ. Assume that there exists R ∈ (0, C̄κ,λ] \ {∞} such that for every r ∈
(0,R] the equality in (5.4) holds. Then for every r ∈ (0,R), the metric space (Br(∂M), dBr(∂M))
is isometric to ([0, r]× κ,λ∂M, dκ,λ,r), and for every x ∈ ∂M we have f ◦ γx = f (x)− log sκ,λ on
[0, r].

PROOF. Since each connected component of ∂M one-to-one corresponds to the con-
nected component of Br(∂M), it suffices to consider the case where Br(∂M) is connected. For
each x ∈ ∂M, choose an orthonormal basis {ex,i}n−1

i=1 of Tx∂M. Let {Yx,i}n−1
i=1 be the ∂M-Jacobi

fields along γx with initial conditions Yx,i(0) = ex,i and Y′x,i(0) = −Auxex,i. For all i we see
Yx,i = sκ,λ Ex,i on [0,min{R, C̄κ,λ}], where {Ex,i}n−1

i=1 are the parallel vector fields along γx with
initial condition Ex,i(0) = ex,i. Moreover, f ◦ γx = f (x) − (N − n) log sκ,λ on [0,min{R, C̄κ,λ}]
(see Remark 5.1). Define a map Φ : [0, r] × ∂M → Br(∂M) by Φ(t, x) := γx(t). For each
p ∈ (0, r) × ∂M the map D(Φ|(0,r)×∂M)p sends an orthonormal basis of Tp([0, r] × ∂M) to that
of TΦ(p)Br(∂M), and for each x ∈ {0, r} × ∂M the map D(Φ|{0,r}×∂M)x sends an orthonormal
basis of Tx({0, r} × ∂M) to that of TΦ(x)∂(Br(∂M)). Hence, Φ is a Riemannian isometry with
boundary from [0, r] × κ,λ∂M to Br(∂M). �

In the case of N = ∞, we have:

LEMMA 5.9. Suppose that ∂M is compact. Suppose Ric∞f ,M ≥ 0 and Hf ,∂M ≥ 0. As-
sume that there exists R ∈ (0,∞) such that for every r ∈ (0,R] the equality in (5.6) holds. Then
for every r ∈ (0,R) the metric space (Br(∂M), dBr(∂M)) is isometric to ([0, r] × ∂M, d[0,r]×∂M).

PROOF. We may assume that Br(∂M) is connected. For each x ∈ ∂M, choose an or-
thonormal basis {ex,i}n−1

i=1 of Tx∂M. Let {Yx,i}n−1
i=1 be the ∂M-Jacobi fields along γx with initial

conditions Yx,i(0) = ex,i and Y′x,i(0) = −Auxex,i. For all i we have Yx,i = Ex,i on [0, r], where
{Ex,i}n−1

i=1 are the parallel vector fields along γx with initial condition Ex,i(0) = ex,i (see Re-
mark 5.1). Define a map Φ : [0, r] × ∂M → Br(∂M) by Φ(t, x) := γx(t). We see that Φ is a
Riemannian isometry with boundary from [0, r] × ∂M to Br(∂M). �

Now, we prove Theorem 1.2.

PROOF OF THEOREM 1.2. Suppose that ∂M is compact. For N ∈ [n,∞), suppose
RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥ (N − 1)λ. Suppose (1.1).

By Lemma 5.2 and Theorem 5.4, for all r,R ∈ (0,∞) with r ≤ R,

mf (BR(∂M))

sN,κ,λ(R)
=

mf (Br(∂M))

sN,κ,λ(r)
= mf ,∂M(∂M) .

If κ and λ satisfy the ball-condition, then for R = Cκ,λ, and for every r ∈ (0,R] the equality
in (5.4) holds; in particular, Lemmas 4.1 and 5.6 imply that τ is equal to Cκ,λ on ∂M. If κ
and λ do not satisfy the ball-condition, then for every R ∈ (0,∞), and for every r ∈ (0,R] the
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equality in (5.4) holds; in particular, Lemma 5.6 implies that τ = ∞ on ∂M. It follows that τ
coincides with C̄κ,λ on ∂M. From Lemma 5.8, for every x ∈ ∂M we derive f ◦ γx = f (x) −
(N − n) log sκ,λ on Iκ,λ.

If κ and λ satisfy the ball-condition, then D(M, ∂M) = Cκ,λ. By Lemma 2.3, M is com-
pact. There exists p ∈ M with ρ∂M(p) = Cκ,λ. Due to Theorem 1.1, (M, dM) is isometric to
(Bn

κ,λ, dBn
κ,λ

) and N = n.
If κ and λ do not satisfy the ball-condition, then Cut ∂M = ∅. It follows that ∂M is

connected. Take a sequence {ri} with ri → ∞. By Lemma 5.8, for each ri, there exists a
Riemannian isometry Φi : [0, ri] × ∂M → Bri(∂M) with boundary from [0, ri] × κ,λ∂M to
Bri(∂M) defined by Φi(t, x) := γx(t). Since Cut ∂M = ∅, we obtain a Riemannian isometryΦ :
[0,∞) × ∂M → M with boundary from [0,∞) × κ,λ∂M to M defined by Φ(t, x) := γx(t) such
that Φ|[0,ri]×∂M = Φi for all ri. This proves Theorem 1.2. �

Next, we prove Theorem 1.3.

PROOF OF THEOREM 1.3. Suppose that ∂M is compact. Suppose Ric∞f ,M ≥ 0 and
Hf ,∂M ≥ 0. Furthermore, we assume (1.2).

By Lemma 5.3 and Theorem 5.5, for all R ∈ (0,∞) and r ∈ (0,R],

mf (BR(∂M))

R
=

mf (Br(∂M))

r
= mf ,∂M(∂M) .

For every R ∈ (0,∞), and for every r ∈ (0,R] the equality in (5.6) holds. From Lemma 5.7,
it follows that τ = ∞ on ∂M. We have Cut ∂M = ∅, and hence ∂M is connected. Take a
sequence {ri} with ri → ∞. Lemma 5.9 implies that for each ri there exists a Riemannian
isometry Φi : [0, ri] × ∂M → Bri(∂M) with boundary from [0, ri] × ∂M to Bri(∂M) defined by
Φi(t, x) := γx(t). Since Cut ∂M = ∅, we obtain a Riemannian isometry Φ : [0,∞) × ∂M → M
with boundary from [0,∞) × ∂M to M defined by Φ(t, x) := γx(t) such that Φ|[0,ri]×∂M = Φi

for all ri. This proves Theorem 1.3. �

6. Splitting theorems. Let M be an n-dimensional, connected complete Riemannian
manifold with boundary, and let f : M → R be a smooth function.

6.1. Main splitting theorems. We prove Theorem 1.4.

PROOF OF THEOREM 1.4. Let κ ≤ 0 and λ :=
√|κ|. For N ∈ [n,∞), we suppose

RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥ (N − 1)λ. Suppose that for some x0 ∈ ∂M we have τ(x0) = ∞.
For the connected component ∂M0 of ∂M containing x0, we put

Ω := {y ∈ ∂M0 | τ(y) = ∞} .
The assumption implies that Ω is non-empty. From the continuity of τ, it follows that Ω is
closed in ∂M0.

We show the openness of Ω in ∂M0. Fix y0 ∈ Ω. Take l ∈ (0,∞), and put p0 := γy0 (l).
There exists an open neighborhood U of p0 in Int M contained in D∂M. Taking U smaller, we
may assume that for each point q ∈ U the unique foot point on ∂M of q belongs to ∂M0. By
Lemma 2.7, there exists ε ∈ (0,∞) such that for all q ∈ Bε(p0), all asymptotes for γy0 from q



RIGIDITY OF MANIFOLDS WITH BOUNDARY 93

lie in Int M. We may assume U ⊂ Bε(p0). Fix q0 ∈ U, and take an asymptote γq0 : [0,∞) →
M for γy0 from q0. For t ∈ (0,∞), define a function bγy0 ,t

: M → R by

bγy0 ,t
(p) := bγy0

(q0) + t − dM(p, γq0(t)) .

We see that bγy0 ,t
− ρ∂M is a support function of bγy0

− ρ∂M at q0. Since γq0 lie in Int M, for
every t ∈ (0,∞) the function bγy0 ,t

is smooth on a neighborhood of q0. From Lemma 2.8, we
deduce Δ f bγy0 ,t

(q0) ≤ (N − 1)(s′κ(t)/sκ(t)). Note that s′κ(t)/sκ(t) → λ as t → ∞. Furthermore,
ρ∂M is smooth on U, and by Lemma 3.3 we have Δ fρ∂M ≥ (N − 1)λ on U. Hence, bγy0

− ρ∂M
is f -subharmonic on U. Since bγy0

− ρ∂M takes the maximal value 0 at p0, Lemma 2.9 implies
bγy0
= ρ∂M on U. From Lemma 2.6, it follows that Ω is open in ∂M0.
Since ∂M0 is a connected component of ∂M, we have Ω = ∂M0. By Lemma 2.4, ∂M is

connected and Cut ∂M = ∅. The equality in Lemma 3.3 holds on Int M. For each x ∈ ∂M,
choose an orthonormal basis {ex,i}n−1

i=1 of Tx∂M. Let {Yx,i}n−1
i=1 be the ∂M-Jacobi fields along γx

with initial conditions Yx,i(0) = ex,i and Y′x,i(0) = −Auxex,i. For all i we see Yx,i = sκ,λEx,i on
[0,∞), where {Ex,i}n−1

i=1 are the parallel vector fields along γx with initial condition Ex,i(0) =
ex,i. Moreover, for all t ∈ [0,∞) we have ( f ◦ γx)(t) = f (x) + (N − n)λt (see Remark 3.3).
Define a map Φ : [0,∞) × ∂M → M by Φ(t, x) := γx(t). For every p ∈ (0,∞) × ∂M the
map D(Φ|(0,∞)×∂M)p sends an orthonormal basis of Tp((0,∞)× ∂M) to that of TΦ(p)M, and for
every x ∈ {0} × ∂M the map D(Φ|{0}×∂M)x sends an orthonormal basis of Tx({0} × ∂M) to that
of TΦ(x)∂M. Hence, Φ is a Riemannian isometry with boundary from [0,∞) × κ,λ∂M to M.
This proves Theorem 1.4. �

Next, we prove Theorem 1.5.

PROOF OF THEOREM 1.5. Assume sup f (M) < ∞. Suppose Ric∞f ,M ≥ 0 and Hf ,∂M ≥
0. Let x0 ∈ ∂M satisfy τ(x0) = ∞.

For the connected component ∂M0 of ∂M containing x0, we put

Ω := {y ∈ ∂M0 | τ(y) = ∞} .
The assumption and the continuity of τ imply that Ω is a non-empty closed subset of ∂M0.

We prove the openness of Ω in ∂M0. Fix y0 ∈ Ω. Take l ∈ (0,∞), and put p0 := γy0 (l).
There exists an open neighborhood U of p0 in Int M contained in D∂M. We may assume that
for each point q ∈ U the unique foot point on ∂M of q belongs to ∂M0. By Lemma 2.7,
there exists ε ∈ (0,∞) such that for all q ∈ Bε(p0), all asymptotes for γy0 from q lie in Int M.
We may assume U ⊂ Bε(p0). By Lemma 2.10, bγy0

is f -subharmonic on U. Furthermore,
ρ∂M is smooth on U, and Lemma 3.4 implies Δ fρ∂M ≥ 0 on U. Therefore, bγy0

− ρ∂M is
f -subharmonic on U. Since bγy0

− ρ∂M takes the maximal value 0 at p0, Lemma 2.9 implies
bγy0
= ρ∂M on U. By Lemma 2.6, Ω is open in ∂M0.
Since ∂M0 is a connected component of ∂M, we have Ω = ∂M0. By Lemma 2.4, ∂M is

connected and Cut ∂M = ∅. The equality in Lemma 3.4 holds on Int M. For each x ∈ ∂M,
choose an orthonormal basis {ex,i}n−1

i=1 of Tx∂M. Let {Yx,i}n−1
i=1 be the ∂M-Jacobi fields along

γx with initial conditions Yx,i(0) = ex,i and Y′x,i(0) = −Auxex,i. For all i we see Yx,i = Ex,i on
[0,∞), where {Ex,i}n−1

i=1 are the parallel vector fields along γx with initial condition Ex,i(0) =
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ex,i (see Remark 3.3). Hence, the map Φ : [0,∞) × ∂M → M defined by Φ(t, x) := γx(t) is
a Riemannian isometry with boundary from [0,∞) × ∂M to M. This completes the proof of
Theorem 1.5. �

Lemma 2.3 and the continuity of τ imply that if ∂M is compact and M is non-compact,
then for some x0 ∈ ∂M we have τ(x0) = ∞. By Theorems 1.4 and 1.5, we have the following
rigidity results that have been proved in [20] (see also [11]) when f = 0 and N = n.

COROLLARY 6.1. Let M be an n-dimensional, connected complete Riemannian man-
ifold with boundary, and let f : M → R be a smooth function. Let κ ≤ 0 and λ :=

√|κ|. For
N ∈ [n,∞), we suppose RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥ (N − 1)λ. If M is non-compact and
∂M is compact, then (M, dM) is isometric to ([0,∞) × κ,λ∂M, dκ,λ), and for all x ∈ ∂M and t ∈
[0,∞) we have ( f ◦ γx)(t) = f (x) + (N − n)λt.

COROLLARY 6.2. Let M be a connected complete Riemannian manifold with bound-
ary, and let f : M → R be a smooth function such that sup f (M) < ∞. Suppose Ric∞f ,M ≥
0 and Hf ,∂M ≥ 0. If M is non-compact and ∂M is compact, then the metric space (M, dM) is
isometric to ([0,∞) × ∂M, d[0,∞)×∂M).

6.2. Weighted Ricci curvature on the boundary. Let h be the induced Riemannian
metric on ∂M. For x ∈ ∂M, and for a unit vector u in Tx∂M, we denote by Kg(ux, u) the
sectional curvature at x in (M, g) determined by ux and u.

It seems that the following is well-known, especially in a submanifold setting (see e.g.,
Proposition 9.36 in [4], and Lemma 5.4 in [40]).

LEMMA 6.3. Take x ∈ ∂M, and a unit vector u in Tx∂M. Choose an orthonormal basis
{ex,i}n−1

i=1 of Tx∂M with ex,1 = u. Then we have

Rich(u) = Ricg(u) − Kg(ux, u) + trace AS (u,u) −
n−1∑
i=1

‖S (u, ex,i)‖2 .

For all x ∈ ∂M and u ∈ Tx∂M, we see

h((∇( f |∂M))x, u) = g((∇ f )x, u),(6.1)

Hess( f |∂M)(u, u) = Hess f (u, u) + g ((∇ f )x, ux) g (S (u, u), ux) .(6.2)

We show the following:

LEMMA 6.4. Take x ∈ ∂M, and a unit vector u in Tx∂M. Choose an orthonormal basis
{ex,i}n−1

i=1 of Tx∂M with ex,1 = u. Then for all N ∈ [n,∞), we have

RicN−1
f |∂M (u) = RicNf (u) + g((∇ f )x, ux) g(S (u, u), ux)(6.3)

− Kg(ux, u) + traceAS (u,u) −
n−1∑
i=1

‖S (u, ex,i)‖2 .

PROOF. Assume N ∈ (n,∞). By (6.1) and (6.2), we have
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RicN−1
f |∂M (u) = Rich(u) + Hess( f |∂M)(u, u) − h((∇( f |∂M))x, u)2

(N − 1) − (n − 1)

= Rich(u) + Hess f (u, u) + g((∇ f )x, ux) g(S (u, u), ux) − g((∇ f )x, u)2

N − n .

By Lemma 6.3, we see (6.3).
Assume N = n. If f is constant, then we see RicN−1

f |∂M (u) = Rich(u) and RicNf (u) = Ricg(u),
and hence Lemma 6.3 implies (6.3). If f is not constant, then both the left hand side of (6.3)
and the right hand side are equal to −∞. Therefore, we complete the proof. �

In the case of N = ∞, we have:

LEMMA 6.5. Take x ∈ ∂M, and a unit vector u in Tx∂M. Choose an orthonormal basis
{ex,i}n−1

i=1 of Tx∂M with ex,1 = u. Then we have

Ric∞f |∂M (u) = Ric∞f (u) + g((∇ f )x, ux) g(S (u, u), ux)(6.4)

− Kg(ux, u) + traceAS (u,u) −
n−1∑
i=1

‖S (u, ex,i)‖2 .

PROOF. From (6.2), it follows that

Ric∞f |∂M (u) = Rich(u) + Hess( f |∂M)(u, u)

= Rich(u) + Hess f (u, u) + g((∇ f )x, ux) g(S (u, u), ux) .

Using Lemma 6.3, we have (6.4). �

6.3. Multi-splitting. By Lemma 6.4, we see the following:

LEMMA 6.6. For N ∈ [n,∞), we suppose RicNf ,M ≥ 0. If (M, dM) is isometric to ([0,∞)

× ∂M, d[0,∞)×∂M), then RicN−1
f |∂M ,∂M ≥ 0.

PROOF. There exists a Riemannian isometry with boundary from M to [0,∞) × ∂M.
Take x ∈ ∂M, and choose an orthonormal basis {ex,i}n−1

i=1 of Tx∂M. Let {Yx,i}n−1
i=1 be the ∂M-

Jacobi fields along γx with initial conditions Yx,i(0) = ex,i and Y′x,i(0) = −Auxex,i. For all i
we have Yx,i = Ex,i, where {Ex,i}n−1

i=1 are the parallel vector fields along γx with initial con-
dition Ex,i(0) = ex,i. We see Auxex,i = 0x and Y′′x,1(0) = 0x; in particular, traceAux = 0 and

Kg(ux, ex,1) = 0. For all i, j we have S (ex,i, ex, j) = 0x. By (6.3) and RicNf ,M ≥ 0, we have

RicN−1
f |∂M ,∂M ≥ 0. �

Let M0 be a connected complete Riemannian manifold (without boundary). A normal
geodesic γ : R→ M0 is said to be a line if for all s, t ∈ R we have dM0 (γ(s), γ(t)) = |s − t|.

Fang, Li and Zhang [12] have proved the following splitting theorem of Cheeger-Gromoll
type (see Theorem 1.3 in [12]):

THEOREM 6.7 ([12]). Let M0 be an n-dimensional, connected complete Riemannian
manifold, and let f : M0 → R be a smooth function. For N ∈ [n,∞), we suppose RicNf ,M0

≥ 0.



96 Y. SAKURAI

If M0 contains a line, then there exists an (n − 1)-dimensional Riemannian manifold N0 such
that M0 is isometric to the standard product R × N0.

We have the following corollary of Theorem 1.4:

COROLLARY 6.8. Let M be an n-dimensional, connected complete Riemannian man-
ifold with boundary, and let f : M → R be a smooth function. For N ∈ [n,∞), we suppose
RicNf ,M ≥ 0 and Hf ,∂M ≥ 0. If for some x0 ∈ ∂M we have τ(x0) = ∞, then there exist k ∈
{0, . . . , n − 1} and an (n − 1 − k)-dimensional, connected complete Riemannian manifold N0

containing no line such that (∂M, d∂M) is isometric to (Rk×N0, dRk×N0
). In particular, (M, dM)

is isometric to ([0,∞) × Rk × N0, d[0,∞)×Rk×N0
).

PROOF. Due to Theorem 1.4, the metric space (M, dM) is isometric to ([0,∞) ×
∂M, d[0,∞)×∂M). Lemma 6.6 implies RicN−1

f |∂M ,∂M ≥ 0. Applying Theorem 6.7 to ∂M inductively,
we complete the proof. �

In the case of N = ∞, we see:

LEMMA 6.9. If Ric∞f ,M ≥ 0, and if the metric space (M, dM) is isometric to ([0,∞) ×
∂M, d[0,∞)×∂M), then Ric∞f |∂M ,∂M ≥ 0.

PROOF. There exists a Riemannian isometry with boundary from M to [0,∞) × ∂M.
Take x ∈ ∂M, and choose an orthonormal basis {ex,i}n−1

i=1 of Tx∂M. Let {Yx,i}n−1
i=1 be the ∂M-

Jacobi fields along γx with initial conditions Yx,i(0) = ex,i and Y′x,i(0) = −Auxex,i. For all i
we have Yx,i = Ex,i, where {Ex,i}n−1

i=1 are the parallel vector fields along γx with initial con-
dition Ex,i(0) = ex,i. This implies Auxex,i = 0x and Y′′x,1(0) = 0x. Hence, traceAux = 0 and
Kg(ux, ex,1) = 0. For all i, j we see S (ex,i, ex, j) = 0x. From (6.4), and from Ric∞f ,M ≥ 0, we
deduce Ric∞f |∂M ,∂M ≥ 0. �

Fang, Li and Zhang [12] have proved the following splitting theorem of Cheeger-Gromoll
type (see Theorem 1.1 in [12]):

THEOREM 6.10 ([12]). Let M0 be an n-dimensional, connected complete Riemannian
manifold, and let f : M0 → R be a smooth function such that sup f (M0) < ∞. Suppose
Ric∞f ,M0

≥ 0. If M0 contains a line, then there exists an (n − 1)-dimensional Riemannian
manifold N0 such that M0 is isometric to the standard product R × N0.

REMARK 6.1. Lichnerowicz [31] has proved Theorem 6.10 under the assumption that
f is bounded.

In the case of N = ∞, we have the following:

COROLLARY 6.11. Let M be an n-dimensional, connected complete Riemannianman-
ifold with boundary, and let f : M → R be a smooth function such that sup f (M) < ∞. Sup-
pose Ric∞f ,M ≥ 0 and Hf ,∂M ≥ 0. If for some x0 ∈ ∂M we have τ(x0) = ∞, then there exist k ∈
{0, . . . , n − 1} and an (n − 1 − k)-dimensional, connected complete Riemannian manifold N0

containing no line such that (∂M, d∂M) is isometric to (Rk×N0, dRk×N0
). In particular, (M, dM)

is isometric to ([0,∞) × Rk × N0, d[0,∞)×Rk×N0
).
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PROOF. By Theorem 1.5, (M, dM) is isometric to ([0,∞) × ∂M, d[0,∞)×∂M). From
Lemma 6.9, we derive Ric∞f |∂M ,∂M ≥ 0. Notice that supx∈∂M f (x) is finite. By using Theo-
rem 6.10, we obtain the corollary. �

6.4. Variants of splitting theorems. We have already known several rigidity results
studied in [20] (and [11], [18]) for manifolds with boundary whose boundaries are discon-
nected. We study generalizations of the results in [20] (and [11], [18]).

The following has been proved in [20] (see Lemma 1.6 in [20]):

LEMMA 6.12 ([20]). Suppose that ∂M is disconnected. Let {∂Mi}i=1,2,... denote the
connected components of ∂M. Assume that ∂M1 is compact. Put D := infi=2,3,... dM(∂M1,

∂Mi). Then there exists a connected component ∂M2 of ∂M such that dM(∂M1, ∂M2) = D.
Furthermore, for every i = 1, 2 there exists xi ∈ ∂Mi such that dM(x1, x2) = D. The normal
minimal geodesic γ : [0,D]→ M from x1 to x2 is orthogonal to ∂M both at x1 and at x2, and
the restriction γ|(0,D) lies in Int M.

First, we prove the following:

THEOREM 6.13. Let M be an n-dimensional, connected complete Riemannian man-
ifold with boundary, and let f : M → R be a smooth function. Suppose that ∂M is dis-
connected. Let {∂Mi}i=1,2,... denote the connected components of ∂M. Assume that ∂M1 is
compact. Put D := infi=2,3,... dM(∂M1, ∂Mi). For N ∈ [n,∞], we suppose RicNf ,M ≥ 0 and
Hf ,∂M ≥ 0. Then (M, dM) is isometric to ([0,D] × ∂M1, d[0,D]×∂M1 ). Moreover, if N ∈ [n,∞),
then for every x ∈ ∂M1 the function f ◦ γx is constant on [0,D].

PROOF. By Lemma 6.12, there exists a connected component ∂M2 of ∂M such that
dM(∂M1, ∂M2) = D. For each i = 1, 2, let ρ∂Mi : M → R be the distance function from ∂Mi

defined as ρ∂Mi (p) := dM(p, ∂Mi). Put

Ω := {p ∈ Int M | ρ∂M1 (p) + ρ∂M2 (p) = D} .

Lemma 6.12 implies that Ω is a non-empty closed subset of Int M.
We show that Ω is open in Int M. Take p ∈ Ω. For each i = 1, 2, there exists a foot

point xp,i ∈ ∂Mi on ∂Mi of p such that dM(p, xp,i) = ρ∂Mi (p). From the triangle inequality,
we derive dM(xp,1, xp,2) = D. The normal minimal geodesic γ : [0,D] → M from xp,1 to xp,2
is orthogonal to ∂M at xp,1 and at xp,2. Furthermore, γ|(0,D) lies in Int M and passes through
p. There exists an open neighborhood U of p such that U is contained in Int M and ρ∂Mi is
smooth on U. By using Lemmas 3.1 and 3.2, we see Δ f ρ∂Mi ≥ 0 on U; in particular, −(ρ∂M1 +

ρ∂M2 ) is f -subharmonic on U. By Lemma 2.9, Ω is open in Int M.
Since Int M is connected, we have Int M = Ω. For each x ∈ ∂M1, choose an orthonormal

basis {ex,i}n−1
i=1 of Tx∂M. Let {Yx,i}n−1

i=1 be the ∂M-Jacobi fields along γx with initial conditions
Yx,i(0) = ex,i and Y′x,i(0) = −Auxex,i. For all i we see Yx,i = Ex,i on [0,D], where {Ex,i}n−1

i=1 are
the parallel vector fields along γx with initial condition Ex,i(0) = ex,i. Moreover, if N ∈ [n,∞),
then f ◦ γx is constant on [0,D] (see Remarks 3.1 and 3.2). We see that a map Φ : [0,D] ×
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∂M1 → M defined by Φ(t, x) := γx(t) is a Riemannian isometry with boundary from [0,D] ×
∂M1 to M. �

Next, we show the following:

THEOREM 6.14. Let M be an n-dimensional, connected complete Riemannian man-
ifold with boundary, and let f : M → R be a smooth function. Suppose that ∂M is dis-
connected. Let {∂Mi}i=1,2,... denote the connected components of ∂M. Assume that ∂M1 is
compact. Put D := infi=2,3,... dM(∂M1, ∂Mi). Let κ > 0. For N ∈ [n,∞), we suppose RicNf ,M ≥
(N − 1)κ and Hf ,∂M ≥ (N − 1)λ. Then λ < 0 and D ≤ 2Dκ,λ, where Dκ,λ := inf { t > 0 | s′κ,λ(t) =
0 }. If D = 2Dκ,λ, then (M, dM) is isometric to ([0,D]× κ,λ∂M1, d[0,D]×κ,λ∂M1 ), and for every x ∈
∂M1 we have f ◦ γx = f (x) − (N − n) log sκ,λ on [0,D].

PROOF. If λ ≥ 0, then Theorem 6.13 implies that (M, dM) is isometric to ([0,D] ×
∂M1, d[0,D]×∂M1 ), and for every x ∈ ∂M1 the function f ◦ γx is constant on [0,D]. This contra-
dicts the positivity of κ, and hence we have λ < 0.

We prove that if D ≥ 2Dκ,λ, then the metric space (M, dM) is isometric to ([0, 2Dκ,λ] ×
κ,λ∂M1, d[0,Dκ,λ]×κ,λ∂M1 ), and for every x ∈ ∂M1 we have f ◦ γx = f (x) − (N − n) log sκ,λ on
[0, 2Dκ,λ]. Assume D ≥ 2Dκ,λ. By Lemma 6.12, there exists a connected component ∂M2

of ∂M such that dM(∂M1, ∂M2) = D. For each i = 1, 2, let ρ∂Mi : M → R be the distance
function from ∂Mi defined as ρ∂Mi (p) := dM(p, ∂Mi). Put

Ω := {p ∈ Int M | ρ∂M1 (p) + ρ∂M2 (p) = D} .
The set Ω is a non-empty closed subset of Int M.

We show that Ω is open in Int M. Take p ∈ Ω. For each i = 1, 2, we take a foot point
xp,i ∈ ∂Mi on ∂Mi of p such that dM(p, xp,i) = ρ∂Mi (p). From the triangle inequality, we
derive dM(xp,1, xp,2) = D. The normal minimal geodesic γ : [0,D] → M from xp,1 to xp,2
is orthogonal to ∂M at xp,1 and at xp,2. Furthermore, γ|(0,D) lies in Int M and passes through
p. There exists an open neighborhood U of p such that ρ∂Mi is smooth on U. By using
Lemma 3.1, for all q ∈ U, we see

−Δ f
(
ρ∂M1 + ρ∂M2

)
(q)

N − 1
≤ s′κ,λ(ρ∂M1(q))

sκ,λ(ρ∂M1(q))
+

s′κ,λ(ρ∂M2 (q))

sκ,λ(ρ∂M2 (q))
(6.5)

=
s′κ,λ(ρ∂M1(q) + ρ∂M2 (q)) − λsκ,λ(ρ∂M1 (q) + ρ∂M2 (q))

sκ,λ(ρ∂M1 (q))sκ,λ(ρ∂M2 (q))
.

Since κ > 0, the function s′κ,λ/sκ,λ is monotone decreasing on (0,Cκ,λ), and satisfies s′κ,λ
(2Dκ,λ)/sκ,λ(2Dκ,λ) = λ. By the triangle inequality and the assumption D ≥ 2Dκ,λ, we have
ρ∂M1 + ρ∂M2 ≥ 2Dκ,λ on U. Therefore, by (6.5), −(ρ∂M1 + ρ∂M2 ) is f -subharmonic on U. By
Lemma 2.9, Ω is open in Int M.

The connectedness of Int M implies Int M = Ω. For each x ∈ ∂M1, choose an orthonor-
mal basis {ex,i}n−1

i=1 of Tx∂M. Let {Yx,i}n−1
i=1 be the ∂M-Jacobi fields along γx with initial condi-

tions Yx,i(0) = ex,i and Y′x,i(0) = −Auxex,i. For all i we have Yx,i = sκ,λEx,i on [0,D], where
{Yx,i}n−1

i=1 are the parallel vector fields along γx with initial condition Ex,i(0) = ex,i. Moreover,
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f ◦ γx = f (x) − (N − n) log sκ,λ on [0,D] (see Remark 3.1). We see D = 2Dκ,λ. A map Φ :
[0, 2Dκ,λ] × ∂M1 → M defined by Φ(t, x) := γx(t) is a Riemannian isometry with boundary
from [0, 2Dκ,λ] × κ,λ∂M1 to M. �

7. Eigenvalue rigidity. Let M be an n-dimensional, connected complete Riemannian
manifold with boundary with Riemannian metric g, and let f : M → R be a smooth function.

7.1. Lower bounds. We prove the inequalities (1.8) in Theorem 1.6 and (1.9) in The-
orem 1.7.

Allegretto and Huang [1] have shown the following inequality of Picone type in a Eu-
clidean setting (see Theorem 1.1 in [1]):

LEMMA 7.1. Let φ and ψ be functions on M that are smooth on a domain U in M, and
satisfy φ > 0 and ψ ≥ 0 on U. Then for all p ∈ (1,∞) we have the following inequality on U:

(7.1) ‖∇ψ‖p ≥ ‖∇φ‖p−2g
(
∇

(
ψp φ1−p) ,∇φ) .

PROOF. For a fixed p ∈ (1,∞), we put q := p(p − 1)−1. By the Young inequality, we
have

(7.2) ‖∇ψ‖
(
ψ‖∇φ‖
φ

)p−1

≤ ‖∇ψ‖
p

p
+

1
q

(
ψ‖∇φ‖
φ

)p

on U. By (7.2), and by the Cauchy-Schwarz inequality, we have

‖∇ψ‖p ≥ p
(
ψφ−1

)p−1 ‖∇ψ‖‖∇φ‖p−1 − (p − 1)
(
ψφ−1

)p ‖∇φ‖p(7.3)

≥ p
(
ψφ−1

)p−1
g(∇φ,∇ψ)‖∇φ‖p−2 − (p − 1)

(
ψφ−1

)p ‖∇φ‖p
= ‖∇φ‖p−2g

(
∇

(
ψp φ1−p) ,∇φ) .

This completes the proof. �

REMARK 7.1. In Lemma 7.1, we assume that the equality in (7.1) holds on U. In this
case, the equalities in (7.3) also hold on U. From the equality in the Young inequality, and
from that in the Cauchy-Schwarz inequality, we deduce that for some constant c � 0 we have
φ‖∇ψ‖ = ψ‖∇φ‖ and ∇ψ = c∇φ on U; in particular, ψ = c φ on U.

Now, we prove the inequality (1.8) in Theorem 1.6.

PROPOSITION 7.2. Suppose that M is compact. Let p ∈ (1,∞). For N ∈ [n,∞), we
suppose RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥ (N − 1)λ. For D ∈ (0, C̄κ,λ] \ {∞}, assume D(M, ∂M)
≤ D. Then we have (1.8).

PROOF. Let φp,N,κ,λ,D : [0,D]→ R be a function satisfying (1.6) for μ = μp,N,κ,λ,D. We
may assume φp,N,κ,λ,D|(0,D] > 0. The equation (1.6) is written in the form

(
|φ′(t)|p−2φ′(t)sN−1

κ,λ (t)
)′
+ μ |φ(t)|p−2φ(t)sN−1

κ,λ (t) = 0 ,

φ(0) = 0, φ′(D) = 0 .
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Therefore, it follows that φ′p,N,κ,λ,D|[0,D) > 0. Put Φ := φp,N,κ,λ,D ◦ ρ∂M. Take a non-negative,
non-zero smooth function ψ on M whose support is compact and contained in Int M. By
Lemma 7.1, we have

(7.4) ‖∇ψ‖p ≥ ‖∇Φ‖p−2g
(
∇

(
ψpΦ1−p) ,∇Φ)

on Int M \ Cut ∂M. By using (7.4) and Proposition 3.7, we have
∫
M
‖∇ψ‖p d mf ≥

∫
M
‖∇Φ‖p−2g

(
∇

(
ψpΦ1−p) ,∇Φ)

d mf

≥
∫
M

(
ψpΦ1−p) ((− ((

φ′
)p−1

)′ − (N − 1)
s′κ,λ
sκ,λ

(
φ′

)p−1
)
◦ ρ∂M

)
d mf

= μp,N,κ,λ,D

∫
M
ψp d mf .

We obtain Rf ,p(ψ) ≥ μp,N,κ,λ,D. This implies (1.8). �

Next, we prove the inequality (1.9) in Theorem 1.7.

PROPOSITION 7.3. Suppose that M is compact. Let p ∈ (1,∞). Suppose Ric∞f ,M ≥ 0
and Hf ,∂M ≥ 0. For D ∈ (0,∞), assume D(M, ∂M) ≤ D. Then we have (1.9).

PROOF. Let φp,∞,D : [0,D]→ R be a function satisfying (1.7) for μ = μp,∞,D. We may
assume φp,∞,D|(0,D] > 0. In this case, we have φ′p,∞,D|[0,D) > 0. Put Φ := φp,∞,D ◦ ρ∂M . Take a
non-negative, non-zero smooth function ψ on M whose support is compact and contained in
Int M. By Lemma 7.1, we have

(7.5) ‖∇ψ‖p ≥ ‖∇Φ‖p−2g
(
∇

(
ψpΦ1−p) ,∇Φ)

on Int M \ Cut ∂M. By using (7.5) and Proposition 3.8, we have
∫
M
‖∇ψ‖p d mf ≥

∫
M
‖∇Φ‖p−2g

(
∇

(
ψpΦ1−p) ,∇Φ)

d mf

≥
∫
M

(
ψpΦ1−p) (− ((

φ′
)p−1

)′ ◦ ρ∂M)
d mf = μp,∞,D

∫
M
ψp d mf .

We obtain Rf ,p(ψ) ≥ μp,∞,D. This implies (1.9). �

REMARK 7.2. In Proposition 7.2 (resp. 7.3), we assume that there exists a non-negative,
non-zero smooth function ψ : M → R whose support is compact and contained in Int M such
that Rf ,p(ψ) = μp,N,κ,λ,D (resp. Rf ,p(ψ) = μp,∞,D). In this case, the equality in (7.4) (resp. (7.5))
holds on Int M \ Cut ∂M. Therefore, for some constant c � 0 we have ψ = cΦ on M (see
Remark 7.1). Furthermore, the equality case in (3.11) (resp. 3.12) happens (see Remark 3.5).

7.2. Equality cases. We prove Theorems 1.6 and 1.7.
In the proofs, we use the following fact:
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PROPOSITION 7.4. Suppose that M is compact. Let p ∈ (1,∞). Then there exists a
non-negative, non-zero function Ψ in W1,p

0 (M,mf ) such that R f ,p(Ψ ) = μ f ,1,p(M). Moreover,
for some α ∈ (0, 1) the function Ψ is C1,α-Hölder continuous on M.

Proposition 7.4 is well-known in the standard case where f = 0. In the standard case, the
existence follows from the standard compactness argument, and the regularity follows from
the results by Tolksdorf in [44]. The method of the proof also works in our weighted setting.

For D ∈ (0,∞), we put S D(∂M) := { q ∈ M | ρ∂M(q) = D }.
Kasue has shown the following in the proof of Theorem 2.1 in [21]:

PROPOSITION 7.5 ([21]). Let κ ∈ R and λ ∈ R. Suppose that M is compact. Assume
that for some D ∈ (0, C̄κ,λ) we have Cut ∂M = S D(∂M). For each x ∈ ∂M, choose an
orthonormal basis {ex,i}n−1

i=1 of Tx∂M. Let {Yx,i}n−1
i=1 be the ∂M-Jacobi fields along γx with initial

conditions Yx,i(0) = ex,i and Y′x,i(0) = −Auxex,i. Assume further that for all x ∈ ∂M and i we
have Yx,i = sκ,λ Ex,i on [0,D], where {Ex,i}n−1

i=1 are the parallel vector fields along γx with
initial condition Ex,i(0) = ex,i. Then κ and λ satisfy the model-condition, (M, dM) is a (κ, λ)-
equational model space, and D = Dκ,λ(M).

Now, we prove Theorem 1.6.

PROOF OF THEOREM 1.6. Suppose that M is compact. Let p ∈ (1,∞). For N ∈
[n,∞), we suppose RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥ (N − 1)λ. For D ∈ (0, C̄κ,λ] \ {∞},
assume D(M, ∂M) ≤ D. By Proposition 7.2, we have (1.8).

Assume that the equality in (1.8) holds. By Proposition 7.4, there exists a non-negative,
non-zero function Ψ in W1,p

0 (M,mf ) such that Rf ,p(Ψ ) = μp,N,κ,λ,D and Ψ is C1,α-Hölder con-
tinuous on M. Put Φ := φp,N,κ,λ,D ◦ ρ∂M . Then Φ coincides with a constant multiplication of
Ψ on M (see Remark 7.2); in particular, Φ is also C1,α-Hölder continuous.

For each x ∈ ∂M, choose an orthonormal basis {ex,i}n−1
i=1 of Tx∂M. Let {Yx,i}n−1

i=1 be the
∂M-Jacobi fields along γx with initial conditions Yx,i(0) = ex,i and Y′x,i(0) = −Auxex,i. For all i
we see Yx,i = sκ,λ Ex,i on [0, τ(x)], where {Ex,i}n−1

i=1 are the parallel vector fields along γx with
initial condition Ex,i(0) = ex,i. Moreover, f ◦ γx = f (x) − (N − n) log sκ,λ on [0, τ(x)] (see
Remarks 3.5 and 7.2).

Let D = C̄κ,λ. Since D is finite, κ and λ satisfy the ball-condition and D = Cκ,λ. There
exists p0 ∈ M such that ρ∂M(p0) = D(M, ∂M). Note that p0 belongs to Cut ∂M. Now, we
prove ρ∂M(p0) = Cκ,λ. We assume ρ∂M(p0) < Cκ,λ. Let x0 be a foot point on ∂M of p0. From
the property of Jacobi fields, p0 is not the first conjugate point of ∂M along γx0 . Hence, ρ∂M
is not differentiable at p0. Since Φ is C1,α-Hölder continuous, we see φ′p,N,κ,λ,D(ρ∂M(p0)) =
0. From φ′p,N,κ,λ,D|[0,D) > 0, we deduce ρ∂M(p0) = D. This contradicts D = Cκ,λ. Therefore,
ρ∂M(p0) = Cκ,λ. By Theorem 1.1, (M, dM) is isometric to (Bn

κ,λ, dBn
κ,λ

) and N = n.
Let D ∈ (0, C̄κ,λ). We prove Cut ∂M = S D(∂M). Since D(M, ∂M) ≤ D, we see S D(∂M) ⊂

Cut ∂M. We show the opposite. Take p0 ∈ Cut ∂M. By the property of Jacobi fields, ρ∂M is
not differentiable at p0. The regularity of Φ implies φ′p,N,κ,λ,D(ρ∂M(p0)) = 0; in particular,
ρ∂M(p0) = D. We have Cut ∂M = S D(∂M). By Proposition 7.5, κ and λ satisfy the model-
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condition, (M, dM) is a (κ, λ)-equational model space, and D = Dκ,λ(M). From τ = Dκ,λ(M)
on ∂M, it follows that f ◦ γx = f (x) − (N − n) log sκ,λ on [0,Dκ,λ(M)] for all x ∈ ∂M. We
complete the proof of Theorem 1.6. �

REMARK 7.3. In [21], the proof of Theorem 1.6 in the standard case where f = 0,N =
n and p = 2 relies on the approximation theorem obtained by Greene and Wu in [16]. It seems
that the approximation theorem in [16] does not work in our non-linear case of p � 2.

Next, we prove Theorem 1.7.

PROOF OF THEOREM 1.7. Suppose that M is compact. Let p ∈ (1,∞). Suppose
Ric∞f ,M ≥ 0 and Hf ,∂M ≥ 0. For D ∈ (0,∞), we assume D(M, ∂M) ≤ D. By Proposition 7.3,
we have (1.9).

Assume that the equality in (1.9) holds. By Proposition 7.4, there exists a non-negative,
non-zero function Ψ in W1,p

0 (M,mf ) such that Rf ,p(Ψ ) = μp,∞,D and Ψ is C1,α-Hölder contin-
uous on M. Put Φ := φp,∞,D ◦ ρ∂M . Then Φ coincides with a constant multiplication of Ψ on
M (see Remark 7.2); in particular, Φ is also C1,α-Hölder continuous.

For each x ∈ ∂M, choose an orthonormal basis {ex,i}n−1
i=1 of Tx∂M. Let {Yx,i}n−1

i=1 be the
∂M-Jacobi fields along γx with initial conditions Yx,i(0) = ex,i and Y′x,i(0) = −Auxex,i. For all
i we have Yx,i = Ex,i on [0, τ(x)], where {Ex,i}n−1

i=1 are the parallel vector fields along γx with
initial condition Ex,i(0) = ex,i (see Remarks 3.5 and 7.2).

We prove Cut ∂M = S D(∂M). Since D(M, ∂M) ≤ D, it holds that S D(∂M) ⊂ Cut ∂M.
We show the opposite. Take p0 ∈ Cut ∂M. By the property of Jacobi fields, ρ∂M is not differ-
entiable at p0. By the regularity of Φ, we see φ′p,∞,D(ρ∂M(p0)) = 0; in particular, ρ∂M(p0) =
D. It follows that Cut ∂M = S D(∂M); in particular, D(M, ∂M) = D. By Proposition 7.5, we
complete the proof of Theorem 1.7. �

7.3. Explicit lower bounds. For N ∈ [2,∞) and D ∈ (0,∞), we see μ2,N,0,0,D =

μ2,∞,D = π2(2D)−2.
By Theorems 1.6 and 1.7, we have the following:

COROLLARY 7.6. Let M be an n-dimensional, connected complete Riemannian man-
ifold with boundary, and let f : M → R be a smooth function. Suppose that M is compact.
For N ∈ [n,∞], we suppose RicNf ,M ≥ 0 and Hf ,∂M ≥ 0. For D ∈ (0,∞), we assume D(M, ∂M)
≤ D. Then we have

(7.6) μ f ,1,2(M) ≥ π2

4D2
.

If the equality in (7.6) holds, then D(M, ∂M) = D, and (M, dM) is a (0, 0)-equational model
space. Moreover, if N ∈ [n,∞), then for every x ∈ ∂M the function f ◦γx is constant on [0,D].

Li and Yau [30] have obtained (7.6) when f = 0 and N = n.
Kasue [21] has proved the following (see Lemma 1.3 in [21]):



RIGIDITY OF MANIFOLDS WITH BOUNDARY 103

LEMMA 7.7 ([21]). For all N ∈ [2,∞), κ, λ ∈ R and D ∈ (0, C̄κ,λ] \ {∞}, we have

μ2,N,κ,λ,D >

(
4 max
t∈[0,D]

∫ D

t
sN−1
κ,λ (s) ds

∫ t

0
s1−N
κ,λ (s) ds

)−1

.

In the case of p = 2, by Theorem 1.6 and Lemma 7.7 we have:

COROLLARY 7.8. Let M be an n-dimensional, connected complete Riemannian man-
ifold with boundary, and let f : M → R be a smooth function. Suppose that M is compact.
For N ∈ [n,∞), we suppose RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥ (N − 1)λ. For D ∈ (0, C̄κ,λ] \ {∞},
we assume D(M, ∂M) ≤ D. Then we have

μ f ,1,2(M) >

(
4 max
t∈[0,D]

∫ D

t
sN−1
κ,λ (s) ds

∫ t

0
s1−N
κ,λ (s) ds

)−1

.

8. First eigenvalue estimates. Let M be an n-dimensional, connected complete Rie-
mannian manifold with boundary with Riemannian metric g, and let f : M → R be a smooth
function.

8.1. Area estimates. Let Ω be a relatively compact domain in M such that ∂Ω is a
smooth hypersurface in M satisfying ∂Ω ∩ ∂M = ∅. For the canonical Riemannian volume
measure vol∂Ω on ∂Ω, let mf ,∂Ω := e− f |∂Ω vol∂Ω. Put

(8.1) δ1(Ω) := inf
p∈Ω

ρ∂M(p) , δ2(Ω) := sup
p∈Ω

ρ∂M(p) .

Kasue [22] has proved the following when f = 0 and N = n.

PROPOSITION 8.1. For N ∈ [n,∞), we suppose RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥ (N −
1)λ. Let Ω be a relatively compact domain in M such that ∂Ω is a smooth hypersurface in M
satisfying ∂Ω ∩ ∂M = ∅. Then

(8.2) mf (Ω) ≤ mf ,∂Ω (∂Ω) sup
t∈(δ1(Ω),δ2(Ω))

∫ δ2(Ω)

t
sN−1
κ,λ (s) ds

sN−1
κ,λ (t)

,

where δ1(Ω) and δ2(Ω) are the values defined as (8.1).

PROOF. Define a function φ : [δ1(Ω), δ2(Ω)]→ R by

φ(t) :=
∫ t

δ1(Ω)

∫ δ2(Ω)

s
sN−1
κ,λ (u) du

sN−1
κ,λ (s)

ds ,

and put Φ := φ ◦ ρ∂M . By Lemma 3.5, on Int M \ Cut ∂M

(8.3) Δ f ,2 Φ ≥ 1 .

By Lemma 2.5, there exists a sequence {Ωk}k∈N of compact subsets of Ω̄ satisfying that
for every k, the set ∂Ωk is a smooth hypersurface in M except for a null set in (∂Ω,mf ,∂Ω),
and satisfying the following: (1) for all k1, k2 ∈ N with k1 < k2, we have Ωk1 ⊂ Ωk2 ; (2)
Ω̄ \ Cut ∂M =

⋃
k∈N Ωk: (3) for every k ∈ N, and for almost every point p ∈ ∂Ωk ∩ ∂Ω in

(∂Ω,mf ,∂Ω), there exists the unit outer normal vector for Ωk at p that coincides with the unit



104 Y. SAKURAI

outer normal vector on ∂Ω for Ω at p; (4) for every k ∈ N, on ∂Ωk \ ∂Ω, there exists the unit
outer normal vector field νk for Ωk such that g(νk,∇ρ∂M) ≥ 0.

For the canonical Riemannian volume measure volk on ∂Ωk \ ∂Ω, put mf ,k := e− f |∂Ωk\∂Ω
volk. Let ν∂Ω be the unit outer normal vector on ∂Ω for Ω. By integrating the both sides of

(8.3) on Ωk, and by the Green formula, we have

mf (Ωk) ≤
∫
Ωk

Δ f ,2 Φ d mf = −
∫
∂Ωk\∂Ω

g(νk,∇Φ) d mf ,k −
∫
∂Ωk∩∂Ω

g(ν∂Ω,∇Φ) d mf ,∂Ω .

Since g(νk,∇Φ) ≥ 0 on ∂Ωk \ ∂Ω, we have

mf (Ωk) ≤ −
∫
∂Ωk∩∂Ω

g(ν∂Ω,∇Φ) d mf ,∂Ω .

Therefore, from the Cauchy-Schwarz inequality, we derive

mf (Ωk) ≤
∫
∂Ωk∩∂Ω

(
φ′ ◦ ρ∂M) |g(ν∂Ω,∇ρ∂M)| dmf ,∂Ω

≤ mf ,∂Ω (∂Ω) sup
t∈(δ1(Ω),δ2(Ω))

φ′(t) .

By letting k → ∞, we have (8.2). �

REMARK 8.1. In [22], the key points of the proof of Proposition 8.1 in the standard case
where f = 0 and N = n are to use the comparison theorem concerning a generalized Laplacian
of ρ∂M proved in [19], and to apply the approximation theorem in [16] to ρ∂M . We see that
similar theorems also hold in our weighted case. From this point of view, Proposition 8.1 can
be proved in the same way as that in [22].

In the case of N = ∞, we have the following:

PROPOSITION 8.2. Suppose Ric∞f ,M ≥ 0 and Hf ,∂M ≥ 0. Let Ω be a relatively compact
domain in M such that ∂Ω is a smooth hypersurface in M satisfying ∂Ω ∩ ∂M = ∅. Then
(8.4) mf (Ω) ≤ mf ,∂Ω (∂Ω) (δ2(Ω) − δ1(Ω)) ,

where δ1(Ω) and δ2(Ω) are the values defined as (8.1).

PROOF. Define a function φ : [δ1(Ω), δ2(Ω)]→ R by

φ(t) := − t
2

2
+ δ2(Ω)t − δ1(Ω)δ2(Ω) +

δ1(Ω)2

2
,

and put Φ := φ ◦ ρ∂M . By Lemma 3.6, on Int M \ Cut ∂M

(8.5) Δ f ,2 Φ ≥ 1 .

By Lemma 2.5, there exists a sequence {Ωk}k∈N of compact subsets of Ω̄ satisfying that
for every k, the set ∂Ωk is a smooth hypersurface in M except for a null set in (∂Ω,mf ,∂Ω),
satisfying the following: (1) for all k1, k2 ∈ N with k1 < k2, we have Ωk1 ⊂ Ωk2 ; (2) Ω̄ \
Cut ∂M =

⋃
k∈N Ωk; (3) for every k ∈ N, and for almost every point p ∈ ∂Ωk ∩ ∂Ω in

(∂Ω,mf ,∂Ω), there exists the unit outer normal vector for Ωk at p that coincides with the unit



RIGIDITY OF MANIFOLDS WITH BOUNDARY 105

outer normal vector on ∂Ω for Ω at p; (4) for every k ∈ N, on ∂Ωk \ ∂Ω, there exists the unit
outer normal vector field νk for Ωk such that g(νk,∇ρ∂M) ≥ 0.

For the canonical Riemannian volume measure volk on ∂Ωk \ ∂Ω, put mf ,k := e− f |∂Ωk\∂Ω
volk. Let ν∂Ω be the unit outer normal vector on ∂Ω for Ω. By integrating the both sides of

(8.5) on Ωk, and by the Green formula, we have

mf (Ωk) ≤
∫
Ωk

Δ f ,2 Φ d mf = −
∫
∂Ωk\∂Ω

g(νk,∇Φ) d mf ,k −
∫
∂Ωk∩∂Ω

g(ν∂Ω,∇Φ) d mf ,∂Ω .

Since g(νk,∇Φ) ≥ 0 on ∂Ωk \ ∂Ω, we have

mf (Ωk) ≤ −
∫
∂Ωk∩∂Ω

g(ν∂Ω,∇Φ) d mf ,∂Ω .

By the Cauchy-Schwarz inequality,

mf (Ωk) ≤
∫
∂Ωk∩∂Ω

(δ2(Ω) − ρ∂M) |g(ν∂Ω,∇ρ∂M)| d mf ,∂Ω

≤ mf ,∂Ω (∂Ω) (δ2(Ω) − δ1(Ω)) .

Letting k → ∞, we obtain (8.4). �

8.2. Eigenvalue estimates. Let α ∈ (0,∞). The f -Dirichlet α-isoperimetric constant
IDα(M,mf ) of M is defined as

IDα(M,mf ) := inf
Ω

mf ,∂Ω(∂Ω)(
mf (Ω)

)1/α
,

where the infimum is taken over all relatively compact domains Ω in M such that ∂Ω are
smooth hypersurfaces in M satisfying ∂Ω ∩ ∂M = ∅. The f -Dirichlet α-Sobolev constant
S Dα(M,mf ) of M is defined as

S Dα(M,mf ) := inf
φ∈W1,1

0 (M,mf )\{0}

∫
M
‖∇φ‖ d mf(∫

M
|φ|α d mf

)1/α
,

where the infimum is taken over all non-zero functions φ in W1,1
0 (M,mf ).

The following relationship between the isoperimetric constant and the Sobolev constant
has been formally established by Federer and Fleming in [14] (see e.g., [7], [29]), and later
used by Cheeger in [8] for the estimate of the first Dirichlet eigenvalue of the Laplacian.

PROPOSITION 8.3 ([14]). For all α ∈ (0,∞) we have

IDα(M,mf ) = S Dα(M,mf ) .

A proof of Proposition 8.3 has been given in [29] in the case of f = 0 (see Theorem 9.5
in [29]). The method of the proof also works in our weighted setting.
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For N ∈ [2,∞), κ, λ ∈ R, and D ∈ (0, C̄κ,λ], let C(N, κ, λ,D) be a positive constant defined
by

(8.6) C(N, κ, λ,D) := sup
t∈[0,D)

∫ D

t
sN−1
κ,λ (s) ds

sN−1
κ,λ (t)

.

Notice that C(N, κ, λ,∞) is finite if and only if κ < 0 and λ =
√|κ|; in this case,

we have C(N, κ, λ,D) = ((N − 1)λ)−1
(
1 − e−(N−1)λD

)
; in particular, (2C(N, κ, λ,∞))−2 =

((N − 1)λ/2)2.
By using Proposition 8.1, we obtain the following:

THEOREM 8.4. Let M be an n-dimensional, connected complete Riemannian manifold
with boundary, and let f : M → R be a smooth function. Suppose that ∂M is compact. Let
p ∈ (1,∞). For N ∈ [n,∞), we suppose RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥ (N − 1)λ. For D ∈
(0, C̄κ,λ], we assume D(M, ∂M) ≤ D. Then we have

(8.7) μ f ,1,p(M) ≥ ( pC(N, κ, λ,D) )−p ,

where C(N, κ, λ,D) is the constant defined as (8.6).

PROOF. Let Ω be a relatively compact domain in M such that ∂Ω is a smooth hyper-
surface in M satisfying ∂Ω ∩ ∂M = ∅. By Proposition 8.1, we have

mf (Ω) ≤ mf ,∂Ω(∂Ω)C(N, κ, λ,D) .

By Proposition 8.3, we have ID1(M,mf ) = S D1(M,mf ). We obtain S D1(M,mf ) ≥
C(N, κ, λ,D)−1. Therefore, for all φ ∈ W1,1

0 (M,mf )

(8.8)
∫
M
|φ| d mf ≤ C(N, κ, λ,D)

∫
M
‖∇φ‖ d mf .

Let ψ be a non-zero function in W1,p
0 (M,mf ). Put q := p (1 − p)−1. In (8.8), by replacing

φ with |ψ|p, and by the Hölder inequality, we see∫
M
|ψ|p d mf ≤ pC(N, κ, λ,D)

∫
M
|ψ|p−1 ‖∇ψ‖ d mf

≤ pC(N, κ, λ,D)

(∫
M
|ψ|p d mf

)1/q (∫
M
‖∇ψ‖p d mf

)1/p

.

Considering the Rayleigh quotient Rf ,p(ψ), we obtain (8.7). �

In the case of N = ∞, we have the following:

THEOREM 8.5. Let M be a connected complete Riemannian manifold with boundary,
and let f : M → R be a smooth function. Suppose that ∂M is compact. Let p ∈ (1,∞).
Suppose Ric∞f ,M ≥ 0 and Hf ,∂M ≥ 0. For D ∈ (0,∞], we assume D(M, ∂M) ≤ D. Then we
have

(8.9) μ f ,1,p(M) ≥ ( pD )−p .
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PROOF. Let Ω be a relatively compact domain in M such that ∂Ω is a smooth hyper-
surface in M satisfying ∂Ω ∩ ∂M = ∅. Proposition 8.2 implies mf (Ω) ≤ mf ,∂Ω(∂Ω) D. From
Proposition 8.3, we derive S D1(M,mf ) ≥ D−1. Therefore, for all φ ∈ W1,1

0 (M,mf )

(8.10)
∫
M
|φ| dmf ≤ D

∫
M
‖∇φ‖ d mf .

Take a non-zero function ψ in W1,p
0 (M,mf ). Put q := p (1 − p)−1. In (8.10), by replacing

φ with |ψ|p, and by the Hölder inequality, we see∫
M
|ψ|p d mf ≤ p D

(∫
M
|ψ|p d mf

)1/q (∫
M
‖∇ψ‖p d mf

)1/p

.

Considering the Rayleigh quotient Rf ,p(ψ), we obtain (8.9). �

Now, we prove Theorem 1.8.

PROOF OF THEOREM 1.8. Suppose that ∂M is compact. Let p ∈ (1,∞). Let κ < 0 and
λ :=

√|κ|. For N ∈ [n,∞), we suppose RicNf ,M ≥ (N − 1)κ and Hf ,∂M ≥ (N − 1)λ. We have

C(N, κ, λ,D) = ((N − 1)λ)−1
(
1 − e−(N−1)λD

)
.

The right hand side is monotone increasing as D→ ∞. From Theorem 8.4, we derive (1.10).
Assume that the equality in (1.10) holds. By Theorem 8.4, we have D = ∞. Since ∂M is

compact, M is non-compact. By Corollary 6.1, (M, dM) is isometric to ([0,∞) × κ,λ∂M, dκ,λ),
and for all x ∈ ∂M and t ∈ [0,∞) we have ( f ◦ γx)(t) = f (x) + (N − n)λt. This completes the
proof of Theorem 1.8. �
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