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A COUPLING OF BROWNIAN MOTIONS IN THE L0-GEOMETRY
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Abstract. Under a complete Ricci flow, we construct a coupling of two Brownian
motions such that their L0-distance is a supermartingale. This recovers a result of Lott [J. Lott,
Optimal transport and Perelman’s reduced volume, Calc. Var. Partial Differential Equations 36
(2009), no. 1, 49–84.] on the monotonicity of L0-distance between heat distributions.

1. Introduction. Since Perelman’s pioneering article [21], there are several attempts
to study Ricci flow in connection with heat distributions. As one of them, J. Lott [18] provides
several monotonicity formulae from the viewpoint of optimal transportation by extending
Topping’s approach [20, 25]. His argument is based on the Eulerian calculus, which can be
rigorous if everything is sufficiently regular. On the other hand, sometimes it is not easy to
verify the required regularity. For instance, we must take much care on it if the manifold is
non-compact.

Among results in [18], Lott introducedL0-functional on the space of (space-time) curves
and the associated L0-distance as an analog of L-distance in [21, 25]. He proved the mono-
tonicity of transportation cost given in terms of L0-distance between heat distributions. By
using it, he gave an alternative proof of the monotonicity of F -functional in [21]. The main
purpose of this paper is to prove the monotonicity of L0-transportation cost by a probabilistic
approach using a coupling of Brownian motions. As an advantage of our approach, we just
require much weaker regularity assumptions and we can extend the result to more general
transportation costs.

The organization of this paper is as follows. In the next subsection, we will state our
framework and results more precisely. We also review Lott’s result on the monotonicity of
L0-transportation cost there. In Subsection 1.2, we give a review of historical background
and related known results in more detail. All necessary calculations, formulae and properties
on L0 are summarized in Section 2. The reader, who wants to grasp only heuristics or a
rough story of this paper, can skip Section 2 except for Proposition 2.8, where we give a
Hessian estimate for the L0-distance. The most part of Section 2 (e.g., the L0-cut locus, the
L0-exponential and so on) are analogous to ones for Riemannian distance or L-distance.

In Sections 3 and 4, we will construct a coupling of g(τ )-Brownian motions which sat-
isfies a requirement of our main theorem (Theorem 1.1 below). In Section 3 we will discuss
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it under a strong regularity assumption on L0. More precisely, we assume that L0-cut locus
is empty there (see Section 2 for the definition of L0-cut locus; It is a concept analogous to
the cut locus for the Riemannian distance function). While it is very restrictive, we believe
that the argument given in that section will be insightful and that it helps us to understand
the rigorous argument given in Section 4. We employ an approximation of Brownian motions
by geodesic random walks there, as in the previous result [15] (see Subsection 1.2 for known
results as well as the reason why we choose it).

1.1. Framework and main results. Let (g(t))0≤t≤T be a Ricci flow on a connected
manifold M without boundary with d := dimM ≥ 2. That is, g(t) solves the following
evolution equation:

(1)
∂

∂t
g(t) = −2Ricg(t) .

In the sequel, we always assume that (M, g(t)) is a complete Riemannian manifold for each
t .

For stating Lott’s result and ours, we introduce L0-functional and some notions concern-
ing with it. Under the Ricci flow g(t) on d-dimensional manifold M , L0-functional is given
by

L0(γ ) := 1

2

∫ t ′′

t ′

{|γ̇ (t)|2g(t) + Rg(t)(γ (t))
}
dt

for each piecewise smooth curve γ : [t ′, t ′′] → M , where Rg(t) is the scalar curvature with
respect to g(t). As a minimal value of L0-functional with the fixed endpoints (in space-time),
we define L0-distance L0. That is, for 0 ≤ t ′ < t ′′ ≤ T and m′,m′′ ∈ M , Lt

′,t ′′
0 (m′,m′′) is

given by

L
t ′,t ′′
0 (m′,m′′) := inf

γ
L0(γ ) , m′, m′′ ∈ M ,

where the infimum is taken over piecewise smooth curves γ : [t ′, t ′′] → M such that γ (t ′) =
m′ and γ (t ′′) = m′′.

We denote by P(M) the space of Borel probability measures on M and P∞(M) the
subspace of P(M) whose element has smooth density. For 0 ≤ t ′ < t ′′ ≤ T and μ′, μ′′ ∈
P(M), the (optimal) L0-transportation cost Ct

′,t ′′
0 (μ′, μ′′) is defined by

C
t ′,t ′′
0 (μ′, μ′′) := inf

π∈Π(μ′,μ′′)

∫
M×M

L
t ′,t ′′
0 (m′,m′′)π(dm′, dm′′) ,

where Π(μ′, μ′′) is the set of couplings of μ′ and μ′′.
In this framework, Lott proved the following: Assume that M is closed. If c′, c′′ :

[t0, t1] → P∞(M) are solutions to the backward heat equation

(2)
dμt
dt
= −�g(t)μt ,
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and if they satisfy some technical assumptions (see Corollary 5 in [18] for details, although
we will mention it partially in the sequel), then

(3) u 	→ C
t ′+u,t ′′+u
0

(
c′(t ′ + u), c′′(t ′′ + u))

is non-decreasing (Proposition 13 in [18]).
Let us turn to state our result. Until the end of the paper, we fix two time intervals

0 ≤ t ′0 < t ′1 ≤ T and 0 ≤ t ′′0 < t ′′1 ≤ T
with t ′0 < t ′′0 and t ′1 − t ′0 = t ′′1 − t ′′0 =: S. We denote by (t ′, t ′′) the coordinate on{

(t ′, t ′′) ∈ [t ′0, t ′1] × [t ′′0 , t ′′1 ] : t ′ < t ′′
}
.

Since it looks awkward to work with backward heat equation (2), we shall reverse the
time by setting

τ ′ = τ ′(s) := t ′1 − s and τ ′′ = τ ′′(s) := t ′′1 − s
for 0 ≤ s ≤ S. By g(τ ′)-Brownian motion (resp. g(τ ′′)-Brownian motion), we mean a time-
inhomogeneous diffusion process on M associated with �g(τ ′(s)) (resp. �g(τ ′′(s))), where s
stands for the time-parameter of the process.

THEOREM 1.1. Assume that (g(t))0≤t≤T satisfies

inf
(t,m)∈[0,T ]×M

inf
V∈TmM‖V ‖g(t)=1

Ricg(t)(V , V ) > −∞ .(4)

Then for each (m′,m′′) ∈ M × M , there exists a coupling of g(τ ′)-Brownian motion X =
(Xs)0≤s≤S starting from m′ and g(τ ′′)-Brownian motion Y = (Ys)0≤s≤S starting from m′′
such that

s 	→ L
τ ′(s),τ ′′(s)
0 (Xs, Ys)

is a supermartingale and the map

(m′,m′′) 	→ the law of (X, Y ) with (X0, Y0) = (m′,m′′)
is measurable.

Theorem 1.1 provides us a probabilistic interpretation of the monotonicity of (3).
That is, roughly speaking, we can show the monotonicity by taking an expectation of

L
τ ′(s),τ ′′(s)
0 (Xs, Ys ). Actually, we can say more: Let ϕ : R → R be concave and non-

decreasing. We define a new transportation cost Ct
′,t ′′

0,ϕ (μ
′, μ′′) by

C
t ′,t ′′
0,ϕ (μ

′, μ′′) := inf
π∈Π(μ′,μ′′)

∫
M×M

ϕ
(
L
t ′,t ′′
0 (m′,m′′)

)
π(dm′, dm′′).

COROLLARY 1.2. Assume that our Ricci flow satisfies the condition (4). Then for
any two families c(t ′) and c(t ′′) of probability measures satisfying (2), Ct

′+s,t ′′+s
0,ϕ

(
c′(t ′ +

s), c′′(t ′′ + s)) is nondecreasing in s,



142 T. AMABA AND K. KUWADA

Note that Lott’s result can be regarded as a special case of Corollary 1.2, that is, the
case ϕ(x) = x and M is compact. Moreover, in order to make Otto’s calculus rigorous, Lott
further assumed that the curves c′, c′′ and the “E0-minimizing geodesics” (see (4.9) in [18]
for the definition of E0) which interpolate c′(t ′0 + s) and c′′(t ′′0 + s) lie in P∞(M). In [18], it
is claimed that the last extra condition can be relaxed by giving an alternative proof which is
analogous to Topping’s approach in [25]. In this paper, we give a proof based on the theory
of stochastic calculus, and we do not only relax the extra regularity assumption but weaken
the compactness assumption on M to the curvature condition (4). Recall that, under a well-
known sufficient condition to the unique existence of a Ricci flow in [4, 23], the condition
(4) is automatically satisfied. As a matter of fact, stochastic calculus is already used in [15]
to extend Topping’s result [25] (see below for more details). Thus our result provides an
additional evidence that stochastic calculus is an efficient tool to study this sort of problems.

From technical point of view, some people might think that our result is not interesting
by the reason that our argument goes along the same way as the one in [15]. We believe
that we can study geometric analysis of Ricci flow deeper from stochastic analytic techniques
combined with optimal transport, and that our result would support a further development at
some stage. For instance, as a by-product of our approach, we have established L0-geometry,
an analog of Riemannian geometry associated with L0-functional instead of energy functional
of curves, as a counterpart of L-geometry. Though it is similar to L-geometry, we think
that making a rigorous framework of L0-geometry would contribute a further study of L0-
functional to some extent.

1.2. Historical background and related results. Recall that the Ricci flow is a solu-
tion to the evolution equation (1). This equation was introduced by Hamilton in [9] and used
to find an Einstein metric (i.e., a metric g such that Ric(g) = const.g) by deforming any given
Riemannian metric g0 with positive Ricci curvature on a compact 3-manifold.

Inspired by quantum field theory, such as nonlinear σ -models, Perelman [21] interprets
the Ricci flow as a gradient flow; At least formally, the Ricci flow can be regarded as the
gradient flow of the so-called Perelman’s F -functional. This interpretation naturally leads
to the monotonicity formula for F : The functional F is nondecreasing along the Ricci flow.
Additionally, the so-called W-functional is also shown to be non-decreasing along the Ricci
flow. As is well-known, these monotonicity formulae are effectively used in the resolution of
Thurston’s geometrization conjecture by Perelman.

Recently, alternative approaches to those formulae have been initiated on the basis of
optimal transportation. For the monotonicity of W , Topping [25] gave an alternative proof
by using the L-transportation cost via so-called Lagrangian calculus. More precisely, he con-
sider the optimal transportation cost whose cost function is given by a renormalization of
Perelman’s L-distance. He proved the monotonicity of this transportation cost between (time-
rescaled) heat distributions and derived the monotonicity of W-functional by taking a sort of
time-derivative of the optimal cost. For studying the monotonicity of F , Lott [18] showed the
monotonicity of (3) as explained in Subsection 1.1. Then he recovered the monotonicity of
F -functional (Corollary 6 in [18]) again by taking a sort of time-derivative. As mentioned,
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Lott’s argument is based on so-called Eulerian calculus (see e.g. [26] for a comparison with
Lagrangian calculus).

Such monotonicity formulae for optimal transportation costs between heat distributions
are also studied in a slightly different context. For instance, on a complete Riemannian man-
ifold with a fixed metric, the same sort of monotonicity of Lp-Wasserstein distance is equiv-
alent to non-negative Ricci curvature or an Lq -gradient estimate for the heat semigroup (see
[22] and references therein). For time-dependent metrics, the same sort of monotonicity of
L2-Wasserstein distance is shown to be equivalent to the property that the metric evolves as
a super Ricci flow by McCann and Topping [20]. On one hand, the latter result is a natural
extension of the former one since the latter recovers the former when the metric does not de-
pend on time. On the other hand, this result can be regarded as a primitive form of the results
[18, 25] (This observation is also addressed in [18, 25] themselves). These former results in-
dicate that monotonicity formulae in the optimal transportation should be connected with the
geometry of the space in a deeper way and that more studies are expected in this direction.

From its definition, optimal transportation cost is strongly related with the notion of
coupling of random variables or stochastic processes. Thus it is natural to consider the above-
mentioned problem by using a coupling method of stochastic processes. Even only in stochas-
tic differential geometry, there are several results in coupling method. Traditionally, they paid
much attention to estimating the time that two particle meets, while it does not match with our
present purpose (see [7, 11, 17]; see [12, 27] also). By using a similar idea as ones in those
studies, we can construct a coupling by parallel transport on a complete Riemannian mani-
fold with a lower Ricci curvature bound and it is tightly connected with the monotonicity of
Wasserstein distances (see [22] and references therein). Extensions of those kind of coupling
to the time-dependent metric case are achieved by Kuwada [16] and by Arnaudon, Coulibaly
and Thalmaier [1]. A typical example of the time-dependent metric is backward (super) Ricci
flow. To construct a coupling, the former used an approximation by coupled geodesic random
walks and the latter construct a one-parameter family of coupled particles which consists of
a string and moves continuously as time evolves. As a result, they recover the monotonicity
formula in [20] and extend it to non-compact spaces. Topping’s monotonicity formula is also
proved and extended by Kuwada and Philipowski [15] and discussed later by Cheng [5]. The
former used the same method as in [16] and the latter uses an argument studied in [27].

In all those couplings, we are interested in the behavior of distance-like functions
(e.g. distance itself or L-distance) between a coupling of diffusion processes (Xs, Ys). In
those cases, the main technical difficulty arises at singular points of the functions (e.g. cut
locus). Roughly speaking, there are two obstructions: Firstly, the construction of the coupling
itself depends on a regularity of the function. Secondly, we can not apply Itô’s formula di-
rectly when the coupled process lies on the singular points. Thus we require some indirect
arguments as mentioned above to overcome these obstructions. In this paper, we follow the
argument used in [15, 16]. More precisely, we consider a coupling of geodesic random walks
(Xεs , Y

ε
s ). The construction of it requires less regularity and this fact works well to avoid the

first obstruction. Then, instead of Itô’s formula for Lτ
′(s),τ ′′(s)

0 (Xs, Ys), we can employ a “dif-
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ference” (rather than differential) inequality for Lτ
′(s),τ ′′(s)

0 (Xεs , Y
ε
s ) at each approximation

step ε (see Proposition 4.2), up to an well-controlled error. Along this idea, we can avoid the
second obstruction. Since geodesic random walks converge to (time-inhomogeneous) Brow-
nian motions, we can obtain an estimate for a coupling of Brownian motions as the limit. For
those who are interested in other approaches, it is worth mentioning that a comparison with
other approaches is discussed in [15, 16].

2. L0-geometry along Ricci flow. In the rest of the paper, we always assume (4).
2.1. Differential calculus of L0 and L0. The main aim in this subsection is to give

an estimate of (a contraction of) the Hessian for Lt
′,t ′′

0 , which we will use in the subsequent
sections. Let γ : [t ′, t ′′] → M be a piecewise smooth curve. For each variation of γ with
a variational vector field V , we denote by (δVL0)(γ ) and (δV δVL0)(γ ) the first and second
variation of L0. We omit all proofs in this subsection except for Proposition 2.8, because all
proofs are routine (see e.g., [13, Sections 17, 18 and 19]).

PROPOSITION 2.1. For any smooth variation (not being necessarily proper) of a
smooth curve γ : [t ′, t ′′] → M with a variational vector field V , we have

(δVL0)(γ ) = 〈V (t), γ̇ (t)〉g(t)
∣∣∣t=t

′′

t=t ′ +
1

2

∫ t ′′

t ′
〈Gt (γ ), V (t)〉g(t)dt

where Gt (γ ) := ∇g(t)Rg(t) − 2∇g(t)
γ̇ (t )γ̇ (t) + 4Ricg(t)(γ̇ (t), ·). In particular, (δVL0)(γ ) is

independent of the choice of a variation which realizes the variational vector field V as its
infinitesimal variation. Hence we call

(5) ∇g(t)
γ̇ (t )γ̇ (t)−

1

2
∇g(t)Rg(t) − 2Ricg(t)(γ̇ (t), ·) = 0

the L0-geodesic equation, where the Ricg(t)(γ̇ (t), ·) is naturally understood as a (1, 0)-tensor
by the metric g(t). We call any solution of L0-geodesic equation an L0-geodesic.

PROPOSITION 2.2. Assume that L0 is smooth around (t ′,m′; t ′′,m′′) and that there
exists a unique L0-minimizing curve γ joining (t ′,m′) and (t ′′,m′′). Then we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂L
t ′,t ′′
0

∂t ′
(m′,m′′) = −1

2

{|γ̇ (t ′)|2g(t ′) + Rg(t ′)(m
′)
}−∇g(t ′)

γ̇ (t ′)L
t ′,t ′′
0 (·,m′′) ,

∂L
t ′,t ′′
0

∂t ′′
(m′,m′′) = 1

2

{|γ̇ (t ′′)|2g(t ′′) + Rg(t ′′)(m
′′)
}−∇g(t ′′)

γ̇ (t ′′)L
t ′,t ′′
0 (m′, ·) .

PROPOSITION 2.3. Under the assumption in Proposition 2.2, we have

∇g(t ′)
m′ L

t ′,t ′′
0 (·,m′′) = −γ̇ (t ′) and ∇g(t ′′)

m′′ L
t ′,t ′′
0 (m′, ·) = γ̇ (t ′′) .
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In particular, by combining with Proposition 2.2,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂L
t ′,t ′′
0

∂t ′
(m′,m′′) = 1

2

{|γ̇ (t ′)|2g(t ′) − Rg(t ′)(m
′)
}
,

∂L
t ′,t ′′
0

∂t ′′
(m′,m′′) = −1

2

{|γ̇ (t ′′)|2g(t ′′) − Rg(t ′′)(m
′′)
}
.

We denote the curvature tensor with respect to g(t) by Rg(t). It appears in the following
second variation formula for L0. For a piecewise smooth curve γ : [t ′, t ′′] → M and two
vector fields V , W along γ , we define the L0-index form L0Iγ (V,W) as follows:

L0Iγ (V,W) : =
∫ t ′′

t ′

{〈∇g(t)
γ̇ (t )V (t),∇g(t)

γ̇ (t )W(t)〉g(t) + 〈Rg(t)(V (t), γ̇ (t))W(t), γ̇ (t)〉

+1

2
HessRg(t)(V (t),W(t)) + (∇g(t)

V Ricg(t))(γ̇ (t),W(t))

+(∇g(t)
W Ricg(t))(γ̇ (t), V (t))− (∇g(t)

γ̇ (t )Ricg(t))(V (t),W(t))
}

dt .

By definition, L0Iγ (V,W) is symmetric in V and W .

PROPOSITION 2.4. For any smooth variation (not being necessarily proper) of an L0-
geodesic γ : [t ′, t ′′] → M with a variational vector field V , we have

(δV δVL0)(γ ) =
〈∇g(t)
V (t)V (t), γ̇ (t)

〉
g(t)

∣∣∣t=t
′′

t=t ′ + L0Iγ (V, V ) .(6)

REMARK 2.5. In (6), the second term on the right hand side is independent of the
choice of a variation of γ which realizes the variational vector field V as its infinitesimal
variation. On the other hand, since γ is L0-geodesic, the first term can be written as follows:

〈∇g(t)
V (t)V (t), γ̇ (t)

〉
g(t)

∣∣∣t=t
′′

t=t ′ = (δ∇V VL0)(γ ) .

The next formula is derived from Proposition 2.4.

PROPOSITION 2.6. Keeping the notations in Proposition 2.4, we have an alternative
form of the second variational formula:

(δV δVL0)(γ )=
〈∇g(t)
V (t)V (t), γ̇ (t)

〉∣∣t=t ′′
t=t ′ + Ricg(t)(V (t), V (t))

∣∣∣t=t
′′

t=t ′

+1

2

∫ t ′′

t ′

{
Hessg(t)Rg(t)(V (t), V (t))+ 2

〈Rg(t)(V (t), γ̇ (t))V (t), γ̇ (t)
〉
g(t)

−2
dRicg(t)

dt
(V (t), V (t))

+4
[(∇g(t)

V (t)Ricg(t)
)
(V (t), γ̇ (t))− (∇g(t)

γ̇ (t )Ricg(t)
)
(V (t), V (t))

]

+2
∣∣∇g(t)
γ̇ (t )V (t)− Ricg(t)(V (t), ·)

∣∣2
g(t) − 2|Ricg(t)(V (t), ·)|2g(t)

}
dt .
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To deduce an estimate of (a contraction of) the Hessian forLt
′,t ′′

0 , we need a testing vector
field. For this, we introduce the notion of space-time parallel transport. This notion will be
used also to construct a coupling of two Brownian motions in subsequent sections.

DEFINITION 2.7 (Space-time parallel transport along an L0-minimizing curve). Let
m′, m′′ ∈ M and t ′ < t ′′. Let γ be an L0-minimizing curve joining (t ′,m′) and (t ′′,m′′).
We define the space-time parallel transport //t

′,t ′′
m′,m′′ : Tm′M → Tm′′M along γ as

//
t ′,t ′′
m′,m′′(v) := V (t ′′)

by solving the linear differential equation
{
∇g(t)
γ̇ (t )V (t) = Ricg(t)(V (t), ·) , t ′ ≤ t ≤ t ′′ ,
V (t ′) = v .

One can check easily that //t
′,t ′′
m′,m′′ gives a linear isometry from (Tm′M, g(t ′)) to (Tm′′M, g(t ′′)).

Note that the space-time parallel transport can be defined as an isometry for more general
time-dependent metrics; see [15, Remark 5].

The main result in this subsection is the following.

PROPOSITION 2.8. Let u′1, . . . , u′d be an orthonormal basis of (Tm′M, g(t ′)). Under
the assumption in Proposition 2.2, Then it holds that

d∑
i=1

[
Hessg(t ′)⊕g(t ′′)Lt

′,t ′′
0

](
u′i ⊕ //t

′,t ′′
m′,m′′u

′
i , u
′
i ⊕ //t

′,t ′′
m′,m′′u

′
i

)

≤
{∂Lt ′,t ′′0

∂t ′
+ ∂L

t ′,t ′′
0

∂t ′′
}
(m′,m′′) .

For the proof, we gather formulae for geometric quantities along the Ricci flow. For the
proof, see [24, equation (2.1.9) and Subsection 2.5].

PROPOSITION 2.9. Along the Ricci flow dg
dt (t) = −2Ricg(t), one has

(i)
∂Rg(t)

∂t
= �g(t)Rg(t) + 2|Ricg(t)|2g(t),

(ii) tr
dRicg(t)

dt
= �g(t)Rg(t),

(iii) contracted Bianchi identity: tr
(∇Ricg(t)

) = 1

2
∇g(t)Rg(t).

Proof of Proposition 2.8. Let γ be an L0-minimizing curve from (t ′,m′) to (t ′′,m′′).
By Proposition 2.3, Proposition 2.9 and (5), we see

{
∂L

t ′,t ′′
0

∂t ′
+ ∂L

t ′,t ′′
0

∂t ′′

}
(m′,m′′)
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= 1

2

∫ t ′′

t ′

{
�g(t)Rg(t) + 2|Ricg(t)|2g(t) − 2Ricg(t)(γ̇ (t), γ̇ (t))

}
dt .

Next we compute and give an estimate for (a contraction of) the Hessian. For each
i = 1, 2, . . . , d , we define a system of vector fields (Ai)di=1 along γ by

Ai(t) := //t ′,tm′,γ (t)u′i for t ′ ≤ t ≤ t ′′
and we take a variation fi : (−ε0, ε0)× [t ′, t ′′] → M of γ (ε0 > 0 being small enough) such
that

(a) fi(0, ·) = γ ,

(b) fi has Ai as its variational field:

Ai(0, t) = Ai(t) t ′ ≤ t ≤ t ′′
where Ai(ε, t) := dfi

dε (ε, t) is the transversal vector field, and

(c) two transversal curves fi(·, t ′), fi(·, t ′′) : (−ε0, ε0) → M are g(t ′)-geodesic and
g(t ′′)-geodesic respectively at ε = 0:

∇g(t ′)
Ai (t ′)Ai(·, t ′) = 0 and ∇g(t ′′)

Ai (t ′′)Ai(·, t ′′) = 0.

We further set

�i(ε) := Lt ′,t ′′0

(
fi(ε, t

′), fi(ε, t ′′)
) ≤ L0(fi(ε, ·)) =: �̂i (ε) .

It is easy to see that �′′i (0) ≤ �̂i′′(0). Since

∇g(t ′)⊕g(t ′′)
Ai (t ′)⊕Ai(t ′′)Ai(·, t ′)⊕ Ai(·, t ′′) =

{∇g(t ′)
Ai (t ′)Ai(·, t ′)

}⊕ {∇g(t ′′)
Ai(t ′′)Ai(·, t ′′)

} = 0 ,

we can compute the Hessian as[
Hessg(t ′)⊕g(t ′′)Lt

′,t ′′
0

](
u′i ⊕ //t

′,t ′′
m′,m′′u

′
i , u
′
i ⊕ //t

′,t ′′
m′,m′′u

′
i

)
= [Hessg(t ′)⊕g(t ′′)Lt

′,t ′′
0

](
Ai(t

′)⊕ Ai(t ′′), Ai(t ′)⊕ Ai(t ′′)
)

= Ai(t ′)⊕ Ai(t ′′)
{(
Ai(·, t ′)⊕Ai(·, t ′′)

)
L
t ′,t ′′
0

}

= d2

dε2

∣∣∣∣
ε=0
L
t ′,t ′′
0

(
fi(ε, t

′), fi(ε, t ′′)
) = �′′i (0) ≤ �̂i′′(0) = (δAi δAiL0)(γ ) .

By the second variational formula (Proposition 2.6), we have

(δAi δAiL0)(γ )

= Ricg(t)(Ai(t), Ai(t))
∣∣t=t ′′
t=t ′

+ 1

2

∫ t ′′

t ′

{
Hessg(t)Rg(t)(Ai(t), Ai(t))

+ 2
〈Rg(t)(Ai(t), γ̇ (t))Ai(t), γ̇ (t)

〉
g(τ ) − 2

dRicg(t)
dt

(Ai(t), Ai(t))

+ 4
[(∇g(t)

Ai (t)
Ricg(t)

)
(Ai(t), γ̇ (t))−

(∇g(t)
γ̇ (t )

Ricg(t)
)
(Ai(t), Ai(t))

]
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+ 2
∣∣∇g(t)
γ̇ (t )Ai(t)− Ricg(t)(Ai(t), ·)

∣∣2
g(t) − 2|Ricg(t)(Ai(t), ·)|2g(t)

}
dt .

Hence, by taking the sum over i = 1, 2, . . . , d with formulae in Proposition 2.9, we have
d∑
i=1

[
Hessg(t ′)⊕g(t ′′)Lt

′,t ′′
0

](
u′i ⊕ //t

′,t ′′
m′,m′′u

′
i , u
′
i ⊕ //t

′,t ′′
m′,m′′u

′
i

)

≤ Rg(t)(γ (t))

∣∣∣t=t
′′

t=t ′

+1

2

∫ t ′′

t ′

{
�g(t)Rg(t) − 2Ricg(t)(γ̇ (t), γ̇ (t))− 2�g(t)Rg(t)

+4
[1

2
∇g(t)
γ̇ (t )Rg(t) −∇g(t)

γ̇ (t )Rg(t)

]
− 2|Ricg(t)|2g(t)

}
dt

= 1

2

∫ t ′′

t ′

{
2�g(t)Rg(t) + 4|Ricg(t)|2g(t) + 2∇g(t)

γ̇ (t )
Rg(t)

}
dτ

+1

2

∫ t ′′

t ′

{
−�g(t)Rg(t) − 2Ricg(t)(γ̇ (t), γ̇ (t))− 2∇g(t)

γ̇ (t )
Rg(t) − 2|Ricg(t)|2g(t)

}
dt

= 1

2

∫ t ′′

t ′

{
�g(t)Rg(t) + 2|Ricg(t)|2g(t) − 2Ricg(t)(γ̇ (t), γ̇ (t))

}
dt ,

which is equal to
{
∂L

t ′,t ′′
0
∂t ′ +

∂L
t ′,t ′′
0
∂t ′′

}
(m′,m′′). �

2.2. Some estimates on relatively compact open subsets. We begin with estimates
which hold globally under the curvature assumption (4). Let K− > 0 be a constant satisfying
−K−g(t) ≤ Ricg(t) for all t ∈ [0, T ]. Recall that dimM = d and our Ricci flow is defined
on [0, T ]. Given any metric g , we denote by ρg the corresponding Riemannian distance.

PROPOSITION 2.10.

(i) Comparison of metric g(t) between two different times:

g(t) ≤ e2K−(t−s)g(s) for 0 ≤ s ≤ t ≤ T .

(ii) Comparison of distance ρg(t) between two different times:

ρg(t)(x, y) ≤ eK−(t−s)ρg(s)(x, y)
for any x, y ∈ M and 0 ≤ s ≤ t ≤ T .

(iii) Lower bound for L0: For 0 ≤ t ′ < t ′′ ≤ T , m′, m′′ ∈ M and a piecewise C1 curve
γ : [t ′, t ′′] → M with γ (t ′) = m′ and γ (t ′′) = m′′,

L0(γ ) ≥ 1

2
e−K−(t ′′−t ′)

∫ t ′′

t ′
|γ̇ (t)|2g(t ′′)dt −

dK−
2
(t ′′ − t ′).

In particular,

L
t ′,t ′′
0 (m′,m′′) ≥ 1

2
e−K−(t ′′−t ′)

ρg(t ′′)(m′,m′′)2

t ′′ − t ′ − dK−
2
(t ′′ − t ′) ,
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inf
(t ′,m′;t ′′,m′′)∈([0,T ]×M)2

t ′<t ′′

L
t ′,t ′′
0 (m′,m′′) ≥ −dK−T

2
.

Although the proof is parallel to the corresponding statements in L-geometry (especially
(i) and (ii) are irrelevant to L or L0), we give it for completeness.

PROOF. (i) Since ∂g
∂t
= −2Ricg ≤ 2K−g , apply Gronwall’s lemma.

(ii) Obviously follows from (i).
(iii) Take a piecewise C1-curve γ : [t ′, t ′′] → M with γ (t ′) = m′ and γ (t ′) = m′′.

Then, by the choice of K− and (ii),

L0(γ )≥ 1

2

∫ t ′′

t ′
|γ̇ (t)|2g(t)dt +

dK−
2

≥ 1

2
e−K−(t ′′−t ′)

∫ t ′′

t ′
|γ̇ (t)|2g(t ′′)dt +

dK−
2

≥ 1

2
e−K−(t ′′−t ′)

ρg(t ′′)(m′,m′′)2

t ′′ − t ′ + dK−
2
.

Thus the conclusion holds since γ is arbitrary. �

PROPOSITION 2.11. Let m′,m′′ ∈ M , 0 ≤ t ′ < t ′′ ≤ T and let γ : [t ′, t ′′] → M be
an L0-geodesic joining (t ′,m′) to (t ′′,m′′). For each curve η : [t ′, t ′′] → M , put

K+(η) := inf
{
K > 0 : Ricg(t) ≤ Kg(t) along η(t)

}
,

C(η) := sup
t∈[t ′,t ′′]

|∇g(t)Rg(t)(η(t))|2g(t) .

Then we have the following:

(i) Upper bound for L0: For each g(t ′)-geodesic c : [t ′, t ′′] → M with c(t ′) = m′ and
c(t ′′) = m′′,

L
t ′,t ′′
0 (m′,m′′) ≤ ρg(t ′)(m′,m′′)2

2(t ′′ − t ′)2
e2K−(t ′′−t ′) − 1

2K−
+ dK+(c)(t

′′ − t ′)
2

.

(ii) Bound of d
dt |γ̇ (t)|2g(t): For each t ∈ [t ′, t ′′], we have

−
(

2K− + 1

2

)
|γ̇ (t)|2g(t) −

C(γ )

2
≤ d

dt
|γ̇ (t)|2g(t) ≤

(
2K+(γ )+ 1

2

)
|γ̇ (t)|2g(t) +

C(γ )

2
.

(iii) Comparison of |γ̇ (t)|2g(t) between different times: There are constants ci > 0 (i =
1, 2, 3, 4) such that, for t ′ ≤ u′ ≤ u′′ ≤ t ′′,

|γ̇ (u′′)|2g(u′′) ≤ c1|γ̇ (u′)|2g(u′) + c2,

|γ̇ (u′)|2g(u′) ≤ c3|γ̇ (u′′)|2g(u′′) + c4

where the constants depend only on T , K−, K+(γ ) and C(γ ).
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(iv) Bounding the speed of L0-minimizing curve at some time by L0: If the curve γ is
L0-minimizing, there is t∗ ∈ (t ′, t ′′) such that

1

2
|γ̇ (t∗)|2g(t∗) ≤

L
t ′,t ′′
0 (m′,m′′)
t ′′ − t ′ + dK−

2
.

PROOF. (i) The proof is similar to Proposition 2.10(iii). By Proposition 2.10(i), we see
that

L
t ′,t ′′
0 (m′,m′′) ≤ L0(c) ≤ 1

2

∫ t ′′

t ′

{
e2K−(t−t ′)|ċ(t)|2g(t ′) + dK+(c)

}
dt .

Since |ċ(t)|g(t ′) ≡ ρg(t ′)(m′,m′′)
t ′′−t ′ , the claim holds.

(ii) Using the L0-geodesic equation,

d

dt
|γ̇ (t)|2g(t) = −2Ricg(t)(γ̇ (t), γ̇ (t))+ 2

〈∇g(t)
γ̇ (t )γ̇ (t), γ̇ (t)

〉
g(t)

= 2Ricg(t)(γ̇ (t), γ̇ (t))+
〈∇g(t)Rg(t), γ̇ (t)

〉
g(t)

≤ 2Ricg(t)(γ̇ (t), γ̇ (t))+
|∇g(t)Rg(t)|2g(t) + |γ̇ (t)|2g(t)

2

≤
(

2K+(γ )+ 1

2

)
|γ̇ (t)|2g(t) +

C(γ )

2
.

The lower bound d
dt |γ̇ (t)|2g(t) ≥ −(2K− + 1

2 )|γ̇ (t)|2g(t) − C(γ )
2 can be obtained similarly.

(iii) By (ii), Gronwall’s lemma implies

|γ̇ (u′′)|2g(u′′)
≤ e(2K+(γ )+

1
2 )(u

′′−u′)|γ̇ (u′)|2g(u′) +
C(γ )

4K+(γ )+ 1

(
e(2K+(γ )+

1
2 )(u

′′−u′) − 1
)
.

The other is obtained similarly.
(iv) By the mean value theorem, we can take t∗ ∈ (t ′, t ′′) such that

|γ̇ (t∗)|2g(t∗) =
1

t ′′ − t ′
∫ t ′′

t ′
|γ̇ (t)|2g(t)dt .

Since γ is L0-minimizing, the right hand side is dominated by

L
t ′,t ′′
0 (m′,m′′)
t ′′ − t ′ − 1

2(t ′′ − t ′)
∫ t ′′

t ′
Rg(t)(γ (t))dt ≤ L

t ′,t ′′
0 (m′,m′′)
t ′′ − t ′ + dK−

2
.

�

The following is a starting point of local estimates in this subsection.

LEMMA 2.12. For each δ > 0 and a relatively compact open subset M0 ⊂ M , there
exists a relatively compact open subset B ⊃ M0 such that, for each m′,m′′ ∈ M0 and
t, t ′, t ′′ ∈ [0, T ] with t ′′ − t ′ ≥ δ, all L0-minimizing curves joining (t ′,m′) and (t ′′,m′′)
and all g(t)-length-minimizing curves joiningm′ and m′′ are contained in B.
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PROOF. Since M0 is relatively compact, there is a compact B0 with M0 ⊂ B0 ⊂ M

which contains all g(0)-geodesics joining any pair of points in M0. Let us define K+ =
K+(B0) and R1 := R1(B0) by

K+(B0) := inf
{
K > 0 : Ricg(t) ≤ Kg(t) on B0

}
,

R1(B0) := sup
m′,m′′∈M0

{
ρg(0)(m

′,m′′)2

2δ2

eT − 1

2K−
+ dK+(B0)T

2

}
.

Then, by Proposition 2.11(i) and Proposition 2.10(ii), Lt
′,t ′′

0 (m′,m′′) ≤ R1 holds for all 0 ≤
t ′ < t ′′ ≤ T with t ′′ − t ′ ≥ δ and m′,m′′ ∈ M0. Let R2 = R2(B0) be defined as follows:

R2(B0) := 2T eK−T
(
R1 + dK−T

2

)
.

Take a relatively compact open B with B1 ⊂ B ⊂ M such that ρg(T )(M0, B
c) >

√
R2/2.

Then, for any curve γ : [t ′, t ′′] → M with γ (t ′), γ (t ′′) ∈ M0 and γ ([t ′, t ′′]) ∩ Bc �= ∅,
Proposition 2.10(iii) and Proposition 2.10(i) yields L0(γ ) > R1. Thus B enjoys the claimed
property on L0-minimizing curves. By a similar argument, we can prove the correspond-
ing property for g(t)-geodesics by using Proposition 2.10(ii). Thus, the assertion holds by
enlarging B if necessary. �

REMARK 2.13. By Proposition 2.11 and Lemma 2.12, we see that for each bounded
open set M0 ⊂ M and δ > 0, there is positive constants K+ = K+(M0, δ) > 0 and C =
C(M0, δ) > 0 such that

Ricg ≤ K+g , and |∇g(t)Rg(t)(m)|2g(t) < C on [0, T ] ×M0 ,

and further, for each m′, m′′ ∈ M0, t ′′ − t ′ ≥ δ and each L0-minimizing curve γ joining
(t ′,m′) and (t ′′,m′′), we have

(7) L
t ′,t ′′
0 (m′,m′′) ≤ ρg(t ′)(m′,m′′)2

2(t ′′ − t ′)2
e2K−t ′′ − e2K−t ′

2K−
+ dK+(t

′′ − t ′)
2

and

(8) −
(

2K− + 1

2

)
|γ̇ (t)|2g(t) −

C

2
≤ d

dt
|γ̇ (t)|2g(t) ≤

(
2K+ + 1

2

)
|γ̇ (t)|2g(t) +

C

2
.

LEMMA 2.14. (t ′,m′; t ′′,m′′) 	→ L
t ′,t ′′
0 (m′,m′′) is continuous on {(t ′,m′; t ′′,m′′) | 0

≤ t ′ < t ′′ ≤ T ,m′,m′′ ∈ M}.
PROOF. Let 0 ≤ t ′0 < t ′′0 ≤ T and m′0,m′′0 ∈ M and take ε ∈ (0, 1). Take δ0 > 0 so

that t ′′0 − t ′0 ≥ 2δ0. Let U ′ and U ′′ be g(0)-metric balls of radius δ0 centered at m′ and m′′
respectively. Let B be as in Lemma 2.12 for M0 = U ′ ∪ U ′′ and δ = δ0. Take δ′1 ∈ (0, δ0/4)
so that it satisfies the following:

• (1− ε)g(s) ≤ g(t) ≤ (1+ ε)g(s) and |Rg(s)−Rg(t)| < ε on B for each s, t ∈ [0, T ]
with |s − t| < 2δ′1,
• 4δ′1/(δ0 − 2δ′1) < ε.
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Let K+ and C be as in Remark 2.2, corresponding to M0 and δ′1. Take δ1 ∈ (0, δ′1) so that
dK+δ1/2 < ε. Take δ2 > 0 so that

δ2
2(e

4K−T − e2K−(2T−δ1))

4δ2
1K−

< ε

holds and take δ3 = δ1 ∧ δ2. Let m′,m′′ ∈ M with ρg(0)(m′,m′0) ∨ ρg(0)(m′′,m′′0) < δ3 and
t ′, t ′′ ∈ [0, T ] with |t ′ − t ′0| ∨ |t ′′ − t ′′0 | < δ3. Take a curve γ : [t ′0, t ′′0 ] → M from (t ′0,m′0) to

(t ′′0 ,m′′0) such that L0(γ ) ≤ Lt ′0,t ′′0 (m′0,m′′0)+ε. In addition, we take a curve γ1 from (t ′,m′) to
(t ′ +δ1,m

′
0), and a curve γ2 from (t ′′−δ1,m

′′
0) to (t ′′,m′′). Let α : [t ′+δ1, t

′′−δ1] → [t ′0, t ′′0 ]
be a (unique) affine increasing surjection. We define γ̃ : [t ′, t ′′] → M as follows:

γ̃ (t) :=

⎧⎪⎪⎨
⎪⎪⎩

γ1(t) (t ∈ [t ′, t ′ + δ1)) ,

γ (α(t)) (t ∈ [t ′ + δ1, t
′′ − δ1)) ,

γ2(t) (t ∈ [t ′′ − δ1, t
′′]) .

Note that, by the choice of δ1,

α′(t)= t ′′0 − t ′0
t ′′ − t ′ − 2δ1

∈ [1, 1+ ε] ,(9)

|α−1(t)− t| =
∣∣∣∣ t
′′ − t ′ − 2δ1

t ′′0 − t ′0
(t − t ′0)− (t − t ′ − δ1)

∣∣∣∣(10)

≤ |t ′0 − t ′ − δ1| ∨ |t ′′ − t ′′0 − δ1| ≤ 2δ1 .

Now we turn to the estimate. We begin with the following basic estimate:

L
t ′,t ′′
0 (m′,m′′)− Lt ′0,t ′′00 (m′0,m′′0)≤L0(γ1)+ L0(γ2)(11)

+L0(γ̃ |[t ′+δ1,t
′′−δ1])− L0(γ )+ ε .

By the choice of γ̃ , we have

L0(γ̃ |[t ′+δ1,t
′′−δ1])−L0(γ )

= 1

2

∫ t ′′0

t ′0

{
t ′′0 − t ′0

t ′′ − t ′ − 2δ1
|γ̇ (t)|2g(α−1(t))

− |γ̇ (t)|2g(t)
}

dt

+1

2

∫ t ′′0

t ′0

{
t ′′ − t ′ − 2δ1

t ′′0 − t ′0
Rg(α−1(t)) − Rg(t)

}
dt .

Then the choice of δ1 together with (8), (9) and (10) yields that there is a constant Ĉ > 0
depending only on T , K±, d and C such that the right hand side of the last equality is
bounded from above by Ĉε. Moreover, by virtue of the choice of δ1 and δ2, (7) yields

L
t ′,t ′+δ1
0 (m′,m′0) ∨ Lt

′′−δ1,t
′′

0 (m′′0,m′′) ≤ 2ε. Thus, by minimizing the right hand side of (11)

over γ1 and γ2, the left hand side is bounded from above by (5 + Ĉ)ε. We can give the same

upper bound to L
t ′0,t ′′0
0 (m′0,m′′0) − Lt

′,t ′′
0 (m′,m′′) in the same manner and hence the assertion

holds. �
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We fix a bounded open M0 ⊂ M and δ > 0 arbitrarily and denote by K+ = K+(M0, δ)

and C = C(M0, δ) the positive constants appeared in Remark 2.13. Let

M0 :=
{
(t ′,m′; t ′′,m′′) ∈ [0, T ] ×M0 × [0, T ] ×M0 : t ′ < t ′′

}
.

For each (t ′,m′; t ′′,m′′) ∈ M0, we denote by Γ t
′,t ′′
m′,m′′ the set of all L0-minimizing paths

joining (t ′,m′) to (t ′′,m′′). We further define

Mδ :=
{
(t ′,m′; t ′′,m′′) ∈M0 : t ′′ − t ′ > δ

}
,

�δ :=
{
(t ′, t ′′) ∈ [0, T ] × [0, T ] : t ′′ − t ′ > δ

}
,

Γδ :=
⋃

(t ′,m′;t ′′,m′′)∈Mδ

Γ
t ′,t ′′
m′,m′′ and

ι : Γδ → �δ × C([0, 1] → M)

by ι(γ ) := (t ′, t ′′, γ̂ ) if γ ∈ Γ t ′,t ′′
m′,m′′

where γ̂ ∈ C([0, 1] → M) is defined by

γ̂ (u) := γ (t ′ + u(t ′′ − t ′)) for 0 ≤ u ≤ 1 .

We topologize Γδ by the pull-back distance

dΓδ (γ, η) := |t ′ − s′| + |t ′′ − s′′| + sup
0≤u≤1

ρg(T )(γ̂ (u), η̂(u))

for γ ∈ Γ t ′,t ′′
m′,m′′ and η ∈ Γ s ′,s ′′

n′,n′′ .

LEMMA 2.15. There are constant c5, c6 > 0 such that, for each 0 ≤ t ′ < t ′′ ≤ T , m′,
m′′ ∈ M0 and γ ∈ Γ t ′,t ′′

m′,m′′ ,

sup
t ′≤t≤t ′′

|γ̇ (t)|2g(t) ≤ 2c5

{
L
t ′,t ′′
0 (m′,m′′)
t ′′ − t ′ + dK−

2

}
+ c6.

PROOF. For each 0 ≤ t ′ < t ′′ ≤ T , m′,m′′ ∈ M0 and γ ∈ Γ t ′,t ′′
m′,m′′ , the claimed bound

follows from Proposition 2.11(iii) and (iv) with constants max{c1, c3} and max{c2, c4} as c5

and c6. By virtue of Lemma 2.12 (cf. Remark 2.13), we can choose them to be independent
of t ′, t ′′, m′,m′′ and γ . �

PROPOSITION 2.16 (Compactness result). We have the following:
(i) Equi-Lipschitz estimate: For each 0 ≤ t ′ < t ′′ ≤ T , m′, m′′ ∈ M0, γ ∈ Γ t ′,t ′′

m′,m′′ and
t ′ ≤ s ≤ u ≤ t ′′,

ρg(T )(γ (s), γ (u)) ≤ const.

(
1

t ′′ − t ′ + 1

)
|u− s| ,

where the constant depends on K−, K+, C but not on s, u, t ′, t ′′, m′, m′′ and the
choice of γ .

(ii) Uniform boundedness: Γδ is uniformly bounded.
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(iii) Closedness: ι(Γδ) is closed in �δ × C([0, 1] → M), where the topology of �δ ×
C([0, 1] → M) is given by the product of the Euclidean one in �δ and the uniform
topology in C1([0, 1] → M).

Moreover, Γδ is compact.

PROOF. Equi-Lipschitz estimate: For 0 ≤ s < u ≤ T , we have

ρg(T )
(
γ (s), γ (u)

)2 ≤
∫ u

s

|γ̇ (t)|2g(T )dt ≤ e2K−T
∫ u

s

|γ̇ (t)|2g(t)dt,
where we have used Proposition 2.10(i) in the last inequality. Then the equi-Lipschitz estimate
follows by Lemma 2.15 and the compactness of M0.

Uniform boundedness: It is obvious from the Equi-Lipschitz estimate.
Closedness: Define L0 : �δ × C1([0, 1] → M)→ (−∞,+∞] by

L0(t
′, t ′′, c) := 1

2

∫ t ′′

t ′

{|˙̃c(t)|2g(t) + Rg(t)(̃c(t))
}
dt

where c̃(t) := c
(
t−t ′
t ′′−t ′

)
for t ′ ≤ t ≤ t ′′. Then L0 is lower semicontinuous (see e.g., [19,

Appendix 1, pp. 198–201]). By using L0, ι(Γδ) is expressed as follows:

ι(Γδ) =
{
(t ′, t ′′, c) : c(0), c(1) ∈ M , t ′′ − t ′ ≥ δ

and L0(t
′, t ′′, c) ≤ Lt ′,t ′′0 (c(0), c(1))

}
.

This expression yields that ι(Γδ) is closed in �δ × C([0, 1] → M).
Finally, by combining them with Ascoli’s compactness theorem, we conclude that Γδ is

compact. �

2.3. The L0-cut locus. Set

M := {(t ′,m′; t ′′,m′′) ∈ [0, T ] ×M × [0, T ] ×M : t ′ < t ′′
}
.

DEFINITION 2.17 (L0-exponential map and L0-cut locus).

(i) L0 expt
′,t ′′
m′ : Tm′M → M is defined by

L0 expt
′,t ′′
m′ (v) := γ (t ′′)

where the curve γ is the solution to the L0-geodesic equation⎧⎨
⎩
∇g(t)
γ̇ (t )γ̇ (t)−

1

2
∇g(t)Rg(t) − 2Ricg(t)(γ̇ (t), ·) = 0 ,

γ (t ′) = m′ , γ̇ (t ′) = v ∈ Tm′M .

See the Remark 2.18(i) below.

(ii) L0cutt
′,t ′′
m′ is the set of all points m′′ ∈ M such that there is more than one L0-

minimizing curve γ : [t ′, t ′′] → M with γ (t ′) = m′ and γ (t ′′) = m′′ or there is

a v ∈ Tm′M such that m′′ = L0 expt
′,t ′′
m′ (v) and v is a critical point of L0 expt

′,t ′′
m′ . We

also use the notation L0cutt
′,t ′′ := {(m′,m′′) : m′′ ∈ L0cutt

′,t ′′
m′ }.
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(iii) L0cut :=
{
(t ′,m′; t ′′,m′′) ∈M : m′′ ∈ L0cutt

′,t ′′
m′
}
.

REMARK 2.18. (i) Since our Ricci flow is assumed to be complete, we see that
L0 expt

′,t ′′
m′ is well-defined as follows. Given initial data γ (t ′) = m′ and γ̇ (t ′) = v, let

I ⊂ [t ′, T ] be the maximal interval, on which the L0-geodesic equation for γ can be solved
(Recall that our Ricci flow is defined on [0, T ]). Since the L0-geodesic equation is of the
normal form, the standard theory of ODE shows that I is open in [t ′, T ]. On the other hand,
the Gronwall lemma, applied to the first inequality in Proposition 2.11(iii) (take u′ = t ′ and
u′′ = t), gives an upper bound for supt∈I |γ̇ (t)|g(t). This implies that {γ (t) : t ∈ I } is
a bounded set. From the completeness of the metric, γ (t) converges as t → sup I , which
turns to show that I is closed in [t ′, T ]. Since [t ′, T ] is connected and I �= ∅, we must have
I = [t ′, T ]. As v is arbitrary, we conclude that L0 expt

′,t ′′
m′ is defined on the whole of Tm′M .

(ii) For any L0-geodesic γ : [t ′, t ′′] → M , if γ̇ (t ′) �= 0, then γ̇ (t ′′) �= 0 must hold. This
can be seen as follows: Let η(t) := γ (t ′′ + t ′ − t) and g̃(t) := g(t ′′ + t ′ − t) for t ∈ [t ′, t ′′].
Then η satisfies the differential equation

∇ g̃(t)
η̇(t ) η̇(t)−

1

2
∇ g̃(t)Rg̃(t) + 2Ricg̃(t)(η̇(t), ·) = 0

with η(t ′) = γ (t ′′) and η̇(t ′) = −γ̇ (t ′′). If γ̇ (t ′′) = 0, then ∇ g̃(t ′)Rg̃(t ′)(η(t ′)) = ∇g(t ′′)Rg(t ′′)
(γ (t ′′)) = 0. Therefore η∗(t) ≡ η(t ′) also satisfies the same differential equation as η with the
same initial condition. By uniqueness, η∗(t) ≡ η(t) must hold and hence γ̇ (t ′) = −η̇(t ′′) =
0. Thus the assertion holds.

PROPOSITION 2.19.

(i) For each t ′ < t ′′ and m′, m′′ ∈ M , there is a smooth path γ : [t ′, t ′′] → M joining
m′ to m′′ such that γ has the minimal L0-length among all such paths (see Lemma
7.27 in [6]).

(ii) For any m′ ∈ M and t ′ < t ′′, L0cutt
′,t ′′
m′ is closed and of measure zero (see Lemma

7.99 in [6] and Lemma 5 in [20]).

(iii) The L0cut is closed.

(iv) The function Lt
′,t ′′

0 (m′,m′′) is smooth on M\L0cut.

REMARK 2.20. By Proposition 2.1, any L0-minimizing curve must be L0-geodesic
and then Proposition 2.19(i) shows that expt

′,t ′′
m′ is surjective. Additionally, by (iv), the state-

ments in Propositions 2.2, 2.3 and 2.8 hold outside L0cut.

Since they can be shown by the same arguments as the usual Riemannian geometry or
L-geometry, we omit the proof of (i) and (iv). The proof of (iii) is along the same line of
Lemma 5 in [20].

PROOF OF PROPOSITION 2.19 (ii). Since the closedness follows from (iii), we prove
that L0cutt

′,t ′′
m′ is of measure zero. First we decompose L0cutt

′,t ′′
m′ = C ∪ C ′ where C is the set
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of all critical values in L0cutt
′,t ′′
m′ of L0 expt

′,t ′′
m′ and

C ′ :=

⎧⎪⎨
⎪⎩m
′′ ∈ L0cutt

′,t ′′
m′ :

m′′ is a regular value of L0 expt
′,t ′′
m′ and

there is more than one L0-minimizing
curve joining (t ′,m′) and (t ′′,m′′).

⎫⎪⎬
⎪⎭ .

By Sard’s theorem, C has measure zero and hence we need only to prove so is also C ′. For
this, consider the map φ : Tm′M × Tm′M → R defined by

φ(v,w) := L0(γv)− L0(γw)

where for each v ∈ Tm′M , the curve γv : [t ′, t ′′] → M is given by

γv(t) := L0 expt
′,t
m′ (v) , t ′ ≤ t ≤ t ′′ .

Then by the first variational formula for L0 (Proposition 2.1), we have

(dφ)(v,w) =
( 〈
γ̇v(t

′′), (dL0 expt
′,t ′′
m′ )v(·)

〉
g(t ′′),−

〈
γ̇w(t

′′), (dL0 expt
′,t ′′
m′ )w(·)

〉
g(t ′′)

)
.

Therefore by Remark 2.18(ii), the implicit function theorem tells us that

N :=
{
(v,w) ∈ Tm′M × Tm′M : φ(v,w) = 0, v �= w;

both v and w are regular points of L0 expt
′,t ′′
m′

}

is a (2d − 1)-dimensional submanifold of Tm′M × Tm′M .
Take a countable cover {(Ui, ψi)}i of M which consists of local coordinate neighbor-

hoods and consider the map

ξi : Ni := N ∩
[(L0 expt

′,t ′′
m′

)−1
(Ui)

]2 → R
d

defined by

ξi(v,w) := ψi
(L0 expt

′,t ′′
m′ (v)

)− ψi(L0 expt
′,t ′′
m′ (w)

)
.

Under the identification Tm′′M ∼= Tψi(m′′)Rd for m′′ ∈ Ui , we have

(dξi)(v,w) =
(
(dL0 expt

′,t ′′
m′ )v,−(dL0 expt

′,t ′′
m′ )w

)
.

Again by the implicit function theorem, we see that

N ′i :=
{
(v,w) ∈ Ni : both (dL0 expt

′,t ′′
m′ )v and (dL0 expt

′,t ′′
m′ )w are

non-singular and L0 expt
′,t ′′
m′ (v) = L0 expt

′,t ′′
m′ (w)

}

is a (d − 1)-dimensional submanifold in Tm′M × Tm′M .
Now, letting

ηi : N ′i � (v,w) 	→ L0 expt
′,t ′′
m′ (v) ∈ M ,

C ′ is included in the countable union of hypersurfaces ηi(N ′i ) of M . Therefore it has measure
zero. �
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PROOF OF PROPOSITION 2.19 (iii). Assume that L0cut is not closed. Then we can
take a sequence (t ′i , m′i; t ′′i , m′′i ) ∈ L0cut, i = 1, 2, . . . which converges to some point
(t ′0,m′0; t ′′0 ,m′′0) /∈ L0cut. We denote�0 := {(t ′, t ′′) ∈ [0, T ]2 : t ′ < t ′′}.

Then the map

ϕ : �0 × TM → ([0, T ] ×M)2

defined by

ϕ
(
t ′, t ′′, (m′, v′)

) := (t ′,m′; t ′′,L0 expt
′,t ′′
m′ (v)

)

is non-singular at
(
t ′0, t ′′0 , (m′0, v′0)

)
where v′0 := γ̇ (t ′′0 ) and γ is the unique L0-minimizing

curve joining (t ′0,m′0) and (t ′′0 ,m′′0). Hence by the inverse function theorem, we can take an
open neighborhood U of

(
t ′0, t ′′0 , (m′0, v′0)

)
and an open neighborhood V of (t ′0,m′0; t ′′0 ,m′′0)

such that ϕ|U : U → V is diffeomorphic. Define v′i ∈ Tm′iM by
(
t ′i , t ′′i , (m′i , v′i )

) =
ϕ|−1
U (t ′i , m′i; t ′′i , m′′i ). We may assume that (t ′i , m′i; t ′′i , m′′i ) ∈ V for all i with neglecting fi-

nite numbers of points if necessary.
Note that, for each

(
t ′, t ′′, (m′, v′)

) ∈ U , v′ is not a critical point ofL0 expt
′,t ′′
m′ : Tm′M →

M . Therefore we can choose w′i ∈ Tm′iM so that [t ′i , t ′′i ] � t 	→ L0 expt
′,t
m′0
(w′i ) is an L0-

minimizing geodesic joining (t ′i , m′i ) to (t ′′i , m′′i ) but v′i �= w′i . Taking a subsequence if nec-

essary, we may assume that
(
t ′i , t ′′i , (m′i , w′i )

) i→∞→ (
t ′0, t ′′0 , (m′0, w′0)

)
for some w′0 ∈ Tm′0M .

Since
(
t ′i , t ′′i , (m′i , w′i )

)
/∈ U for all i and ϕ|U : U → V is diffeomorphic, we must have

w′0 �= v′0.
Consequently, the curves

t 	→ L0 exp
t ′0,t
m′0
(v′0) and t 	→ L0 exp

t ′0,t
m′0
(w′0)

must be distinct L0-minimizing curves joining (t ′0,m′0) and (t ′′0 ,m′′0), which contradicts to
(t ′0,m′0; t ′′0 ,m′′0) /∈ L0cut. Hence L0cut is closed. �

We introduce the notion of L0-Jacobi fields. For a smooth curve γ : [t ′, t ′′] → M , a
C2-vector field V along γ and t ∈ [t ′, t ′′], we define a linear form Jt (V ) as follows:

Jt (V ) := −∇g(t)
γ̇ (t )∇g(t)

γ̇ (t )V (t)+
1

2
Hessg(t)Rg(t)(V (t), ·)(12)

−Rg(t)(V (t), γ̇ (t))γ̇ (t)+ 2
(∇g(t)

V (t)Ricg(t)
)
(γ̇ (t), ·)

+2Ricg(t)
(∇g(t)

V (t)γ̇ (t), ·
)
.

We call a vector field J along γ an L0-Jacobi field if Jt (J ) = 0 for each t ∈ [t ′, t ′′]. Note
that some computation yields the following relation between Jt and L0Iγ :

(13) L0Iγ (V,W) =
〈∇g(t)
γ̇ (t )V (t),W(t)

〉
g(t)

∣∣∣t=t
′′

t=t ′ +
∫ t ′′

t ′
〈Jt (V ),W(t)〉g(t)dt .
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LEMMA 2.21. Let γ : [t ′, t ′′] → M be an L0-geodesic. Then γ̇ (t ′) is a critical point

of L0 expt
′,t ′′
γ (t ′) if and only if there is an L0-Jacobi field J along γ with J (t ′) = 0, J (t ′′) = 0

and J �≡ 0.

PROOF. Let γ̇ (t ′) be a critical point of L0 expt
′,t ′′
γ (t ′). It means that there is a non-zero

vector V ∈ Tγ̇ (t ′)(Tγ (t ′)M) satisfying (dL0 expt
′,t ′′
γ (t ′))γ̇ (t ′)(V ) = 0. We consider a variation

f (u, t) : (−ε, ε)× [t ′, t ′′] → M of γ given by

(14) f (u, t) := L0 expt
′,t
γ (t ′)

(
γ̇ (t ′)+ u(t − t ′)V ) .

Then the vector field J along γ given by J (t) := d
du

∣∣∣
u=0

f (u, t) is an L0-Jacobi field. Indeed,

we can verify it by applying ∇g(t)
(∂/∂u)|u=0f (u,t)

to the L0-geodesic equation Gt (f (u, ·)) = 0
for f (u, ·). Then J (t ′) = 0 by definition and J (t ′′) = 0 by the choice of V . In addition,

∇g(t ′)
γ̇ (t ′)J (t

′) = V holds (Here we are identifying V with a vector in Tγ (t ′)M). Since V �= 0,
we have J �≡ 0.

Conversely, suppose that there is an L0-Jacobi field J along γ with J (t ′) = 0, J (t ′′) �=
0 and J �≡ 0. Then V := ∇g(t ′)

γ̇ (t ′)J �= 0. Indeed, if V = 0, then J ≡ 0 must hold by
the uniqueness of the solution to the second order linear differential equation Jt (J ) = 0.
By identifying V with a vector in Tγ̇ (t ′)(Tγ (t ′)M), we consider a variation f given by (14).
Then again by the uniqueness of the solution to Jt (J ) = 0, the variational vector field

corresponding to f coincides with J . Then J (t ′′) = 0 means (dL0 expt
′,t ′′
γ (t ′))γ̇ (t ′)(V ) = 0 and

hence the conclusion holds. �

PROPOSITION 2.22. For each (t ′,m′; t ′′,m′′) ∈M, the following two conditions are
equivalent:

(i) (t ′,m′; t ′′,m′′) /∈ L0cut.
(ii) Every L0-minimizing curve γ joining (t ′,m′) and (t ′′,m′′) extends to an L0-minimiz-

ing curve beyond (t ′′,m′′), that is, there exist an ε > 0 and a curve γ̃ : [t ′, t ′′ + ε] →
M such that γ̃ |[t ′,t ′′] = γ and γ̃ is an L0-minimizing curve joining its endpoints.

PROOF. Assume that (i) holds. If γ is an L0-minimizing curve joining (t ′,m′) and
(t ′′,m′′), then γ is unique among such curves and satisfies the L0-geodesic equation. Since the
map Tm′M � w 	→ L0 expt

′,t ′′
m′ (w) ∈ M is regular at γ̇ (t ′), there exists an open neighborhood

U of γ̇ (t ′) such that the map is diffeomorphic on U to its image.
We extend γ forward in time, to γ̃ : [t ′, t ′′ + ε0] → M by solving the same L0-geodesic

equation (ε0 > 0 being small enough). Since L0cut is closed (Proposition 2.19(iii)), we can

assume that γ̃ [t ′′, t ′′ + ε0] ∩ L0cutt
′,t ′′+ε0
γ̃ (t ′) = ∅ for sufficiently small ε0 > 0. For each ε ∈

(0, ε0], we define wε ∈ Tγ (t ′)M to be the tangent vector γ̇ε(t ′) of the unique L0-minimizing
curve γε joining (t ′, γ (t ′)) and (t ′′ + ε, γ (t ′′ + ε)). By Proposition 2.19(iv) and Proposition
2.3, L0 is smooth around (t ′,m′; t ′′ + ε, γ (t ′′ + ε)) and

|wε|2g(t ′) = 2
∂L

t ′,t ′′+ε
0

∂t ′
(
m′, γ (t ′′ + ε))+ Rg(t ′)(m

′) ,
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so that {wε}0<ε≤ε0 is a bounded set. Therefore, taking a subsequence, we can assume that wε
converges to a vector w ∈ Tγ̇ (t ′)M as ε ↓ 0.

Then we show that wε ∈ U for a sufficiently small ε > 0. Since γε(t) smoothly depends
on wε and L0 is lower semi-continuous (cf. the proof of Proposition 2.16), by using Lemma
2.14, we have

L0(γ )= Lt ′,t ′′0

(
γ (t ′), γ (t ′′)

)
= lim
ε→0

L
t ′,t ′′
0

(
γε(t

′), γε(t ′′ + ε)
)

= lim
ε→0

L0(γε) ≥ L0(γw) ≥ L0(γ ) ,

where γw : [t ′, t ′′] → M is the L0-geodesic of initial conditions γw(t ′) = m′ and γ̇w(t ′) = w.
It clearly holds that γw(t ′′) = m′′. Therefore, γw is also an L0-minimizing curve joining
(t ′,m′) and (t ′′,m′′). By the uniqueness, we have γ = γw, so that γ̇ (t ′) = w. Thus wε ∈ U
for a sufficiently small ε > 0.

Now, for a sufficiently small ε > 0, we have γ̇ (t ′), wε ∈ U and

L0 expt
′,t ′′+ε
γ (t ′) (γ̇ (t ′)) = γ̃ (t ′′ + ε) = γw(t ′′ + ε) = L0 expt

′,t ′′+ε
γ (t ′) (wε) ,

which implies γ̇ (t ′) = wε, so that γ̃ = γε. Hence the curve γ̃ is uniquely L0-minimizing.
Conversely, assume that (ii) holds. Suppose that γ and η are two L0-minimizing curves

joining (t ′,m′) and (t ′′,m′′). By the assumption (ii), γ has an L0-minimizing extension γ̃ :
[t ′, t ′′ + ε] → M . Then the piecewise smooth curve c defined by

c(t) :=
{
η(t) if t ∈ [t ′, t ′′] ,
γ̃ (t) if t ∈ [t ′′, t ′′ + ε] ,

which is the concatenation of η and γ̃ |[t ′,t ′′+ε], must be also L0-minimizing. A standard vari-
ational argument shows that the curve c(t) becomesC1 at t = t ′′ and must be L0-geodesic (so
that c is found to be smooth). By the uniqueness result (with respect to the initial conditions at
time t ′′ +ε) of the ODE theory, we must have γ̃ = c, in particular, we have γ = η. Therefore,
the L0-minimizing geodesic joining (t ′,m′) and (t ′′,m′′) must be unique.

Next, we show that L0 expt
′,t ′′
m′ is not singular at γ̇ (t ′) ∈ Tm′M . Suppose on the contrary,

that γ̇ (t ′) is a critical point of L0 expt
′,t ′′
m′ . Then there is an L0-Jacobi field along γ with

J (t ′) = 0, J (t ′′) = 0 and J �≡ 0 by Lemma 2.21. Note that ∇g(t ′′)
γ (t ′′)J (t

′′) �= 0 holds (cf. the
proof of Lemma 2.21). We take an L0-minimizing extension γ̃ : [t ′, t ′′ + ε] → M of γ and
extend J to a piecewise smooth vector field on [t ′, t ′′ + ε] (which we denote again by J )
by requiring that J |[t ′′,t ′′+ε] ≡ 0. We further take a vector field V along γ̃ with V (t ′) = 0,

V (t ′′) = −∇g(t ′′)
γ̇ (t ′′)J (t

′′−) and V (t ′′ + ε) = 0, and then consider any proper variation g(u, t) :
(−δ, δ) × [t ′, t ′′] → M of γ̃ , with the variational vector field W = J + aV (a > 0). Since
W vanishes at the endpoints of γ̃ , such a proper variation exists. By a piecewise use of the
second variational formula (Proposition 2.4) together with (13) and the symmetry of L0Iγ ,
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we have

(δWδWL0)(γ̃ ) = −2a|∇g(t ′′)
γ̇ (t ′′)J (t

′′−)|2g(t ′′) + a2(δV δVL0)(γ̃ )

which is negative for sufficiently small a > 0. On the other hand, since γ̃ is L0-minimizing
and g is proper, it must hold that

L0(γ̃ ) = L0(g(0, ·)) ≤ L0(g(u, ·)) , for each u ∈ (−δ, δ)
which implies (δWδWL0)(γ̃ ) = (d2/du2)

∣∣
u=0 L0(g(u, ·)) ≥ 0. This is a contradiction.

Therefore γ̇ (t ′) is not a critical point of L0 expt
′,t ′′
m′ .

Hence we have proved (ii)⇒(i). �

Finally we study relations in the time-reversal and L0-cut locus. Let g̃(τ ) = g(T − τ ).
Then g̃(τ ) evolves under the backward Ricci flow

∂

∂τ
g̃(τ ) = 2Ricg̃(τ ) .

For τ ′ < τ ′′, we consider the corresponding functional

L̃0(c) := 1

2

∫ τ ′′

τ ′

{|ċ(τ )|2g̃(τ ) + Rg̃(τ )(c(τ ))
}
dτ ,

where c : [τ ′, τ ′′] → M is any curve. For x ′ ∈ M we define the L̃0-exponential map

L̃0 expτ
′,τ ′′
x ′ : Tx ′M → M by

L̃0 expτ
′,τ ′′
x ′ (w) := η(τ ′′)

where η is the solution to the L̃0-geodesic equation⎧⎨
⎩
∇ g̃(τ )
η̇(τ ) η̇(τ )−

1

2
∇ g̃(τ )Rg̃(τ ) + 2Ricg̃(τ )(η̇(τ ), ·) = 0 ,

η(τ ′) = x ′, η̇(τ ′) = w .
(15)

One can see that this is actually the Euler-Lagrange equation for L̃0. Take τ ′, τ ′′, t ′, t ′′ ∈
[0, T ] with τ ′ < τ ′′, τ ′ = T − t ′′ and t ′′ − t ′ = τ ′′ − τ ′. For a curve η : [τ ′, τ ′′] → M , we
define γ : [t ′, t ′′] → M by γ (t ′ + s) = η(τ ′′ − s) for 0 ≤ s ≤ t ′′ − t ′ = τ ′′ − τ ′. We call γ
the time-reversal of η. By definition, L̃0(η) = L0(γ ) holds. In addition, by comparing (15)
with (5), we can easily show that γ is an L0-geodesic if and only if η is an L̃0-geodesic.

PROPOSITION 2.23. Let τ ′, τ ′′, t ′, t ′′ ∈ [0, T ] with τ ′ < τ ′′, τ ′ = T − t ′′ and t ′′− t ′ =
τ ′′ − τ ′.

(i) There is more than one L0-minimizing curve joining (t ′, x) and (t ′′, y) iff there is
more than one L̃0-minimizing curve joining (τ ′, y) and (τ ′′, x).

(ii) Let η : [τ ′, τ ′′] → M be an L̃0-minimizing curve and γ its time-reversal. Then the

vector γ̇ (t ′) is a critical point of L0 expt
′,t ′′
γ (t ′) if and only if η̇(τ ′) is a critical point of

L̃0 expτ
′,τ ′′
η(τ ′) .
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(iii) Define L̃0cutτ
′,τ ′′
x ′ as the set of all points x ′′ ∈ M such that there is more than one

L̃0-minimizing curve joining (τ ′, x ′) and (τ ′′, x ′′) or there is a w ∈ Tx ′M such that

x ′′ = L̃0 expτ
′,τ ′′
x ′ (w) and w is a critical point of L̃0 expτ

′,τ ′′
x ′ . We also define

L̃0cutτ
′,τ ′′ := {(x ′, x ′′) : x ′′ ∈ L̃0cutτ

′,τ ′′
x ′

}
.

Then the map M ×M � (x, y) 	→ (y, x) ∈ M ×M gives an isomorphism between
L0cutt

′,t ′′ and L̃0cutτ
′,τ ′′ .

(iv) (x ′, x ′′) /∈ L̃0cutτ
′,τ ′′ if and only if L̃0-minimizing curve joining (τ ′, x ′) and (τ ′′, x ′′)

can be extended beyond (τ ′′, x ′′) with keeping its minimality.

PROOF. The claim (i) is obvious by remarks just before Proposition 2.23. For (ii), we
introduce the notion of L̃0-Jacobi field: For η : [τ ′, τ ′′] → M , J̃ is an L̃0-Jacobi field if
J̃τ (V ) = 0, where a linear form J̃τ is defined by replacing γ (t), γ̇ (t) and g(t) in (12)
with η(τ), η̇(τ ) and g̃(τ ) respectively and changing the sign of all terms involving the Ricci
curvature. Then the criticality of L̃0-exponential map is also characterized by L̃0-Jacobi fields
as in Lemma 2.21 by the same argument. Moreover, a vector field J̃ along η is an L̃0-Jacobi
field if and only if a vector field J along the time-reversal of η given by J (t ′ +s) := J̃ (τ ′′ −s)
is an L0-Jacobi field. Then the conclusion easily follows by combining these observations
with Lemma 2.21. The assertion (iii) follows immediately from (i) and (ii). The assertion (iv)
can be proved in the same way as Proposition 2.22. �

3. Construction of a coupled Brownian motions in the absence of L0-cut locus. In
this section, we will show Theorem 1.1 under the assumption that L0cut is empty where L0cut
is defined in Subsection 2.3.

Under L0cut = ∅, Lt ′,t ′′0 (m′,m′′) is a smooth function of (t ′,m′; t ′′,m′′) (Theorem
2.19(iv)), and for each m′, m′′ ∈ M and t ′ < t ′′, we can take a unique minimizer for L0 join-
ing (t ′,m′) to (t ′′,m′′). Therefore, for each pair of points, the space-time parallel transport as
a map between their tangent spaces is uniquely determined. In the following, we construct a
coupled Brownian motions by space-time parallel transport, introduced in Definition 2.7.

Let e1, e2, . . . , ed ∈ R
d be the canonical basis of Rd . We denote by π : F (M) → M

the frame bundle over M and by π : Og(t)(M) → M the orthonormal frame bundle with
respect to the metric g(t). Note that Og(t)(M) varies along our Ricci flow but not for F (M).
We canonically have the map defined by

F (M)m × R
d � (u, x) 	→ u.x := u(x) ∈ TmM,

where F (M)m stands for the fiber at m of F (M).
Recall our notations on time parameters τ ′(s), τ ′′(s) given in Section 1: We sometimes

drop s and simply write τ ′ or τ ′′. Let (Us, Vs)0≤s≤S = (Us(u′), Vs(v′′))0≤s≤S be the solution
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to the SDE⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dUs =
√

2H g(τ ′)
i (Us) ◦ dWi

s −
d∑

α,β=1

∂g

∂t
(τ ′)
(
Us.eα,Us.eβ

)
Vα,β(Us)ds ,

dVs =
√

2H g(τ ′′)
i (Vs) ◦ dBis −

d∑
α,β=1

∂g

∂t
(τ ′′)

(
Vs.eα, Vs.eβ

)
Vα,β(Vs)ds ,

dBs = V−1
s //

τ ′,τ ′′
πUs,πVs

UsdWs ,

starting from (U0, V0) = (u′, v′′) ∈ Og(t ′1)(M)m′ × Og(t ′′1 )(M)m′′ , where (H g(t)
i )di=1 is the

system of canonical horizontal vector fields on F (M) associated with g(t), and (Vα,β)dα,β=1
is the system of canonical vertical vector fields, each of which is defined by

Vα,βf (u) = d

dε

∣∣∣∣
ε=0
f (u ◦ eεeα⊗eβ ) , f ∈ C∞(F (M)) .

It is known that the random variable (Us, Vs) takes its value in Og(τ ′(s))(M)× Og(τ ′′(s))(M)
for every 0 ≤ s ≤ S (see [2, Proposition 1.1]). We put (Xs, Ys) := (πUs, πVs).

The next statement is an Itô formula for the process (X, Y ) = (Xs, Ys )0≤s≤S. We omit
the proof because it is straightforward.

PROPOSITION 3.1. For any smooth function f (s,m′,m′′) on [0,∞) × M × M , we
have

df (s,Xs, Ys)

=
{∂f
∂s
(s,Xs, Ys)+

d∑
i=1

[
Hessg(τ ′)⊕g(τ ′′)f (s, ·, ·)

](
Us.ei ⊕ Vs.e∗i , Us .ei ⊕ Vs.e∗i

)}
ds

+[Us.ei ⊕ Vs.e∗i ]f (s, ·, ·) • dWi
s ,

where e∗i := V −1
s //

τ ′,τ ′′
Xs,Ys

Us.ei ∈ R
d for each i = 1, 2, . . . , d and •dWi

s means the Itô integral.

COROLLARY 3.2. Suppose L0cut = ∅. Then we have the following:

dLτ
′(s),τ ′′(s)

0 (Xs, Ys)

=−
{
∂L

t ′,t ′′
0

∂t ′
+ ∂L

t ′,t ′′
0

∂t ′′

}∣∣∣∣
(t ′,t ′′)=(τ ′(s),τ ′′(s))

(Xs, Ys)ds

+
d∑
i=1

[
Hessg(τ ′)⊕g(τ ′′)Lτ

′,τ ′′
0

](
Us.ei ⊕ Vs.e∗i , Us .ei ⊕ Vs.e∗i

)
ds

+[Us.ei ⊕ Vs.e∗i ]Lτ
′,τ ′′

0 • dWi
s .

Since L0cut = ∅, by using the result in Proposition 2.8, the stochastic process

L
τ ′(s),τ ′′(s)
0 (Xs, Ys ) is a semi-martingale whose bounded variation part is non-positive. There-

fore we can conclude that s 	→ L
τ ′(s),τ ′′(s)
0 (Xs, Ys) is a supermartingale after we prove the
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integrability. For proving the integrability, we consider a family of functions ϕn ∈ C2(R)

with ϕn(x) ↑ x as n → ∞ for each x ∈ R. Suppose in addition that ϕn is nondecreasing,
concave and bounded from above. Since L0 is bounded from below, we can easily show that

ϕn(L
τ ′(s),τ ′′(s)
0 (Xs, Ys)) is a supermartingale. Then the integrability will be ensured by the

monotone convergence theorem and the fact Lτ
′(0),τ ′′(0)

0 (X0, Y0) is deterministic. The proof
of the integrability in the next section will go along the same idea but we will show it together
with the rigorous proof of Theorem 1.1.

4. Supermartingale property of a coupled Brownian motion in the presence of L0-
cut locus.

4.1. Coupling via approximation by geodesic random walks. For the construc-
tion of a suitable coupling of Brownian motions in the presence of L0-cut locus, we use the
approximation by geodesic random walks to avoid the technical difficulty coming from the
singularity of L0. Indeed L0 is smooth outside L0cut (Proposition 2.19(iv)) but not on L0cut.
To carry out this procedure, we will rely on some basic properties of L0cut summarized in
Subsection 2.3.

We fix a measurable section (or selection)

γ : (t ′,m′; t ′′,m′′) 	→ γ
t ′,t ′′
m′,m′′

of minimal L0-geodesics, where, the measurability is with respect to the Borel σ -field gen-
erated by the uniform topology on the path space. Since L0-minimizing curves with fixed
endpoints form a compact set (Proposition 2.16), the existence of such a section is ensured
by a measurable selection theorem (e.g. [3, Theorem 6.9.6] and Proposition 2.16). We further
fix a measurable section σ(t, ·) : M → Og(t)(M) of g(t)-orthonormal frame bundle for each
t ∈ [t ′0, t ′1].

To construct a geodesic random walk, we prepare an R
d -valued i.i.d. sequence (λn)∞n=1,

each of which is uniformly distributed on the unit ball in R
d centered at the origin. Since

it will be needed when working with these λ’s, we shall summarize necessary formulae as
follows. We omit the proof because it is obvious or an easy consequence of the divergence
theorem.

LEMMA 4.1. Let V be an n-dimensional real Euclidean space. Let � : V → R be a
linear function and α : V ×V → R be a symmetric 2-form on V . Let Bn is the unit ball in V
centered at origin. Then

(i)
∫
Bn
�(x)dx = 0 and

∫
Bn
α(x, x)dx = vol(Bn)

n+ 2
tr α ,

where in the last equality, we have naturally regarded α as the linear homomorphism
V → V ∗ ∼= V .

Suppose further that we are given another n-dimensional real vector spaceW , a linear func-
tion f : V ⊕ W → R, a symmetric 2-form β on V ⊕ W and a linear homomorphism
A : V → W . Then
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(ii)
∫
Bn
f (x ⊕ Ax)dx = 0 and

(iii)
∫
Bn
β
(
x ⊕ Ax, x ⊕Ax)dx = vol(Bn)

n+ 2

n∑
i=1

β
(
ei ⊕ Aei, ei ⊕Aei

)

where (ei)ni=1 is an any orthonormal basis of V .

Now for each m′, m′′ ∈ M and ε > 0, let us construct a coupling (Xεs , Y
ε
s )0≤s≤S of

geodesic random walks starting from (m′,m′′) by
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xεs := expg(τ
′(0))

Xε0

(√
2s

ε
σ (τ ′(0),Xε0).

√
d + 2λ1

)
,

Y εs := expg(τ
′′(0))

Y ε0

(√
2s

ε
//
τ ′(0),τ ′′(0)
Xε0,Y

ε
0

σ(τ ′(0),Xε0).
√
d + 2λ1

)
,

for 0 ≤ s ≤ s1 ,

...⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xεs := expg(τ
′(sn))

Xεsn

(√
2s −√2sn

ε
σ (τ ′(sn),Xεsn).

√
d + 2λn+1

)
,

Y εs := expg(τ
′′(sn))

Y εsn

(√
2s −√2sn

ε
//
τ ′(sn),τ ′′(sn)
Xεsn ,Y

ε
sn

σ (τ ′(sn),Xεsn).
√
d + 2λn+1

)

for sn ≤ s ≤ sn+1

...

where Xε0 := m′, Y ε0 := m′′ and sn := (nε2) ∧ S for each n = 0, 1, 2, . . . . From Lemma 4.1,
we see that the factor

√
d + 2 is the normalization constant in the sense of that (d+2)E[λn⊗

λn] = idRd .
We shall give a remark here. From the definition, the random curves s 	→ Xεs and

s 	→ Y εs are clearly piecewise smooth and then we see that Xεsn and Y εsn are σ
(
λk : 1 ≤

k ≤ n
)
-measurable and Ẋεsn+ and Ẏ εsn+ are σ

(
λk : 1 ≤ k ≤ n + 1

)
-measurable but not

σ
(
λk : 1 ≤ k ≤ n

)
-measurable.

As shown in [16], each of Xε = (Xεs )0≤s≤S and Y ε = (Y εs )0≤s≤S converges in law to
g(τ ′(s))-Brownian motion starting from m′ and g(τ ′′(s))-Brownian motion starting from m′′
respectively. As a result, the collection {(Xε, Y ε)}ε>0 of couplings forms a tight family and
hence we can find a convergent subsequence of (Xε, Y ε)ε>0. We fix such a subsequence and
denote the subsequence by the same notation (Xε, Y ε)ε>0 for simplicity. We denote the limit
by (X, Y ) = (Xs, Ys)0≤s≤S.

4.2. Supermartingale property. Let G0 be the trivial σ -field and Gn := σ
(
λk : 1 ≤

k ≤ n) for each n = 1, 2, . . . .

PROPOSITION 4.2. Set Λεs := Lτ
′(s),τ ′′(s)

0 (Xεs , Y
ε
s ). For each relatively compact open

set M0 in M including Xε0 = m′ and Y ε0 = m′′, there is ε0 > 0 which depends only on M0

such that the following holds: For each 0 < ε ≤ ε0, there are a family (Qεn)
∞
n=1 of random
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variables and a deterministic constant δ(ε) such that

(16) Λεsn+1
≤ Λεsn + εζ εn+1 + ε2Σε

n+1 +Qεn+1

with the estimate

(17)
∑

n: sn<σM0 (X
ε,Y ε)∧S

Qεn ≤ δ(ε)→ 0 as ε→ 0 ,

where ζ εn andΣε
n are Gn-measurable and integrable random variables such that

(18) E[ ζ εn |Gn−1 ] = 0 and Σ
ε

n := E[Σε
n |Gn−1 ] ≤ 0

for each n ≥ 1, and

σM0(w
′, w′′) := inf

{
s > 0 : (w′(s),w′′(s)) /∈ M0 ×M0

}
for each (w′, w′′) ∈ C([0, S] → M ×M).

REMARK 4.3. Intuitively, it is clear that the difference inequality (16) comes from the
Taylor expansion with respect to ε. Therefore, when (τ ′(sn),Xεsn; τ ′′(sn), Y εsn ) /∈ L0cut,

ζ εn+1 =
[
εẊεsn+ ⊕ εẎ εsn+

]
L
τ ′(sn),τ ′′(sn)
0

Σε
n+1 =−

{
∂L

t ′,t ′′
0

∂t ′
+ ∂L

t ′,t ′′
0

∂t ′′

}∣∣∣∣
(t ′,t ′′)=(τ ′(sn),τ ′′(sn))

(Xεsn, Y
ε
sn
)

+1

2

[
Hessg(τ ′(sn))⊕g(τ ′′(sn))L

τ ′(sn),τ ′′(sn)
0

](
εẊεsn+ ⊕ εẎ εsn+, εẊεsn+ ⊕ εẎ εsn+

)
.

However, we must avoid using this expression since L0cut �= ∅.
PROOF. If L0cut = ∅, the Taylor expansion with respect to the parameter ε easily yields

the desired estimate. Thus we will modify the argument by taking the presence of L0cut into
account. We begin with determining Qεn+1 which enjoys (16) and we verify (17) after that.
Let us define K ⊂ ([0, S] ×M)3 by

K :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
(ui,mi)

3
i=1

∣∣∣∣∣∣∣∣∣∣

(u1,m1), (u3,m3) ∈ [0, S] ×M0,

u3 − u1 ≥ t ′′1 − t ′1,
u2 = (u1 + u3)/2,
L
u1,u3
0 (m1,m3)

= Lu1,u2
0 (m1,m2)+ Lu2,u3

0 (m2,m3)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
.

By Proposition 2.10 (iii), there are constants c1, c2 > 0 such that, for each (ui ,mi)3i=1 ∈ K ,

ρg(t ′1)(m1,m2)+ ρg(t ′′1 )(m2,m3)

≤ c1(L
u1,u2
0 (m1,m2)+ Lu2,u3

0 (m2,m3))+ c2

= c1L
u1,u3
0 (m1,m3)+ c2 .

Since the last quantity does not depend on m2 and continuously depends on (m1, t1;m3, t3)

which moves on a compact set, there is a bounded set D, which is possibly larger than
M0, such that (u2,m2) ∈ D holds for any (ui ,mi)3i=1 ∈ K . Therefore K is compact.
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Take (ui ,mi)3i=1 ∈ K . Then (u2,m2) must be on a minimal L0-geodesic joining (u1,m1)

and (u3,m3). We denote it by γ . Since u1 �= u3 by the definition of K , both γ |[u1,u2]
and γ |[u2,u3] are not constant as a space-time curve (It means that (t, γ (t)) is not constant
both on [u1, u2] and on [u2, u3]). Hence we can extend γ |[u1,u2] and γ |[u2,u3] with keep-
ing their minimalities. It implies (ui,mi; ui+1,mi+1) /∈ L0cut for i = 1, 2 by Proposition
2.22 and Proposition 2.23(iii)(iv). For j = 1, 2, let pj be a projection from K given by
pj ((ui,mi)

3
i=1) = (uj ,mj ; uj+1,mj+1). Then (pj (K))j=1,2 are compact and away from

L0cut. Let us define a compact set Kε
1 ⊂ ([0, S] ×M)2 by

A : =

⎧⎪⎪⎨
⎪⎪⎩
(u′,m′, v′; u′′,m′′, v′′)

∣∣∣∣∣∣∣∣

(u′,m′; u′′,m′′) ∈ p1(K) ∪ p2(K),

v′ ∈ Tm′M,v′′ ∈ Tm′′M,
‖v′‖g(u′) = ‖v′′‖g(u′′)

= √2(d + 2)

⎫⎪⎪⎬
⎪⎪⎭
,

Kε
1 : =

{ (
u′ + a, expg(τ

′(u′))
m′ (εav′); u′′ + a, expg(τ

′′(u′′))
m′′ (εav′′)

)
∣∣∣ (u′,m′, v′; u′′,m′′, v′′) ∈ A, a ∈ [0, 1]

}
.

Since L0cut is closed by Proposition 2.19(iii), there is ε0 > 0 such thatKε
1 ∩L0cut = ∅ when

ε ≤ ε0. Note that the map

(t ′,m′; t ′′,m′′) 	→
(
t ′ + t ′′

2
, γ

t ′,t ′′
m′,m′′

(
t ′ + t ′′

2

))

is measurable.
Let ε < ε0. For simplicity of notations, we denote the “midpoint” of (τ ′(sn),Xεsn) and

(τ ′′(sn), Y εsn ), and the associated variational vector by the following:

τ̂ : = τ
′(sn)+ τ ′′(sn)

2
,

X̂ : = γ τ ′(sn),τ ′′(sn)Xεsn ,Y
ε
sn

(τ̂ ) ,

V̂ : = //τ ′(sn),τ̂
Xεsn ,X̂

Ẋεsn+ .

Then we can easily verify the following:(
τ ′(sn),Xεsn; τ̂ , X̂; τ ′′(sn), Y εsn

)
∈ K ,

(
τ ′(sn),Xεsn, εẊ

ε
sn+; τ̂ , X̂, εV̂

)
∈ Kε

1 ,(
τ̂ , X̂, εV̂ ; τ ′′(sn), Y εsn, εẎ εsn+

)
∈ Kε

1 .

Since Kε
1 ∩ L0cut = ∅, the Taylor expansion yields

L
τ ′(sn+1),τ̂+ε2

0 (Xεsn+1
, expg(τ̂ )

X̂
(εV̂ ))(19)

≤ Lτ ′(sn),τ̂0 (Xεsn, X̂)+ ε
[
εẊεsn+ ⊕ εV̂

]
L
τ ′(sn),τ̂
0
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− ε2
[
∂L

t ′,t ′′
0

∂t ′
+ ∂L

t ′,t ′′
0

∂t ′′

]∣∣∣∣
(t ′,t ′′)=(τ ′(sn),τ̂ )

(Xεsn, X̂)

+ ε
2

2

[
Hessg(τ ′(sn))⊕g(τ̂ )L

τ ′(sn),τ̂
0

](
εẊεsn+ ⊕ εV̂ , εẊεsn+ ⊕ εV̂

)

+ o(ε2)

and

L
τ̂+ε2,τ ′′(sn+1)

0 (expg(τ̂ )
X̂

(εV̂ ), Y εsn+1
)(20)

≤ Lτ̂,τ ′′(sn)0 (X̂, Y εsn)+ ε
[
εV̂ ⊕ εẎ εsn+

]
L
τ̂,τ ′′(sn)
0

− ε2
[
∂L

t ′,t ′′
0

∂t ′
+ ∂L

t ′,t ′′
0

∂t ′′

]∣∣∣∣
(t ′,t ′′)=(τ̂ ,τ ′′(sn))

(X̂, Y εsn)

+ ε
2

2

[
Hessg(τ̂ )⊕g(τ ′′(sn))L

τ̂ ,τ ′′(sn)
0

](
εV̂ ⊕ εẎ εsn+, εV̂ ⊕ εẎ εsn+

)

+ o(ε2) .

Note that the two remainder terms o(ε2) appeared in the last equalities consist of higher
derivatives of L0 on Kε0

1 . We denote the sum of these two remainder terms by Qεn+1. Since
K
ε0
1 is compact, Qεn+1 is controlled uniformly in the position of (Xεsn, Y

ε
sn
) and n as long as

sn < σM(X
ε, Y ε). It means that there is a constant δ̃(ε) being independent of (Xεsn, Y

ε
sn
) and n

such that Qεn+1 ≤ δ̃(ε) and δ̃(ε)/ε2 → 0. The triangular inequality for L0 and the definition

of (τ̂ , X̂) together with (19) and (20) yield

L
τ ′(sn+1),τ

′′(sn+1)

0 (Xεsn+1
, Y εsn+1

)− Lτ ′(sn),τ ′′(sn)0 (Xεsn, Y
ε
sn
)

≤
(
L
τ ′(sn+1),τ̂+ε2

0 (Xεsn+1
, expg(τ̂ )

X̂
(εV̂ ))− Lτ ′(sn),τ̂0 (Xεsn, X̂)

)

+
(
L
τ̂+ε2,τ ′′(sn+1)

0 (expg(τ̂ )
X̂

(εV̂ ), Y εsn+1
)− Lτ̂,τ ′′(sn)0 (X̂, Y εsn)

)

= εζ εn+1 + ε2Σε
n+1 +Qεn+1,

where random variables ζ εn+1 andΣε
n+1 are defined by

ζ εn+1 := [εẊεsn+ ⊕ εV̂ ]Lτ
′(sn),τ̂

0 + [εV̂ ⊕ εẎ εsn+]Lτ̂,τ
′′(sn)

0

and

Σε
n+1 :=−

{
∂L

t ′,t ′′
0

∂t ′
+ ∂L

t ′,t ′′
0

∂t ′′

}∣∣∣∣
(t ′,t ′′)=(τ ′(sn),τ̂ )

(Xεsn, X̂)

+1

2

[
Hessg(τ ′(sn))⊕g(τ̂ )L

τ ′(sn),τ̂
0

](
εẊεsn+ ⊕ εV̂ , εẊεsn+ ⊕ εV̂

)

−
{
∂L

t ′,t ′′
0

∂t ′
+ ∂L

t ′,t ′′
0

∂t ′′

}∣∣∣∣
(t ′,t ′′)=(τ̂ ,τ ′′(sn))

(X̂, Y εsn)



168 T. AMABA AND K. KUWADA

+1

2

[
Hessg(τ̂ )⊕g(τ ′′(sn))L

τ̂ ,τ ′(sn)
0

](
εV̂ ⊕ εẎ εsn+, εV̂ ⊕ εẎ εsn+

)
.

Thus (16) holds. Since

#{k ∈ N : sk < σM0(X
ε, Y ε) ∧ S} ≤ Sε−2 ,

we have ∑
n: sn<σM0 (X

ε,Y ε)∧S
Qεn+1 ≤ Sε−2 δ̃(ε)→ 0

as ε→ 0. It asserts (17).
Finally, we prove the required properties for ζ εn and Σε

n . The measurability are obvious.
The integrabilities hold because Xεsn , X̂ and Y εsn lie on a bounded domain in M . Finally (18)
follows from Lemma 4.1 and Proposition 2.8 since λn is independent of Gn−1. �

Let (Fs)0≤s≤S be the filtration defined by

Fs := σ
(
(Xu, Yu) : 0 ≤ u ≤ s

)
, 0 ≤ s ≤ S

and set (Fε
sn
)∞n=0 by Fε

0 := the trivial σ -field, and

Fε
sn
:= σ ((Xεsk , Y εsk ) : k = 1, 2, . . . , n

)
for each n = 1, 2, . . . .

THEOREM 4.4. Set Λs := L
τ ′(s),τ ′′(s)
0 (Xs, Ys). Then Λs is integrable for each s ∈

[0, S] and for each u ≤ s we have

E[Λs |Fu] ≤ Λu,
that is, Λ = (Λs)0≤s≤S is an (Fs)0≤s≤S-supermartingale.

PROOF. Take η > 0 arbitrarily and choose a bounded open M0 ⊂ M sufficiently large
so that P[σM0(X, Y ) ≤ s] ≤ η. We first claim that for each β > 0 there exists C = C(β) > 0
being independent of M0 and η such that

(21) E
[
(β ∧Λs∧σM0 (X,Y )

− β ∧Λu∧σM0 (X,Y )
)F
] ≤ Cη

for each nonnegative bounded Fu-measurable random variable F . For proving (21), we may
assume that F is of the form F = f (Zu1, . . . , Zun) where f is a nonnegative and bounded
continuous function on (M2)n, Zu = (Xu, Yu) and 0 ≤ u1 < · · · < un ≤ u.

By Proposition 2.10 (iii), we have

E
[
(β ∧Λs∧σM0 (X,Y )

− β ∧Λu∧σM0 (X,Y )
)F
]

≤ E
[
(β ∧Λs − β ∧Λu)F : σM0(X, Y ) > s

]+ C1η

for some constant C1 > 0 which is independent ofM0 but may depend on β (Indeed, one can
take C1 = β + (dK−T )/2). Let [u]ε := sup

{
ε2n : n ∈ N, ε2n ≤ u} and Zε := (Xε, Y ε).

Since {w | σM0(w) > s} is open,

E
[
(β ∧Λs − β ∧Λu)F : σM0(X, Y ) > s

]
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≤ lim inf
ε→0

E
[
(β ∧Λεs − β ∧Λεu)f (Zεu1

, . . . , Zεun) : σM0(X
ε, Y ε) > s

]

= lim inf
ε→0

E
[
(β ∧Λε[s]ε − β ∧Λε[u]ε )f (Zε[u1]ε , . . . , Z

ε
[un]ε ) : σM0(X

ε, Y ε) > s
]
,

where the last equality follows from the continuity of Lτ
′,τ ′′

0 and f . Then

E
[
(β ∧Λε[s]ε − β ∧Λε[u]ε )f (Zε[u1]ε , . . . , Z

ε[un]ε ) : σM0(X
ε, Y ε) > s

]
≤ E

[
(β ∧Λε[s]ε∧[σM0 (X

ε,Y ε)]ε − β ∧Λε[u]ε∧[σM0 (X
ε,Y ε)]ε )f (Z

ε[u1]ε , . . . , Z
ε[un]ε )

]
+ C1P

[
σM0(X

ε, Y ε) ≤ s] .
For the second term of the right hand side,

lim sup
ε→0

P[σM0(X
ε, Y ε) ≤ s] ≤ η

holds since {w | σM0(w) ≤ s} is closed. Let us estimate the first term. Since Proposition 4.2
ensures Σ

ε

i ≤ 0 for each i = 1, 2, . . . , Proposition 4.2 together with the conditional Jensen
inequality yields

E
[
(β ∧Λε[s]ε∧[σM0 (X

ε,Y ε)]ε )f (Z
ε[u1]ε , . . . , Z

ε[un]ε )
]

≤ E
[
β ∧

{
E
[ [s]ε∧[σM0 (X

ε,Y ε)]ε∑
i=[u]ε∧[σM0 (X

ε,Y ε)]ε+1

εζ εi + ε2(Σε
i −Σε

i )+Qεi
∣∣Fε
[u]ε

]

+Λε[u]ε∧[σM0 (X
ε,Y ε)]ε

}
f (Zε[u1]ε , . . . , Z

ε[un]ε )
]
.

Since [σM0(X
ε, Y ε)]ε is an (Fε

sn
)n-stopping time, we can apply the optional sampling theorem

to conclude that the terms involving ζ εi and Σε
i − Σ̄ε

i vanish. Again by Proposition 4.2, we
have

E

⎡
⎣

[s]ε∧[σM0 (X
ε,Y ε)]ε∑

i=[u]ε∧[σM0 (X
ε,Y ε)]ε+1

Qεi

∣∣Fε[u]ε

⎤
⎦ ≤ δ(ε)→ 0 as ε ↓ 0 .

Therefore, by combining all these estimates, we obtain the claim (21) with C = 2C1.
In (21), lettingM0 ↑ M with the dominated convergence theorem and letting η ↓ 0 yield

E
[
(β ∧Λs)F

] ≤ E
[
(β ∧Λu)F

]
.

SinceΛs is bounded from below by Proposition 2.10 (iii), the monotone convergence theorem
yields the conclusion by β ↑ ∞. Indeed, we obtain the integrability of Λs by applying this
argument with u = 0. �

Now we are in turn to complete the proof of Theorem 1.1.
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PROOF OF THEOREM 1.1. In Theorem 4.4, we have proved the existence of a coupling
(X, Y ) of g(τ ′(s))- and g(τ ′′(s))-Brownian motions with deterministic initial data such that

s 	→ L
τ ′(s),τ ′′(s)
0 (Xs, Ys) is a supermartingale. Thus it suffices to show that we can choose the

family of laws of couplings as a measurable function of initial data.
To complete it, we shall employ a measurable selection theorem. Note that the space of

all Borel probability measures on the path spaceC([0, S] → M×M) equipped with the weak
topology is a Polish space.

We define K as the set of all laws of a coupling (X, Y ) of g(τ ′(s))-Brownian motion
X = (Xs)0≤s≤S and g(τ ′′(s))-Brownian motion Y = (Ys)0≤s≤S such that

(a) (X0, Y0) is deterministic and

(b) for 0 ≤ u ≤ s, it holds that Lτ
′(s),τ ′′(s)

0 (Xs, Ys) is integrable and

E[Lτ ′(s),τ ′′(s)0 (Xs, Ys)|Fu] ≤ Lτ ′(u),τ ′′(u)0 (Xu, Yu) a.s.

We denote the probability or the expectation with respect toQ ∈ K by PQ or EQ respec-
tively. For each m′,m′′ ∈ M , let us define Km′,m′′ ⊂ K by

Km′,m′′ := {Q ∈ K | PQ[(X0, Y0) = (m′,m′′)] = 1} .
By [3, Theorem 6.9.6], the claim holds once we show that Km′,m′′ is compact for eachm′,m′′.
Since the marginal distributions of elements in Km′,m′′ is fixed, the Prokhorov theorem yields
that Km′,m′′ is relatively compact. To show that Km′,m′′ is closed, take a sequenceQn ∈ Km′,m′′
which converges to Q. The following argument is similar to the one in the proof of Theorem
4.4. First, PQ[(X0, Y0) = (m′,m′′)] = 1 obviously holds and hence Q verifies the condition
(a). Second, for each k ∈ N, fi ∈ Cb(M2) (i = 1, . . . , k), 0 ≤ u1 ≤ u2 ≤ · · · ≤ uk ≤ s ≤ S
and R > 0,

EQn
[
L
τ ′(s),τ ′′(s)
0 (Xs, Ys) ∧ R

∣∣∣∣
k∏
i=1

fi(Xui , Yui )

]

≤ EQn
[
L
τ ′(uk),τ ′′(uk)
0 (Xuk , Yuk ) ∧ R

∣∣∣∣
k∏
i=1

fi(Xui , Yui )

]
.

Thus, by tending n→∞ and R→∞ after it, we obtain

EQ
[
L
τ ′(s),τ ′′(s)
0 (Xs, Ys)

∣∣∣∣
k∏
i=1

fi(Xui , Yui )

]

≤ EQ
[
L
τ ′(uk),τ ′′(uk)
0 (Xuk , Yuk )

∣∣∣∣
k∏
i=1

fi(Xui , Yui )

]
.

In particular, by applying the same argument for k = 1, f1 ≡ 1 and u1 = 0, we obtain

that Lτ
′(s),τ ′′(s)

0 (Xs, Ys) is integrable with respect to Q. ThusQ verifies the condition (b) and
hence Q ∈ Km′,m′′ . It means Km′,m′′ is closed and the proof is completed. �
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PROOF OF COROLLARY 1.2. Since Proposition 2.10 (iii) and Lemma 2.14 ensure that

L
t ′1,t ′′1
0 is continuous and bounded from below, there is a minimizer π ∈ Π(c′(t ′1), c′′(t ′′1 )

)
for

C
t ′1,t ′′1
0,ϕ

(
c′(t ′1), c′′(t ′′1 )

) = Cτ ′(0),τ ′′(0)0,ϕ

(
c′(τ ′(0)), c′′(τ ′′(0))

)
.

Let P(m′,m′′) be the law of the coupling (X, Y ) with (X0, Y0) = (m′,m′′) obtained in The-
orem 1.1. This is a probability measure on W (M) × W (M), where W (M) is the space of
continuous paths inM defined on [0, S]. Let P be the probability measure on W (M)×W (M)

given by

P(dw′, dw′′) :=
∫
M×M

π(dm′, dm′′)P(m′,m′′)(dw′, dw′′) .

Note that P is well-defined by virtue of the measurability result in Theorem 1.1. Under P, the
canonical process (w′(s),w′′(s)) is a coupling of g(τ ′(s))-Brownian motion and g(τ ′′(s))-
Brownian motion with the initial distribution π such that Lτ

′(s),τ ′′(s)
0 (w′(s),w′′(s)) is a super-

martingale. In particular, the law of (w′(s),w′′(s)) gives a coupling of c′(τ ′(s)) and c′′(τ ′′(s))
for each s ∈ [0, S]. Since ϕ

(
L
τ ′(s),τ ′′(s)
0 (w′(s),w′′(s))

)
is still a supermartingale under P, we

have

C
τ ′(s),τ ′′(s)
0,ϕ

(
c′(τ ′(s)), c′′(τ ′′(s))

)

≤
∫
M×M

E(m′,m′′)
[
ϕ
(
L
τ ′(s),τ ′′(s)
0 (w′(s),w′′(s))

)]
π(dm′, dm′′)

≤
∫
M×M

E(m′,m′′)
[
ϕ
(
L
τ ′(0),τ ′′(0)
0 (w′(0),w′′(0))

)]
π(dm′, dm′′)

=
∫
M×M

ϕ
(
L
τ ′(0),τ ′′(0)
0 (m′,m′′)

)
π(dm′, dm′′)

= Cτ ′(0),τ ′′(0)0,ϕ

(
c′(τ ′(0)), c′′(τ ′′(0))

)
,

where E(m′,m′′) stands for the expectation with respect to P(m′,m′′). Hence C
t ′1−s,t ′′1−s
0,ϕ

(
c′(t ′1 −

s), c′′(t ′′1 − s)
)

is non-increasing in s because we can repeat the same argument even if we
replace the initial time 0 with any s′ ∈ [0, s]. �

REMARK 4.5. The proof of the integrability of the L-distance between the coupling
of Brownian motions by space-time parallel transport in [15] seems to be incorrect. It is worth
mentioning that we can recover the same integrability as in Theorem 4.4 even in that case by
the same argument.

More precisely, the argument in [15, Lemma 6] seems to require some modification.
In the proof, they claimed an inequality analogous to Doob’s Lp-martingale inequality for a
positive supermartingale. However it is not true in general. Indeed there is a counterexample
to Doob’s inequality when p = 1 for a positive martingale Mn (See [8, Example 5.4.2]).
Since the x 	→ x1/p is nonincreasing and concave on [0,∞) for p ≥ 1, M1/p

n gives a
counterexample to Doob’s Lp-inequality to positive supermartingales.
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On the other hand, if we further assume the stronger restriction on the Ricci curvature,
we can recover a similar integrability as stated in [15, Lemma 6]:

PROPOSITION 4.6. Suppose sup0≤t≤T |Ric|g(t) < ∞. Fix arbitrary two points
m′, m′′ ∈ M . For any coupling (Xs, Ys)0≤s≤S of g(τ ′(s))-Brownian motion X = (Xs)0≤s≤S
with X0 = m′ and g(τ ′′(s))-Brownian motion Y = (Ys)0≤s≤S with Y0 = m′′ ,

sup0≤s≤S L
τ ′(s),τ ′′(s)
0 (Xs, Ys) is integrable.

PROOF. Let o ∈ M be a fixed reference point ofM . By Proposition 2.10(iii) and Propo-
sition 2.11(i), we have estimates

const. ≤ Lτ ′(s),τ ′′(s)0 (Xs, Ys)

≤ const.
{
ρg(τ ′(s))(Xs, o)

2 + ρg(τ ′′(s))(o, Ys)2
}
+ const. ,

where the constants depend on sup0≤t≤T |Ric|g(t), T , t ′1 and t ′′1 but not on s. Therefore, for
our statement, it is sufficient to prove the integrability of sup0≤s≤T ρg(τ ′(s))(Xs, o)2. By [14,
Theorem 2], we see that

dρ(s,Xs) =
{

1

2
�g(τ ′(s)) − ∂

∂s

}
ρ(s,Xs)ds + (Us.ei)ρ(s,Xs)dWi

s − dLs ,

denoting ρ(s, x) := ρg(τ ′(s))(o, x), where Ls is a nondecreasing continuous process which
increases only when Xs belongs to the cut locus of o with respect to g(τ ′(s)). Note that the
set of s ∈ [0, S] whereXs is in g(τ ′(s))-cut locus has null Lebesgue measure and hence other
quantities are also well-defined. Therefore we have

dρ(s,Xs)2 =
{
ρ(s,Xs)

(
�g(τ ′(s)) − 2

∂

∂s

)
ρ(s,Xs)ds +

d∑
i=1

|(Us.ei)ρ(s,Xs)|2
}

ds

−2ρ(s,Xs)dLs + 2ρ(s,Xs)dβs

where dβs = (Us.ei)ρ(s,Xs)dWi
s is a one-dimensional Brownian motion. Furthermore,

Proposition 2 in [14] shows that

ρ(s,Xs)

{
1

2
�g(τ ′(s)) − ∂

∂s

}
ρ(s,Xs)

≤ d − 1

2
ρ(s,Xs)

{
k1 coth(k1 · ρ(s,Xs) ∧ r1)+ k2

1 · ρ(s,Xs) ∧ r1
}

for some positive constants k1 and r1 from which we find that there is some constant c > 0
such that

ρ(s,Xs)

{
1

2
�g(τ ′(s)) + ∂

∂s

}
ρ(s,Xs) ≤ cρ(s,Xs)2 for each s ≥ 0 a.s.
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We also find that
∑d
i=1 |(Us.ei)ρ(s,Xs)|2 = 1. So we shall apply a comparison argument

between ρ’s SDE and
{

dZs = √4Zs ∨ 0 dβs + (cZs + 1)ds ,
Z0 = ρ(0,X0) = ρg(t ′1)(m′, o) .

It is well-known that there is a global unique strong solution Z = (Zs)s≥0 to the above SDE
and this satisfies Zs ≥ 0 for all s ≥ 0 a.s. By the comparison theorem (e.g., see Theorem
1.1, Chapter VI in [10]), we see that ρ(s,Xs) ≤ Zs for each s ≥ 0 a.s. Since sup0≤u≤s Z

p
u is

integrable for any p ≥ 1 (e.g., see Lemma 2.1, Chapter V in [10]), the conclusion follows. �
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