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Abstract. We present a new Fukushima type decomposition in the framework of semi-
Dirichlet forms. This generalizes the result of Ma, Sun and Wang [17, Theorem 1.4] by re-
moving the condition (S). We also extend Nakao’s integral to semi-Dirichlet forms and derive
Itô’s formula related to it.

Introduction. Let E be a metrizable Lusin space, i.e., E is topologically isomorphic
to a Borel subset of a complete separable metric space, and m be a σ -finite positive measure
on its Borel σ -algebra B(E). We consider a quasi-regular semi-Dirichlet form (E,D(E)) on
L2(E; m) with associated Markov process M = ((Xt)t≥0, (Px)x∈E�), where � (the ceme-
tery) is an extra point adjoined to E and E� = E ∪ {�}. Throughout this paper, any function
u on E is considered as a function on E� by putting u(�) = 0. For u ∈ D(E)loc (see (5)
below for the precise definition), we define the additive functional (AF in short) A[u] by

A
[u]
t := ũ(Xt ) − ũ(X0) ,

where ũ is an E-quasi-continuous m-version of u. The aim of this paper is to establish a
Fukushima type decomposition for A[u] and study the stochastic integral

∫ t

0 ṽ(Xs−)dA
[u]
s for

v ∈ D(E)loc.
We refer the reader to [14, 15, 20] for notations and terminologies related to semi-

Dirichlet forms. In particular, we refer the reader to the new monograph [20] for the potential
theory of semi-Dirichlet forms including the correspondence between positive continuous ad-
ditive functionals and smooth measures.

Let us start with a brief introduction to the development of Fukushima’s decomposi-
tion. Fukushima’s celebrated decomposition theorem was originally established for regular
symmetric Dirichlet forms (see [6] and [7, Theorem 5.2.2]) and then extended to the non-
symmetric and quasi-regular ones (cf. [19, Theorem 5.1.3] and [15, Theorem VI.2.5]). If
(E,D(E)) is a quasi-regular Dirichlet form and u ∈ D(E), Fukushima’s decomposition tells
us that there exist a unique martingale AF (MAF in short) M [u] of finite energy and a unique
continuous AF (CAF in short) N [u] of zero energy such that

ũ(Xt ) − ũ(X0) = M
[u]
t + N

[u]
t .(1)
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If (E,D(E)) is a strongly local symmetric Dirichlet form, Fukushima’s decomposition
(1) holds also for u ∈ D(E)loc with M [u] being a MAF locally of finite energy and N [u] being
a CAF locally of zero energy (cf. [7, Theorem 5.5.1]). For a general symmetric Dirichlet
form (E,D(E)), Kuwae showed that the Fukushima type decomposition holds for a subclass
of D(E)loc (see [12, Theorem 4.2]). If (E,D(E)) is a (not necessarily symmetric) Dirichlet
form, Walsh showed in [26, 27] that for u ∈ D(E)loc there exist a MAF W [u] locally of finite
energy and a CAF C[u] locally of zero energy such that

A
[u]
t = W

[u]
t + C

[u]
t + V

[u]
t ,(2)

where

V
[u]
t :=

∑
0<s≤t

(ũ(Xs) − ũ(Xs−))1{|ũ(Xs)−ũ(Xs−)|>1}1{t<ζ } − u(Xζ−)1{t≥ζ } .

Hereafter ζ denotes the lifetime of M.
If (E,D(E)) is only a semi-Dirichlet form, the situation becomes more complicated.

Note that the assumption of the existence of dual Markov process plays a crucial role in
Fukushima’s decomposition. In fact, without that assumption, the usual definition of energy
of AFs is questionable. If (E,D(E)) is a quasi-regular local semi-Dirichlet form, Ma et al.
showed in [13] that Fukushima’s decomposition holds for u ∈ D(E)loc. For a general regular
semi-Dirichlet form, Oshima showed in [20] that Fukushima’s decomposition holds for u ∈
D(E)b.

Let (E,D(E)) be a quasi-regular semi-Dirichlet form. We define I (ζ ) := [[0, ζ [[∪[[ζi]],
with ζi being the totally inaccessible part of ζ . We refer the reader to [9, 3.14] for the definition
of stochastic interval. Denote by J the jumping measure of (E,D(E)). For u ∈ D(E)loc, Z. M.
Ma et al. showed in [17, Theorem 1.4] (cf. also [24]) that the following two assertions are
equivalent.

(i) u admits a Fukushima type decomposition. That is, there exist a locally square inte-
grable MAF M [u] on I (ζ ) and a local CAF N [u] on I (ζ ) which has zero quadratic variation
such that (1) holds.

(ii) u satisfies

(S) : μu(dx) :=
∫

E

(ũ(x) − ũ(y))2J (dy, dx) is a smooth measure .

Moreover, if u satisfies Condition (S), then the decomposition (1) is unique up to the equiva-
lence of local AFs. We refer the reader to [7, page 271] for the notion of local AFs.

In the first part of this paper, we will establish a new Fukushima type decomposition for
u ∈ D(E)loc without Condition (S). Define

F
[u]
t :=

∑
0<s≤t

(ũ(Xs) − ũ(Xs−))1{|ũ(Xs)−ũ(Xs−)|>1} .(3)
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In Section 1 (see Theorem 1.2 below), we will show that, for any u ∈ D(E)loc, there exist a
unique locally square integrable MAF Y [u] on I (ζ ) and a unique continuous local AF Z[u] of
zero quadratic variation such that

A
[u]
t = Y

[u]
t + Z

[u]
t + F

[u]
t .(4)

The decomposition (4) gives the most general form of the Fukushima type decomposition in
the framework of semi-Dirichlet forms. It implies in particular that A[u] is a Dirichlet process
(cf. [4, 5]), i.e., is the summation of a semi-martingale and a zero quadratic variation process.

In the second part of this paper, we will define the stochastic integral
∫ t

0 ṽ(Xs−)dA
[u]
s for

u, v ∈ D(E)loc and derive the related Itô’s formula.
Let (E,D(E)) be a regular symmetric Dirichlet form. For u ∈ D(E) and v ∈ D(E)b ,

Nakao studied in [18] the stochastic integral
∫ t

0 ṽ(Xs−)dA
[u]
s by introducing so-called Nakao’s

integral
∫ t

0 ṽ(Xs−)dN
[u]
s . Later, Z. Q. Chen et al. and Kuwae (see [3] and [12]) extended

Nakao’s integral to a larger class of integrators as well as integrands. By using different
methods, Walsh ([25]) and C. Z. Chen et al. ([2]) independently extended Nakao’s integral
from the setting of symmetric Dirichlet forms to that of non-symmetric Dirichlet forms. By
virtue of the decomposition (2), Walsh also defined Nakao’s integral for more general inte-
grators as well as integrands in the setting of non-symmetric Dirichlet forms (see [27]). In
all of these references, the related Itô’s formulas have been derived for the stochastic integral∫ t

0 ṽ(Xs−)dA
[u]
s .

In Section 2, we will define the stochastic integral
∫ t

0 ṽ(Xs−)dA
[u]
s for u, v ∈ D(E)loc

and derive the related Itô’s formula in the setting of semi-Dirichlet forms. Owing to the non-
Markovian property of the dual form, all the previous known methods in defining Nakao’s
integral ceased to work. Note that if (E,D(E)) is only a semi-Dirichlet form, its symmetric
part is not a symmetric Dirichlet form in general but a symmetric positivity preserving form
and the dual killing measure might not exist. These cause extra difficulties in defining Nakao’s
integral. In this paper, we will combine the method of [2] with the localization technique of
[13] and [17] to define the stochastic integral

∫ t

0 ṽ(Xs−)dA
[u]
s and derive the related Itô’s

formula.
In Section 3, we will give concrete examples of semi-Dirichlet forms for which our

results can be applied.

1. Decomposition of ũ(Xt ) − ũ(X0) without Condition (S). The basic setting of this
paper is the same as that in [17], to which we refer the reader for more details. Let (E,D(E)) be
a quasi-regular semi-Dirichlet form on L2(E; m) with E being a metrizable Lusin space and m

being a σ -finite positive measure on B(E). Denote by (Tt )t≥0 and (Gα)α≥0 (resp. (T̂t )t≥0 and
(Ĝα)α≥0) the semigroup and resolvent (resp. co-semigroup and co-resolvent) associated with
(E,D(E)). Let M = (�,F , (Ft )t≥0, (Xt )t≥0, (Px)x∈E�) be an m-tight special standard pro-
cess which is properly associated with (E,D(E)).

Throughout this paper, we fix a function φ ∈ L1(E; m) with 0 < φ ≤ 1 m-a.e. and
set h = G1φ, ĥ = Ĝ1φ. Denote τB := inf{t > 0 | Xt /∈ B} for B ⊂ E. Let V be a quasi-
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open subset of E. We denote by MV = (XV
t )t≥0 the part process of M on V and denote

by (EV ,D(EV )) the part form of (E,D(E)) on L2(V ; m). It is known that MV is a standard
process, D(EV ) = D(E)V = {u ∈ D(E) | ũ = 0, E-q.e. on V c}, and (EV ,D(E)V ) is a quasi-
regular semi-Dirichlet form (cf. [11]). Denote by (T V

t )t≥0, (T̂ V
t )t≥0, (GV

α )α≥0 and (ĜV
α )α≥0

the semigroup, co-semigroup, resolvent and co-resolvent associated with (EV ,D(E)V ), re-
spectively. Define h̄V := ĜV

1 φ and h̄V ,∗ := e−2T̂ V
1 (ĜV

2 φ). Then h̄V , h̄V ,∗ ∈ D(E)V and
h̄V ,∗ ≤ h̄V . Denote D(E)V ,b := Bb(E) ∩ D(E)V .

For an AF A = (At )t≥0 of MV , we define

eV (A) := lim
t↓0

1

2t
Eh̄V ·m(A2

t )

whenever the limit exists in [0,∞]. For a local AF B = (Bt )t≥0 of M, we define

eV,∗(B) := lim
t↓0

1

2t
Eh̄V,∗·m(B2

t∧τV
)

whenever the limit exists in [0,∞].
Define

ṀV := {M | M is an AF of MV , Ex(M
2
t ) < ∞, Ex(Mt) = 0

for all t ≥ 0 and E-q.e. x ∈ V, eV (M) < ∞} ,

N V
c := {N | N is a CAF of MV ,Ex(|Nt |) < ∞ for all t ≥ 0

and E-q.e. x ∈ V, eV (N) = 0} ,

	 := {{Vn} | Vn is E-quasi-open, Vn ⊂ Vn+1 E-q.e.

∀ n ∈ N, and E = ∪∞
n=1Vn E-q.e.} ,

D(E)loc := {u | ∃ {Vn} ∈ 	 and {un} ⊂ D(E)(5)

such that u = un m-a.e. on Vn, ∀ n ∈ N} ,

Ṁloc := {M | M is a local AF of M, ∃ {Vn}, {En} ∈ 	 and {Mn | Mn ∈ ṀVn}
such that En ⊂ Vn, Mt∧τEn

= Mn
t∧τEn

, t ≥ 0, n ∈ N}
and

Lc := {N | N is a local AF of M , ∃ {En} ∈ 	 such that t �→ Nt∧τEn

is continuous and of zero quadratic variation, n ∈ N} .

In the above definition, {Nt∧τEn
} is said to be of zero quadratic variation if its quadratic vari-

ation vanishes in Pm-measure, more precisely, if it satisfies

[T/εl]∑
k=0

(N{(k+1)εl}∧τEn
− N{kεl }∧τEn

)2 → 0 as l → ∞ in Pm-measure ,

for any T > 0 and any sequence {εl}l∈N converging to 0.
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We use ζi to denote the totally inaccessible part of ζ , by which we mean that ζi is an {Ft}-
stopping time and is the totally inaccessible part of ζ with respect to Px for E-q.e. x ∈ E. By
[17, Proposition 2.4], such ζi exists and is unique in the sense of Px-a.s. for E-q.e. x ∈ E.
We write I (ζ ) := [[0, ζ [[∪[[ζi]]. By [17, Proposition 2.4], there exists a {Vn} ∈ 	 such that
for any {Un} ∈ 	, I (ζ ) = ∪n[[0, τVn∩Un ]] Px-a.s. for E-q.e. x ∈ E. Therefore I (ζ ) is a
predictable set of interval type (cf. [9, Theorem 8.18]). By the local compactification method
(see [15, Theorem VI.1.6] and [10, Theorem 3.5]) in the semi-Dirichlet forms setting, we
may assume without loss of generality that M is a Hunt process and E is a locally compact
separable metric space whenever necessary.

In this paper a local AF M is called a locally square integrable MAF on I (ζ ), denoted
by M ∈ MI (ζ )

loc , if M ∈ (M2
loc)

I (ζ ) in the sense of [9, Definition 8.19]. For u ∈ D(E)loc,
we define the bounded variation process F [u] as in (3). Denote by J (dx, dy) and K(dx) the
jumping and killing measures of (E,D(E)), respectively (cf. [10]). Let (N(x, dy),Hs) be a
Lévy system of M and μH be the Revuz measure of the positive CAF (PCAF in short) H .
Then, we have

J (dy, dx) = 1

2
N(x, dy)μH(dx), K(dx) = N(x, {�})μH (dx) .(6)

Define (cf. [13, Theorem 5.3])

Ŝ∗
00 := {μ ∈ S0 | Û1μ ≤ cĜ1φ for some constant c > 0} ,

where S0 denotes the family of positive measures of finite energy integral and Û1μ is the
1-co-potential.

We put the following assumption:

ASSUMPTION 1.1. There exist {Vn} ∈ 	 and a sequence of locally bounded functions
{Cn} on R such that for each n ∈ N, if u, v ∈ D(E)Vn,b then uv ∈ D(E) and

E(uv, uv) ≤ Cn(‖u‖∞ + ‖v‖∞)(E1(u, u) + E1(v, v)) .

Now we can state the main result of this section.

THEOREM 1.2. Let (E,D(E)) be a quasi-regular semi-Dirichlet form on L2(E; m)

satisfying Assumption 1.1. Suppose u ∈ D(E)loc. Then,
(i) There exist Y [u] ∈ MI (ζ )

loc and Z[u] ∈ Lc such that

ũ(Xt ) − ũ(X0) = Y
[u]
t + Z

[u]
t + F

[u]
t , t ≥ 0, Px -a.s. for E-q.e. x ∈ E .(7)

The decomposition (7) is unique up to the equivalence of local AFs, and the continuous part
of Y [u] belongs to Ṁloc.

(ii) There exists an {En} ∈ 	 such that for n ∈ N, {Y [u]
t∧τEn

} is a Px -square-integrable

martingale for E-q.e. x ∈ E, eEn,∗(Y [u]) < ∞; Ex[(Z[u]
t∧τEn

)2] < ∞ for t ≥ 0, E-q.e. x ∈ E,

eEn,∗(Z[u]) = 0.
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A Fukushima type decomposition for A[u] has been established in [17] under Condition
(S). Below we will follow the argument of [17] to establish the decomposition for A[u] −F [u]
without assuming Condition (S). Before proving Theorem 1.2, we prepare some lemmas.

We fix a {Vn} ∈ 	 satisfying Assumption 1.1. Without loss of generality, we assume

that ˜̂h is bounded on each Vn, otherwise we may replace Vn by Vn ∩ {̃ĥ < n}. Since h̄Vn =
Ĝ

Vn

1 φ ≤ Ĝ1φ = ĥ, h̄Vn is bounded on Vn. To simplify notations, we write

h̄n := h̄Vn .

LEMMA 1.3 ([17, Lemma 1.12]). Let u ∈ D(E)Vn,b. Then there exist uniqueMn,[u] ∈
ṀVn and Nn,[u] ∈ N Vn

c such that for E-q.e. x ∈ Vn,

ũ(X
Vn
t ) − ũ(X

Vn

0 ) = M
n,[u]
t + N

n,[u]
t , t ≥ 0, Px -a.s.(8)

We now fix a u ∈ D(E)loc. Then, there exist {V 1
n } ∈ 	 and {un} ⊂ D(E) such that

u = un m-a.e. on V 1
n . By [16, Proposition 3.6], we may assume without loss of generality

that each un is E-quasi-continuous. By [16, Proposition 2.16], there exists an E-nest {F 2
n } of

compact subsets of E such that {un} ⊂ C({F 2
k }). Denote by V 2

n the fine interior of F 2
n . Then

{V 2
n } ∈ 	. Denote V 3

n = Vn ∩ V 1
n ∩ V 2

n . Then {V 3
n } ∈ 	 and each un is bounded on V 3

n .
For n ∈ N, we define En = {x ∈ E | h̃n(x) > 1

n
}, where hn := G

Vn

1 φ. Then {En} ∈ 	

satisfying En
E ⊂ En+1 E-q.e. and En ⊂ Vn E-q.e. for each n ∈ N (cf. [11, Lemma 3.8]).

Hereafter, for B ⊂ E, we use B
E

to denote its E-quasi-closure. Define fn = nh̃n ∧ 1. Then
fn ∈ D(E)Vn,b, fn = 1 on En and fn = 0 on V c

n . Denote by Qn the bound of |un| on V 3
n . By

[11, (2.1)] and Assumption 1.1, we find that [(−Qnfn) ∨ un ∧ (Qnfn)]fn ∈ D(E)Vn,b. To
simplify notations, below we still use un to denote [(−Qnfn) ∨ un ∧ (Qnfn)]. Then we have
un, unfn ∈ D(E)Vn,b, and u = un = unfn on En ∩ V 3

n .
Denote by J n(dx, dy) and Kn the jumping and killing measures of (EVn,D(EVn)), re-

spectively. Let (Nn(x, dy),Hn
s ) be a Lévy system of MVn and μHn be the Revuz measure

of Hn. Then J n(dy, dx) = 1
2Nn(x, dy)μHn(dx) and Kn(dx) = Nn(x, {�})μHn(dx). For

n ∈ N, since fn, unfn ∈ D(E)Vn,b, we obtain by [17, Proposition 1.8] that fn, unfn sat-
isfy Condition (S). That is, μn

fn
(dx) := ∫

Vn
(fn(x) − fn(y))2J n(dy, dx) and μn

unfn
(dx) :=∫

Vn
((unfn)(x)− (unfn)(y))2J n(dy, dx) are smooth measures with respect to MVn . Let V be

an E-quasi-open set of E. We define

	V := {{Rk} | Rk is E-quasi-open, Rk ⊂ Rk+1 E-q.e.

∀ k ∈ N, and V =
∞⋃

k=1

Rk E-q.e.} .

Then, for each n ∈ N, there exists a {Rn
k }k∈N ∈ 	Vn such that for each k ∈ N,

Kn(Rn
k ) < ∞,

∫
Rn

k

∫
Vn

(fn(x) − fn(y))2J n(dy, dx) < ∞ ,(9)
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Rn

k

∫
Vn

((unfn)(x) − (unfn)(y))2J n(dy, dx) < ∞ .

By [11, Lemma 3.8], we may assume without loss of generality that Rn
k

E ⊂ Rn
k+1 E-q.e.

Since {Vn} ∈ 	, by [11, Lemma 3.6] and the separability of D(E) with respect to the
E1/2

1 -norm, we know that there exists a sequence {ξn} satisfying ξn ∈ D(E)Vn for n ∈ N

and {ξn | n ∈ N} is E1/2
1 -dense in D(E). For each n ∈ N, we select an an ∈ N such that

infξ∈D(E)Rn
an
E1/2

1 (ξn − ξ, ξn − ξ) < 1
n

. Then
⋃∞

n=1 D(E)Rn
an

is E1/2
1 -dense in D(E) and thus

limn→∞ capφ(E\Rn
an

) = 0 by [14]. We select a subsequence {nl} such that capφ(E\Rnl
anl

) <

1
2l for each l ∈ N. Define �l := ⋂∞

k=l R
nk
ank

E
for l ∈ N. Then, {�l} is an E-q.e. increasing

sequence of E-quasi-closed sets satisfying liml→∞ capφ(E\�l) = 0. For l ∈ N, we define by
V 4

nl
the fine interior of �l . Therefore, we obtain by [11, Lemma 3.7] and (9) that {V 4

nl
}∞l=1 ∈ 	

and for each l ∈ N, V 4
nl

⊂ Vnl ,

Knl (V 4
nl

) < ∞,

∫
V 4

nl

∫
Vnl

(fnl (x) − fnl (y))2J nl (dy, dx) < ∞ ,∫
V 4

nl

∫
Vnl

((unl fnl )(x) − (unl fnl )(y))2J nl (dy, dx) < ∞ .

To simplify notations, we still use {n} to denote {nl} and use En to denote Enl ∩ V 3
nl

∩ V 4
nl

.
Then we have {En} ∈ 	 and for each n ∈ N, En ⊂ Vn, unfn ∈ D(E)Vn,b, u = unfn on En,

Kn(En) < ∞,

∫
En

∫
Vn

(fn(x) − fn(y))2J n(dy, dx) < ∞ ,(10) ∫
En

∫
Vn

((unfn)(x) − (unfn)(y))2J n(dy, dx) < ∞ .

LEMMA 1.4. Let u ∈ D(E)loc. Denote

F
[u],∗
t :=

∑
0<s≤t

(ũ(Xs) − ũ(Xs−))21{|ũ(Xs)−ũ(Xs−)|≤1} .

Then, F [u],∗
t∧τEn

is integrable with respect to Pν := ∫ Pxν(dx) for any ν ∈ Ŝ∗
00 satisfying ν(E) <

∞.

PROOF. Let ν ∈ Ŝ∗
00 with ν(E) < ∞. By [13, Lemma A.9], there exists a constant

Cν > 0 such that for any PCAF A with Revuz measure μA, we have

Eν(At) ≤ Cν(1 + t)

∫
E

˜̂
hdμA, t > 0 .(11)

Note that u(Xs) = un(Xs) for any s < τEn . By [7, (A.3.23)], (6) and (11), we get

Eν[F [u],∗
t∧τEn

](12)



104 C.-Z. CHEN, L. MA AND W. SUN

≤Eν

⎡⎣ ∑
0<s≤t∧τEn

(un(Xs) − un(Xs−))21{|un(Xs)−un(Xs−)|≤1}

⎤⎦+ ν(E)

=Eν

[∫ t∧τEn

0

∫
E�

[un(y) − un(Xs)]21{|un(y)−un(Xs)|≤1}N(Xs, dy)dHs

]
+ ν(E)

≤Cν(1 + t)

∫
En

˜̂
h(x)

∫
E�

(un(y) − un(x))21{|un(y)−un(x)|≤1}N(x, dy)μH (dx) + ν(E)

=Cν(1 + t)

{
2
∫

En

˜̂
h(x)

∫
E

(un(y) − un(x))21{|un(y)−un(x)|≤1}J (dy, dx)

+
∫

En

˜̂
h(x)u2

n(x)1{|un(x)|≤1}K(dx)

}
+ ν(E)

=Cν(1 + t)

{
2
∫

En

˜̂
h(x)

∫
Vn

(un(y) − un(x))21{|un(y)−un(x)|≤1}J n(dy, dx)

+
∫

En

˜̂
h(x)u2

n(x)1{|un(x)|≤1}Kn(dx)

}
+ ν(E) .

Note here that Kn(dx) = K(dx) + 2J (V c
n , dx) on Vn and J n = J on Vn × Vn.

Further, we obtain by fn = 1 on En, (10) and (12) that

Eν[F [u],∗
t∧τEn

]

≤Cν(1+t)‖ ˜̂
h|En‖∞

{
2
∫

En

f 2
n (x)

∫
Vn

(un(y)−un(x))21{|un(y)−un(x)|≤1}J n(dy, dx)+Kn(En)

}
+ ν(E)

≤Cν(1 + t)‖ ˜̂
h|En‖∞

{
4
∫

En

∫
Vn

(fn(x) − fn(y))2J n(dy, dx)

+ 4
∫

En

∫
Vn

f 2
n (y)(un(y) − un(x))2J n(dy, dx) + Kn(En)

}
+ ν(E)

≤Cν(1 + t)‖ ˜̂
h|En‖∞

{
4
∫

En

∫
Vn

(fn(x) − fn(y))2J n(dy, dx)

+ 8
∫

En

∫
Vn

((unfn)(x) − (unfn)(y))2J n(dy, dx)

+ 8
∫

En

u2
n(x)

∫
Vn

(fn(x) − fn(y))2J n(dy, dx) + Kn(En)

}
+ ν(E)

<∞ .

�

Proof of Theorem 1.2 (i). Let {Vn}, {En} and {unfn} be given as before. By Lemma 1.3, for
n ∈ N, there exist unique Mn,[unfn] ∈ ṀVn and Nn,[unfn] ∈ N Vn

c such that for E-q.e. x ∈ Vn,

unfn(X
Vn
t ) − unfn(X

Vn

0 ) = M
n,[unfn]
t + N

n,[unfn]
t , t ≥ 0, Px -a.s.
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Hereafter, for a martingale M , we denote by Mc and Md its continuous part and purely
discontinuous part, respectively. By [17, Lemma 1.14], for n < l, we have M

n,[unfn],c
t∧τEn

=
M

l,[ulfl],c
t∧τEn

, t ≥ 0, Px-a.s. for E-q.e. x ∈ Vn. Therefore, we can define {M [u],c
t | 0 ≤ t < ∞}

by M
[u],c
t := liml→∞ M

l,[ulfl],c
t for 0 ≤ t ≤ τEn and n ∈ N; M

[u],c
t := 0 for t > ζ if there

exists some n ∈ N such that τEn = ζ and ζ < ∞, or M
[u],c
t := 0 for t ≥ ζ if τEn < ζ for any

n ∈ N. Following the argument of the proof of [17, Theorem 1.4], we can show that M [u],c is
well defined, M [u],c ∈ Ṁloc and M [u],c ∈ MI (ζ )

loc .
Denote �u(Xs) := ũ(Xs) − ũ(Xs−). By Lemma 1.4,

Y l
t :=

∑
0<s≤t

�u(Xs)1{ 1
l ≤|�u(Xs)|≤1} −

⎛⎝ ∑
0<s≤t

�u(Xs)1{ 1
l ≤|�u(Xs)|≤1}

⎞⎠p

=
∑

0<s≤t

�u(Xs)1{ 1
l
≤|�u(Xs)|≤1}

−
∫ t

0

∫
{ 1

l ≤|ũ(y)−ũ(Xs)|≤1}
(ũ(y) − ũ(Xs))N(Xs, dy)dHs

is well-defined. Hereafter p denotes the dual predictable projection. Further, by Lemma 1.4
and following the argument of the proof of [17, Theorem 1.4] (with Ml therein replaced with
Y l of this paper), we can show that for E-q.e. x ∈ E, Y

lk
t∧τEn

converges uniformly in t on each
finite interval for a subsequence {lk → ∞} and for each k,

Y
lk
(t+s)∧τEn

= Y
lk
t∧τEn

+ Y
lk
s∧τEn

◦ θt∧τEn
, if 0 ≤ t, s < ∞ .

Thus, Ln, the limit of {Y lk
s∧τEn

}∞k=1, is a Px-square integrable purely discontinuous martingale
for E-q.e. x ∈ E and satisfies:

Ln
(t+s)∧τEn

= Ln
t∧τEn

+ Ln
s∧τEn

◦ θt∧τEn
, if 0 ≤ t, s < ∞ .

By the above construction, we find that L
n1
t∧τEn1

= L
n2
t∧τEn1

for n1 ≤ n2. We define {Y [u],d
t | 0

≤ t < ∞} by Y
[u],d
t := Ln

t for 0 ≤ t ≤ τEn and n ∈ N; Y
[u],d
t := 0 for t > ζ if there exists

some n ∈ N such that τEn = ζ and ζ < ∞, or Y
[u],d
t := 0 for t ≥ ζ if τEn < ζ for any n ∈ N.

Then Y [u],d ∈ MI (ζ )
loc , which gives all the jumps of ũ(Xt ) − ũ(X0) on I (ζ ) with jump size

less than or equal to 1. Since {Y l
t } is an MAF for each l, we find that {Y [u],d

t } is a local MAF
by the locally uniform convergence on I (ζ ).

We define Y [u] := M [u],c + Y [u],d and Z
[u]
t∧τEn

:= ũ(Xt∧τEn
) − ũ(X0) − Y

[u]
t∧τEn

− F
[u]
t∧τEn

for each n ∈ N. Then Z[u] is a local AF of M. Note that

�Z
[u]
t∧τEn

=�ũ(Xt∧τEn
) − �Y

[u]
t∧τEn

− �F
[u]
t∧τEn

=�ũ(Xt∧τEn
) − �ũ(Xt∧τEn

)1{|�ũ(Xt∧τEn
)|≤1}

− �ũ(Xt∧τEn
)1{|�ũ(Xt∧τEn

)|>1}
=0 .
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Hence t �→ Z
[u]
t∧τEn

is continuous. Now we show that {Z[u]
t∧τEn

} has zero quadratic variation and

thus Z[u] ∈ Lc. Note that fn = 0 on V c
n . By Fukushima’s decomposition for part processes,

we have that

unfn(Xt∧τEn
) − unfn(X0)(13)

=unfn(X
Vn
t∧τEn

) − unfn(X
Vn

0 )

=M
n,[unfn]
t∧τEn

+ N
n,[unfn]
t∧τEn

=M
n,[unfn],c
t∧τEn

+ M
n,[unfn],d
t∧τEn

+ N
n,[unfn]
t∧τEn

=M
n,[unfn],c
t∧τEn

+ M
n,[unfn],sd
t∧τEn

+ M
n,[unfn],bd
t∧τEn

+ N
n,[unfn]
t∧τEn

,

where

M
n,[unfn],sd
t = lim

l→∞

⎧⎨⎩ ∑
0<s≤t

(unfn(X
Vn
s ) − unfn(X

Vn
s−))1{ 1

l
≤|unfn(X

Vn
s )−unfn(X

Vn
s−)|≤1}

−
∫ t

0

∫
{ 1

l ≤|unfn(y)−unfn(X
Vn
s )|≤1}

(unfn(y)−unfn(X
Vn
s ))Nn(XVn

s , dy)dHn
s

}
,

and

M
n,[unfn],bd
t =

∑
0<s≤t

(unfn(X
Vn
s ) − unfn(X

Vn
s−))1{|unfn(X

Vn
s )−unfn(X

Vn
s− )|>1}

−
∫ t

0

∫
{|unfn(y)−unfn(X

Vn
s )|>1}

(unfn(y) − unfn(X
Vn
s ))Nn(XVn

s , dy)dHn
s .

We define

Bt :=
{
(ũ(XτEn

) − ũ(XτEn−))1{|ũ(XτEn
)−ũ(XτEn−)|≤1}

−(unfn(XτEn
) − unfn(XτEn−))1{|unfn(XτEn

)−unfn(XτEn
−)|≤1}

}
1{τEn≤t } .

{Bt } is an adapted quasi-left continuous bounded variation process and hence its dual pre-
dictable projection {Bp

t } is an adapted continuous bounded variation process (cf. [7, Theo-
rem A.3.5]). By comparing (13) to

ũ(Xt∧τEn
) − ũ(X0) = M

[u],c
t∧τEn

+ Y
[u],d
t∧τEn

+ Z
[u]
t∧τEn

+ F
[u]
t∧τEn

,

we get

Z
[u]
t∧τEn

=N
n,[unfn]
t∧τEn

+ M
n,[unfn],sd
t∧τEn

− Y
[u],d
t∧τEn

+ M
n,[unfn],bd
t∧τEn

− F
[u]
t∧τEn

(14)

+ ũ(Xt∧τEn
) − unfn(Xt∧τEn

)

=N
n,[unfn]
t∧τEn

+ (M
n,[unfn],sd
t∧τEn

− Y
[u],d
t∧τEn

+ Bt − B
p
t ) + B

p
t

−
∫ t∧τEn

0

∫
{|unfn(y)−unfn(X

Vn
s )|>1}

(unfn(y) − unfn(X
Vn
s ))

· Nn(XVn
s , dy)dHn

s .
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Hence {Mn,[unfn],sd
t∧τEn

−Y
[u],d
t∧τEn

+Bt −B
p
t } is a purely discontinuous martingale with zero jump,

which must be equal to zero. The quadratic variation of {Nn,[unfn]
t∧τEn

} vanishes in Ph̄n·m-measure

(see the proof of [17, Lemma 1.14]) and the quadratic variation of {Bp
t } vanishes in Pφ·m-

measure since {Bp
t } is a continuous bounded variation process. Denote by Cn

t the last term
of (14). By (10), one finds that {Cn

t } is a Pν -square-integrable continuous bounded variation
process for any ν ∈ Ŝ∗

00 satisfying ν(E) < ∞. Hence its quadratic variation vanishes in

Pφ·m-measure. Therefore, the quadratic variation of {Z[u]
t∧τEn

} vanishes in Pm-measure since

m(En) < ∞, i.e., {Z[u]
t∧τEn

} has zero quadratic variation.

Finally, we prove the uniqueness of decomposition (7). Suppose that Y ′ ∈ MI (ζ )
loc and

Z′ ∈ Lc such that

ũ(Xt ) − ũ(X0) = Y ′
t + Z′

t + F
[u]
t , t ≥ 0, Px-a.s. for E-q.e. x ∈ E .

By [17, Proposition 2.4], we can choose an {En} ∈ 	 such that I (ζ ) = ∪n[[0, τEn ]] Px -a.s. for
E-q.e. x ∈ E. Then, for each n ∈ N, {(Y [u] −Y ′)τEn } is a locally square integrable martingale
and a zero quadratic variation process. This implies that Pm(〈(Y [u] − Y ′)τEn 〉t = 0,∀t ∈
[0,∞)) = 0. By [13, Theorem A.8], following the proof of [7, Lemma 5.1.10(iii)], we have
that Px(〈(Y [u] − Y ′)τEn 〉t = 0,∀t ∈ [0,∞)) = 0 for E-q.e. x ∈ E. Therefore Y

[u]
t = Y ′

t ,
0 ≤ t ≤ τEn , Px -a.s. for E-q.e. x ∈ E. Since n is arbitrary, we obtain the uniqueness of
decomposition (7) up to the equivalence of local AFs.
Proof of Theorem 1.2 (ii). By (i), Y [u] ∈ MI (ζ )

loc . Hence 〈Y [u],d〉t = (
∫ t

0

∫
E�

(ũ(Xs) −
ũ(y))21{|ũ(Xs)−ũ(y)|≤1}N(Xs, dy)dHs)1I (ζ ) is a PCAF on I (ζ ) and can be extended to a
PCAF by [3, Remark 2.2]. The Revuz measure of 〈Y [u],d〉 is given by

μd〈u〉(dx) =2
∫

E

(ũ(x) − ũ(y))21{|ũ(x)−ũ(y)|≤1}J (dy, dx)

+ ũ2(x)1{|ũ(x)|≤1}K(dx) .

By [17, Lemma 1.1], μd
〈u〉 is a smooth measure. Therefore, there exists an {E′

n} ∈ 	 such that

μd〈u〉(E′
n) < ∞ for each n ∈ N. To simplify notations, we still use En to denote En ∩ E′

n.
The remaining part of the proof is similar to that of [17, Theorem 1.15]. We omit the details
here. �

REMARK 1.5. (i) As in [17, Theorem 1.4], if we use M[[0,ζ [[
loc instead of MI (ζ )

loc , then
the uniqueness of the decomposition (7) may fail to be true.

(ii) For u ∈ D(E)loc, if Condition (S) holds, i.e., μu ∈ S, then by [17, Theorem 1.4],
there exist unique M [u] ∈ MI (ζ )

loc and N [u] ∈ Lc such that

ũ(Xt ) − ũ(X0) = M
[u]
t + N

[u]
t , t ≥ 0, Px-a.s. for E-q.e. x ∈ E ,(15)

with

M
[u]
t = M

[u],c
t + M

[u],d
t ,(16)
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and

M
[u],d
t = lim

l→∞

⎧⎨⎩ ∑
0<s≤t

(ũ(Xs) − ũ(Xs−))1{ 1
l ≤|ũ(Xs)−ũ(Xs−)|}(17)

−
∫ t

0

∫
{ 1

l
≤|ũ(y)−ũ(Xs)|}

(ũ(y) − ũ(Xs))N(Xs, dy)dHs

}
.

By comparing (15)-(17) with

ũ(Xt ) − ũ(X0) =Y
[u]
t + Z

[u]
t + F

[u]
t

=M
[u],c
t + Y

[u],d
t + Z

[u]
t + F

[u]
t ,

Y
[u],d
t = lim

l→∞

⎧⎨⎩ ∑
0<s≤t

(ũ(Xs) − ũ(Xs−))1{ 1
l
≤|ũ(Xs)−ũ(Xs−)|≤1}

−
∫ t

0

∫
{ 1

l
≤|ũ(y)−ũ(Xs)|≤1}

(ũ(y) − ũ(Xs))N(Xs, dy)dHs

}
,

we get

M
[u]
t =Y [u] +

∑
0<s≤t

(ũ(Xs) − ũ(Xs−))1{|ũ(Xs)−ũ(Xs−)|>1}

−
∫ t

0

∫
{|ũ(y)−ũ(Xs)|>1}

(ũ(y) − ũ(Xs))N(Xs, dy)dHs ,

and

N
[u]
t = Z[u] +

∫ t

0

∫
{|ũ(y)−ũ(Xs)|>1}

(ũ(y) − ũ(Xs))N(Xs, dy)dHs .

2. Stochastic integral and Itô’s formula. Let (E,D(E)) be a quasi-regular semi-
Dirichlet form on L2(E; m) with associated Markov process M = ((Xt )t≥0, (Px)x∈E�).
Throughout this section, we put the following assumption.

ASSUMPTION 2.1. There exist {Vn} ∈ 	, Dirichlet forms (η(n),D(η(n))) on L2(Vn;
m), and constants {Cn > 1} such that for each n ∈ N, D(η(n)) = D(E)Vn and

1

Cn

η
(n)
1 (u, u) ≤ E1(u, u) ≤ Cnη

(n)
1 (u, u), ∀u ∈ D(E)Vn .

By [15, Corollary 4.15], Assumption 2.1 implies Assumption 1.1. In this section, we
will first define stochastic integrals for part forms (EVn,D(E)Vn) and then extend them to
(E,D(E)).
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2.1. Stochastic integral for part process. We fix a {Vn} ∈ 	 satisfying Assumption

2.1. Without loss of generality, we assume that ˜̂h is bounded on each Vn, otherwise we may

replace Vn by Vn ∩ {̃ĥ < n}. For n ∈ N, let (EVn,D(E)Vn) be the part form of (E,D(E))

on L2(Vn; m). Then, (EVn,D(E)Vn) is a quasi regular semi-Dirichlet form with associated
Markov process MVn = ((X

Vn
t )t≥0, (P

Vn
x )x∈(Vn)�) (cf. [11]).

Let u ∈ D(E)Vn and denote A
n,[u]
t = ũ(X

Vn
t ) − ũ(X

Vn

0 ). By Lemma 1.3, we have
the decomposition (8). For v ∈ D(E)Vn,b, we will follow [2] to define the stochastic inte-
gral
∫ t

0 ṽ(X
Vn
s−)dA

n,[u]
s and derive the related Itô’s formula. Note that since (EVn,D(E)Vn)

is only a semi-Dirichlet form, its symmetric part (ẼVn,D(E)Vn) might not be a Dirichlet
form. However, we can use (η̃(n),D(η(n))), the symmetric part of (η(n),D(η(n))), to substitute
(ẼVn,D(E)Vn) and then follow the argument of [2] to define Nakao’s integral

∫ t

0 ṽ(X
Vn
s−)dN

n,[u]
s

and prove its related properties. Below we will mainly state the results and point out only the
necessary modifications in proofs. For more details we refer the reader to [2].

We use A
n,+
c to denote the family of all PCAFs of MVn . Define

A
n,+,f
c := {A ∈ An,+

c | the smooth measure, μA, corresponding to A is finite}
and

N n,∗
c :=

{
N

[u]
t +

∫ t

0
g(Xs)ds + A

(1)
t − A

(2)
t

∣∣∣∣ u ∈ D(E)Vn , g ∈ L2(Vn; m) and A(1), A(2) ∈ A
n,+,f
c

}
.

Note that any C ∈ N n,∗
c is finite and continuous on [0,∞) Px -a.s. for E-q.e. x ∈ E. Similar

to [18, Theorem 2.2], we can prove the following lemma.

LEMMA 2.2. Let ϒ be a finely open set such thatϒ ⊂ Vn. IfC(1), C(2) ∈ N n,∗
c satisfy

lim
t↓0

1

t
E

Vn

h·m[C(1)
t ] = lim

t↓0

1

t
E

Vn

h·m[C(2)
t ], ∀h ∈ D(E)ϒ,b ,

then C(1) = C(2) for t < τϒ P
Vn
x -a.s. for E-q.e. x ∈ Vn.

For u ∈ D(E)Vn and v ∈ D(E)Vn,b, we will define
∫ t

0 ṽ(X
Vn
s−)dN

n,[u]
s to be the unique

AF (Ct )t≥0 in N n,∗
c that satisfies limt↓0

1
t
E

Vn

h·m[Ct ] = −EVn(u, hv) for any h ∈ D(E)Vn,b

(see Definition 2.5 and Remark 2.6 below). Denote by (LVn,D(LVn)) the generator of (EVn,

D(E)Vn). Note that if u ∈ D(LVn) then dN
n,[u]
s = LVnu(X

Vn
s )ds. In this case, it is easy to

see that for any v, h ∈ D(E)Vn,b,

lim
t↓0

1

t
E

Vn

h·m
[∫ t

0
v(XVn

s )LVnu(XVn
s )ds

]
=
∫

Vn

hvLVnudm = −EVn(u, hv)

(cf. [13, Theorem A.8(vi)]). Hence our definition of the stochastic integral
∫ t

0 ṽ(X
Vn
s )dN

n,[u]
s

for u ∈ D(E)Vn is an extension of the ordinary Lebesgue integral
∫ t

0 ṽ(X
Vn
s )LVnu(X

Vn
s )ds for

u ∈ D(LVn).
Similar to [2, Lemma 2.1], we can prove the following lemma.
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LEMMA 2.3. Let f ∈ D(E)Vn . Then there exist unique f ∗ ∈ D(E)Vn and f � ∈
D(E)Vn such that for any g ∈ D(E)Vn ,

EVn

1 (f, g) = η̃
(n)
1 (f ∗, g)(18)

and

η̃
(n)
1 (f, g) = EVn

1 (f �, g) .(19)

Let f, g ∈ D(E)Vn . We use μ̃
(n)
〈f,g〉 to denote the mutual energy measure of f and g

with respect to the symmetric Dirichlet form (η̃(n),D(E)Vn). Suppose that u ∈ D(E)Vn and
v ∈ D(E)Vn,b. By [7, Theorem 5.2.3 and Lemma 5.6.1], we get∣∣∣∣∫

Vn

ṽdμ̃
(n)
〈h,u∗〉

∣∣∣∣ ≤(∫
Vn

ṽ2dμ̃
(n)
〈h,h〉
) 1

2
(∫

Vn

dμ̃
(n)
〈u∗,u∗〉

) 1
2

≤2‖ṽ‖∞(η̃
(n)
1 (h, h))

1
2 (η̃

(n)
1 (u∗, u∗))

1
2 .

Hence h �→ 1
2

∫
Vn

ṽdμ̃
(n)
〈h,u∗〉 is a bounded linear function on D(E)Vn . By the Riesz represen-

tation theorem, there exists a unique element in D(E)Vn , which is denoted by λ(u, v), such
that

1

2

∫
Vn

ṽdμ̃
(n)
〈h,u∗〉 = η̃

(n)
1 (λ(u, v), h), ∀h ∈ D(E)Vn .

Let u∗ and λ(u, v)� be the unique elements in D(E)Vn as defined by (18) and (19) relative to
u and λ(u, v), respectively. Similar to [2, Theorem 2.2], we can prove the following result.

THEOREM 2.4. Let u ∈ D(E)Vn and v ∈ D(E)Vn,b. Then, for any h ∈ D(E)Vn,b,

EVn(u, hv) = EVn

1 (λ(u, v)�, h) + 1

2

∫
Vn

h̃dμ̃
(n)
〈v,u∗〉 +

∫
Vn

(u∗ − u)hvdm .(20)

Note that μ̃
(n)
〈v,u∗〉 is a signed smooth measure with respect to (η̃(n),D(η(n))) and hence

(EVn,D(E)Vn) by Assumption 2.1. We use G(u, v) to denote the unique element in A
n,+
c −

A
n,+
c that is corresponding to μ̃

(n)
〈v,u∗〉 under the Revuz correspondence between smooth mea-

sures of (EVn,D(E)Vn ) and PCAFs of MVn (cf. [13, Theorem A.8]). To simplify notations,
we define

�(u, v)t := N
[λ(u,v)�]
t −

∫ t

0
λ(u, v)�(XVn

s )ds, t ≥ 0 .

DEFINITION 2.5. Let u ∈ D(E)Vn and v ∈ D(E)Vn,b. We define for t ≥ 0,∫ t

0
ṽ(X

Vn
s−)dNn,[u]

s :=
∫ t

0
ṽ(XVn

s )dNn,[u]
s

:=�(u, v)t − 1

2
G(u, v)t −

∫ t

0
(u∗ − u)v(XVn

s )ds .
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REMARK 2.6. Let u ∈ D(E)Vn and v ∈ D(E)Vn,b. Then one can check that
∫ t

0 ṽ(X
Vn
s )

dN
n,[u]
s ∈ N n,∗

c . By Definition 2.5, (8), [1, Theorem 3.4], [13, Theorem A.8(iii)] and (20),
we obtain that

lim
t↓0

1

t
E

Vn

h·m
[∫ t

0
ṽ(XVn

s )dN [u],n
s

]
= lim

t↓0

1

t
E

Vn

h·m
[
N

[λ(u,v)�]
t −

∫ t

0
λ(u, v)�(XVn

s )ds − 1

2
G(u, v)t −

∫ t

0
(u∗ − u)v(XVn

s )ds

]
= − EVn

1 (λ(u, v)�, h) − 1

2

∫
Vn

h̃dμ̃
(n)
〈v,u∗〉 −

∫
Vn

(u∗ − u)hvdm

= − EVn(u, hv), ∀h ∈ D(E)Vn,b .

Therefore, by Lemma 2.2,
∫ t

0 ṽ(X
Vn
s )dN

n,[u]
s is the unique AF (Ct )t≥0 in N n,∗

c that satisfies

limt↓0
1
t
E

Vn

h·m[Ct ] = −EVn(u, hv) for any h ∈ D(E)Vn,b.

Similar to [2, Proposition 2.6], we can prove the following proposition.

PROPOSITION 2.7. Let u ∈ D(E)Vn , v ∈ D(E)Vn,b and ϒ be a finely open set such

that ϒ ⊂ Vn. Suppose that there exist A(1), A(2) ∈ A
n,+
c such that N

n,[u]
t = A

(1)
t − A

(2)
t for

t < τϒ . Then ∫ t

0
ṽ(XVn

s )dNn,[u]
s =

∫ t

0
ṽ(XVn

s )d(A(1)
s − A(2)

s ) for t < τϒ

P
Vn
x -a.s. for E-q.e. x ∈ Vn.

THEOREM 2.8. Let v ∈ D(E)Vn,b and {uk}∞k=0 ⊂ D(E)Vn such that uk converges to

u0 with respect to the Ẽ1/2
1 -norm as k → ∞. Then there exists a subsequence {k′} such that

for E-q.e. x ∈ Vn,

PVn
x

(
lim

k′→∞

∫ t

0
ṽ(XVn

s )dN
n,[uk′ ]
s

=
∫ t

0
ṽ(XVn

s )dNn,[u0]
s uniformly on any finite interval of t

)
= 1 .

PROOF. By Definition 2.5, we have∫ t

0
ṽ(XVn

s )dNn,[uk]
s =N

n,[λ(uk,v)�]
t −

∫ t

0
λ(uk, v)�(XVn

s )ds

− 1

2
G(uk, v)t −

∫ t

0
(u∗

k − uk)v(XVn
s )ds .

For each term of the right hand side of the above equation, we can prove that there exists a
subsequence which converges uniformly on any finite interval of t . Below we will only give
the proof for the convergence of the third term. The convergence of the other three terms can
be proved similar to [2, Theorem 2.7] by virtue of [13, Lemmas 2.5 and A.6].
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We use Sn
0 and Û

Vn

1 μ to denote respectively the family of positive measures of finite
energy integral and 1-co-potential relative to (EVn,D(E)Vn). Define

Ŝ
n,∗
00 := {μ ∈ Sn

0 | ÛVn

1 μ ≤ cĜ
Vn

1 φ for some constant c > 0} .

Let A ∈ B(E). By [13, Theorem A.3], if ν(A) = 0 for every ν ∈ Ŝ
n,∗
00 then capφ(A) = 0,

where the capacity capφ is defined as in [14].

Let ν ∈ Ŝ
n,∗
00 . Recall that for u ∈ D(E)Vn , G(u, v) denotes the unique element in

A
n,+
c −A

n,+
c that is corresponding to μ̃

(n)
〈v,u∗〉 under the Revuz correspondence between smooth

measures of (EVn,D(E)Vn ) and PCAFs of MVn . Hence G(uk, v)−G(u0, v) = G(uk −u0, v)

for k ≥ 1. We use G+(uk − u0, v) and G−(uk − u0, v) to denote the PCAFs corresponding
to μ̃

(n),+
〈v,(uk−u0)

∗〉 and μ̃
(n),−
〈v,(uk−u0)

∗〉, respectively. Then,

EVn
ν

[
sup

0≤s≤t

|G(uk, v)s − G(u0, v)s |
]

= EVn
ν

[
sup

0≤s≤t

|G(uk − u0, v)s |
]

≤ EVn
ν

[
sup

0≤s≤t

G+(uk − u0, v)s

]
+ EVn

ν

[
sup

0≤s≤t

G−(uk − u0, v)s

]
= EVn

ν [G+(uk − u0, v)t ] + EVn
ν [G−(uk − u0, v)t ] .

Therefore, by [13, Lemma A.9], we find that there exists a constant Cν > 0 (independent of
k) such that

EVn
ν

[
sup

0≤s≤t

|G(uk, v)s − G(u0, v)s |
]

≤ Cν(1 + t)

∫
Vn

˜̄hnd|μ̃(n)
〈v,(uk−u0)

∗〉|

≤ Cν(1 + t)

(∫
Vn

˜̄hn

2
dμ̃

(n)
〈v〉
) 1

2
(∫

Vn

dμ̃
(n)
〈(uk−u0)

∗〉
) 1

2

≤ 2Cν(1 + t)‖ ˜̄hn‖∞(η(n)(v, v))
1
2 (η(n)((uk − u0)

∗, (uk − u0)
∗))

1
2 ,

which converges to 0 as k → ∞. The proof is completed by the same method used in the
proof of [7, Lemma 5.1.2] (cf. [19, Theorem 2.3.8]). �

Similar to [2, Proposition 2.6 and Corollary 3.2], we can prove the following two propo-
sitions.

PROPOSITION 2.9. Let u, v ∈ D(E)Vn,b. Then∫ t

0
ṽ(XVn

s )dNn,[u]
s +

∫ t

0
ũ(XVn

s )dNn,[v]
s = N

n,[uv]
t − 〈Mn,[u],Mn,[v]〉t , t ≥ 0 ,
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P
Vn
x -a.s. for E-q.e. x ∈ Vn.

PROPOSITION 2.10. Let u ∈ D(E)Vn,b and {vk}∞k=0 ⊂ D(E)Vn,b such that vk con-

verges to v0 with respect to the ‖ · ‖∞-norm and the Ẽ1/2
1 -norm as k → ∞. Then there exists

a subsequence {k′} such that for E-q.e. x ∈ Vn,

PVn
x

(
lim

k′→∞

∫ t

0
ṽk′(XVn

s )dNn,[u]
s =∫ t

0
ṽ0(X

Vn
s )dNn,[u]

s uniformly on any finite interval of t

)
= 1 .

DEFINITION 2.11. Let u ∈ D(E)Vn and v ∈ D(E)Vn,b. We define for 0 ≤ t < ζ ,∫ t

0
ṽ(X

Vn
s−)dAn,[u]

s :=
∫ t

0
ṽ(X

Vn
s−)dMn,[u]

s +
∫ t

0
ṽ(X

Vn
s−)dNn,[u]

s .

Finally, by virtue of [17, Theorem 3.1] and similar to [2, Theorem 3.4], we can prove the
following result.

THEOREM 2.12. (i) Let u, v ∈ D(E)Vn,b. Then,

ũṽ(X
Vn
t ) − ũṽ(X

Vn

0 ) =
∫ t

0
ṽ(X

Vn
s−)dAn,[u](XVn

s ) +
∫ t

0
ũ(X

Vn
s−)dAn,[v](XVn

s )(21)

+ 〈Mn,[u],c,Mn,[v],c〉t
+
∑

0<s≤t

[�(uv)(XVn
s ) − ṽ(X

Vn
s−)�u(XVn

s ) − ũ(X
Vn
s−)�v(XVn

s )]

on [0, ζ ) P
Vn
x -a.s. for E-q.e. x ∈ Vn.

(ii) Let � ∈ C2(Rn) and u1, . . . , un ∈ D(E)Vn,b. Then,

�(ũ)(X
Vn
t ) − �(ũ)(X

Vn

0 ) =
n∑

i=1

∫ t

0
�i(ũ(X

Vn
s−))dAn,[ui ]

s

+ 1

2

n∑
i,j=1

∫ t

0
�ij (ũ(XVn

s ))d〈Mn,[ui ],c,Mn,[uj ],c〉s

+
∑

0<s≤t

[
��(ũ(XVn

s )) −
n∑

i=1

�i(ũ(X
Vn
s−))�ui(X

Vn
s )

]

on [0, ζ ) P
Vn
x -a.s. for E-q.e. x ∈ Vn, where

�i(x) = ∂�

∂xi

(x), �ij (x) = ∂2�

∂xi∂xj

(x), i, j = 1, . . . , n ,

and u = (u1, . . . , un).
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2.2. Stochastic integral for M. In this subsection, for u, v ∈ D(E)loc, we will define
the stochastic integral

∫ t

0 ṽ(Xs−)dA
[u]
s . To this end, we first choose a {Vn} ∈ 	 such that

Assumption 2.1 is satisfied and ˜̂h is bounded on each Vn. Then, we choose {En} ∈ 	 and
{un, vn} such that En ⊂ Vn, un, vn ∈ D(E)Vn,b, u = un and v = vn on En for each n ∈ N.
The existence of {En} and {un, vn} is justified by the argument before Lemma 1.4. Now we
define

∫ t

0 ṽ(Xs−)dA
[u]
s by∫ t

0
ṽ(Xs−)dA[u]

s := lim
n→∞

∫ t

0
ṽn(X

Vn
s−)dAn,[un]

s , 0 ≤ t < ζ ,(22)

where the stochastic integral
∫ t

0 ṽn(X
Vn
s−)dA

n,[un]
s is defined as in Definition 2.11.

THEOREM 2.13. For u, v ∈ D(E)loc, the stochastic integral in (22) is well-defined.
Moreover, if u, u′, v, v′ ∈ D(E)loc satisfy u = u′ and v = v′ on U for some finely open set U ,
then ∫ t

0
ṽ(Xs−)dA[u]

s =
∫ t

0
ṽ′(Xs−)dA[u′]

s ,(23)

for 0 ≤ t < τU , Px -a.s. for E-q.e. x ∈ E.

PROOF. First, we fix a {Vn} ∈ 	 such that Assumption 2.1 is satisfied and ˜̂h is bounded
on each Vn. Suppose that there are two finely open sets Fk , Fl satisfying Fk ⊂ Vk , Fl ⊂ Vl ,
k < l; fk, gk ∈ D(E)Vk,b, u = fk , v = gk on Fk; fl, gl ∈ D(E)Vl ,b, u = fl , v = gl on Fl .
Below we will show that∫ t

0
g̃k(X

Vk
s−)dA

k,[fk]
s =

∫ t

0
g̃l (X

Vl
s−)dA

l,[fl]
s ,(24)

for 0 ≤ t < τFk∩Fl , Px -a.s. for E-q.e. x ∈ Vk .
In fact, by approximating fl by a sequence of functions {f r

l } in D(LVl ), we obtain by
Proposition 2.7 and Theorem 2.8 that∫ t

0
g̃k(X

Vl
s−)dA

l,[fl]
s =

∫ t

0
g̃k(X

Vl
s−)dM

l,[fl]
s +

∫ t

0
g̃k(X

Vl
s−)dN

l,[fl]
s(25)

=
∫ t

0
g̃l (X

Vl
s−)dM

l,[fl]
s + lim

r→∞

∫ t

0
g̃k(X

Vl
s−)dN

l,[f r
l ]

s

=
∫ t

0
g̃l (X

Vl
s−)dM

l,[fl]
s + lim

r→∞

∫ t

0
g̃l (X

Vl
s−)dN

l,[f r
l ]

s

=
∫ t

0
g̃l (X

Vl
s−)dA

l,[fl]
s , 0 ≤ t < τFk∩Fl ,

P
Vl
x -a.s. for E-q.e. x ∈ Vl . Since A

l,[fl]
t∧τVl

∈ FVl
t∧τVl

−, (24) holds Px -a.s. for E-q.e. x ∈ Vl .
Further, we obtain by the integration by parts (21) that∫ t

0
g̃k(X

Vl
s−)dA

l,[fk]
s =

∫ t

0
g̃k(X

Vl
s−)dA

l,[fl]
s ,(26)
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for 0 ≤ t < τFk∩Fl , P
Vl
x -a.s. and hence Px -a.s. for E-q.e. x ∈ Vl . Note that M

k,[fk]
t∧τFk

= M
l,[fk]
t∧τFk

and N
k,[fk ]
t∧τFk

= N
l,[fk]
t∧τFk

P
Vk
x -a.s. for E-q.e. x ∈ Vk (cf. the proof of [17, Lemma 1.14]). By

approximating fk by a sequence of functions in D(LVk ), Proposition 2.7 and Theorem 2.8,
we get ∫ t

0
g̃k(X

Vk
s−)dA

k,[fk]
s =

∫ t

0
g̃k(X

Vl
s−)dA

l,[fk]
s , 0 ≤ t < τFk ,(27)

P
Vk
x -a.s. and hence Px -a.s. for E-q.e. x ∈ Vk . Therefore, (24) holds for 0 ≤ t < τFk∩Fl ,

Px -a.s. for E-q.e. x ∈ Vk by (25)-(27).
Now we suppose that (22) is defined by a different {Vn} ∈ 	, say {V ′

n} ∈ 	. By consid-
ering {Vn ∩ V ′

n}, [17, Proposition 2.4] and the above argument, we find that the two limits in
(22) are equal on [0, ζ ), Px -a.s. for E-q.e. x ∈ E. Therefore, (22) is well-defined.

From (24) and its proof, we find that if u, u′, v, v′ ∈ D(E)loc satisfy u = u′ and v = v′
on U for some finely open set U , then there exists an {En} ∈ 	 such that (23) holds on⋃

n[0, τEn∩U), Px -a.s. for E-q.e. x ∈ E. By [17, Proposition 2.4], this implies that (23) holds
for 0 ≤ t < τU , Px -a.s. for E-q.e. x ∈ E. The proof is complete. �

From the proof of Theorem 1.2, we find that M [u],c is well defined whenever u ∈
D(E)loc. Therefore, we obtain by Theorem 2.12 and (23) the following theorem.

THEOREM 2.14. Let � ∈ C2(Rn) and u1, . . . , un ∈ D(E)loc. Then,

A
[�(u)]
t =

n∑
i=1

∫ t

0
�i(ũ(Xs−))dA[ui ]

s + 1

2

n∑
i,j=1

∫ t

0
�ij (ũ(Xs))d〈M [ui ],c,M [uj ],c〉s(28)

+
∑

0<s≤t

[
��(ũ(Xs)) −

n∑
i=1

�i(ũ(Xs−))�ui(Xs)

]

on [0, ζ ) Px -a.s. for E-q.e. x ∈ E, where

�i(x) = ∂�

∂xi

(x), �ij (x) = ∂2�

∂xi∂xj

(x), i, j = 1, . . . , n ,

and u = (u1, . . . , un).

3. Some Examples. In this section, we give concrete examples for which all results
of the previous two sections can be applied.

First, we consider a local semi-Dirichlet form.

EXAMPLE 3.1 (see [21]). Let d ≥ 3, U be an open subset of Rd , σ, ρ ∈ L1
loc(U ; dx),

σ, ρ > 0 dx-a.e. For u, v ∈ C∞
0 (U), we define

Eρ(u, v) =
d∑

i,j=1

∫
U

∂u

∂xi

∂v

∂xj

ρdx .
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Assume that

(Eρ, C∞
0 (U)) is closable on L2(U ; σdx) .

Let aij , bi, di, c ∈ L1
loc(U ; dx), 1 ≤ i, j ≤ d . For u, v ∈ C∞

0 (U), we define

E(u, v) =
d∑

i,j=1

∫
U

∂u

∂xi

∂v

∂xj

aij dx +
d∑

i=1

∫
U

∂u

∂xi

vbidx

+
d∑

i=1

∫
U

u
∂v

∂xi

didx +
∫

U

uvcdx .

Set ãij := 1
2 (aij +aji), ǎij := 1

2 (aij −aji), b := (b1, . . . , bd), and d := (d1, . . . , dd). Define

F to be the set of all functions g ∈ L1
loc(U ; dx) such that the distributional derivatives ∂g

∂xi
, 1 ≤

i ≤ d , are in L1
loc(U ; dx) such that ‖∇g‖(gσ)− 1

2 ∈ L∞(U ; dx) or ‖∇g‖p(gp+1σp/q)− 1
2 ∈

Ld(U ; dx) for some p, q ∈ (1,∞) with 1
p

+ 1
q

= 1, p < ∞, where ‖ · ‖ denotes Euclidean

distance in Rd . We say that a B(U)-measurable function f has property (Aρ,σ ) if one of the
following conditions holds:

(i) f (ρσ)− 1
2 ∈ L∞(U ; dx).

(ii) f p(ρp+1σp/q)− 1
2 ∈ Ld(U, dx) for some p, q ∈ (1,∞) with 1

p
+ 1

q
= 1, p < ∞,

and ρ ∈ F .
Suppose that
(A.I) There exists η > 0 such that

∑d
i,j=1 ãij ξiξj ≥ η|ξ |2, ∀ξ = (ξ1, . . . , ξd ) ∈ Rd .

(A.II) ǎij ρ
−1 ∈ L∞(U ; dx) for 1 ≤ i, j ≤ d .

(A.III) For all K ⊂ U , K compact, 1K‖b + d‖ and 1Kc1/2 have property (Aρ,σ ), and
(c + α0σ)dx −∑d

i=1
∂di

∂xi
is a positive measure on B(U) for some α0 ∈ (0,∞).

(A.IV) ||b − d|| has property (Aρ,σ ).
(A.V) b = β + γ such that ‖β‖, ‖γ ‖ ∈ L1

loc(U, dx), (α0σ + c)dx −∑d
i=1

∂γi

∂xi
is a

positive measure on B(U) and ‖β‖ has property (Aρ,σ ).
Then, by [21, Theorem 1.2], there exists α > 0 such that (Eα, C∞

0 (U)) is closable on
L2(U ; dx) and its closure (Eα,D(Eα)) is a regular local semi-Dirichlet form on L2(U ; dx).
Define ηα(u, u) := Eα(u, u) − ∫ 〈�u, β〉udx for u ∈ D(Eα). By [21, Theorem 1.2 (ii) and
(1.28)], we know (ηα,D(E)α) is a Dirichlet form and there exists C > 1 such that for any
u ∈ D(Eα),

1

C
ηα(u, u) ≤ Eα(u, u) ≤ Cηα(u, u) .

Let M be the diffusion process associated with (Eα,D(Eα)). For u ∈ D(Eα)loc, we have the
decomposition (15) and Itô’s formula (28).

Next we consider a semi-Dirichlet form of pure jump type.
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EXAMPLE 3.2 (See [8] and cf. also [22]). Let (E, d) be a locally compact separable
metric space, m be a positive Radon Measure on E with full topological support, and k(x, y)

be a nonnegative Borel measurable function on {(x, y) ∈ E × E | x �= y}. Set ks(x, y) =
1
2 (k(x, y) + k(y, x)) and ka = 1

2 (k(x, y) − k(y, x)). Denote by C
lip
0 (E) the family of all

uniformly Lipschitz continuous functions on E with compact support. Suppose that the fol-
lowing conditions hold:
(B.I) x �→ ∫y �=x(1 ∧ d(x, y)2)ks(x, y)m(dy) ∈ L1

loc(E; dx).

(B.II) supx∈E

∫
{y: ks(x,y) �=0}

k2
a(x,y)

ks(x,y)
m(dy) < ∞.

Define for u, v ∈ C
lip

0 (E),

η(u, v) =
∫∫

x �=y

(u(x) − u(y))(v(x) − v(y))ks(x, y)m(dx)m(dy) ,

and

E(u, v) =1

2
η(u, v) +

∫∫
x �=y

(u(x) − u(y))v(y)ka(x, y)m(dx)m(dy) .

Then, there exists α > 0 such that (Eα, C
lip

0 (E)) is closable on L2(E; dx) and its closure
(Eα,D(Eα)) is a regular semi-Dirichlet form on L2(E, dx). Moreover, there exists C > 1
such that for any u ∈ D(Eα),

1

C
ηα(u, u) ≤ Eα(u, u) ≤ Cηα(u, u) .

Let M be the pure jump process associated with (Eα,D(Eα)). For u ∈ D(Eα)loc, we have the
decomposition (7) and Itô’s formula (28).

Finally, we consider a general semi-Dirichlet form with diffusion, jumping and killing
terms.

EXAMPLE 3.3 (See [23]). Let G be an open set of Rd . Suppose that the following
conditions hold:
(C.I) There exist 0 < λ ≤ � such that

λ|ξ |2 ≤
d∑

i,j=1

aij (x)ξiξj ≤ �|ξ |2 for x ∈ G, ξ ∈ R
d .

(C.II) bi ∈ Ld(G; dx), i = 1, . . . , d .
(C.III) c ∈ L

d/2
+ (G; dx).

(C.IV) x �→ ∫
y �=x

(1 ∧ |x − y|2)ks(x, y)dy ∈ L1
loc(G; dx).

(C.V) supx∈G

∫
{|x−y|≥1,y∈G} |ka(x, y)|dy < ∞, supx∈G

∫
{|x−y|<1,y∈G} |ka(x, y)|γ dy < ∞

for some 0 < γ ≤ 1, and |ka(x, y)|2−γ ≤ C1ks(x, y), x, y ∈ G with 0 < |x − y| < 1 for
some constant C1 > 0.
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Define for u, v ∈ C1
0 (G),

η(u, v) =1

2

d∑
i=1

∫
G

∂u

∂xi

(x)
∂v

∂xi

(x)dx

+ 1

2

∫∫
x �=y

(u(x) − u(y))(v(x) − v(y))ks(x, y)dxdy

and

E(u, v) =1

2

d∑
i,j=1

∫
G

aij (x)
∂u

∂xi

(x)
∂v

∂xj

(x)dx +
d∑

i=1

∫
G

bi(x)u(x)
∂v

∂xi

(x)dx

+
∫

G

u(x)v(x)c(x)dx

+ 1

2

∫∫
x �=y

(u(x) − u(y))(v(x) − v(y))ks(x, y)dxdy

+
∫∫

x �=y

(u(x) − u(y))v(x)ka(x, y)dxdy .

Then, when λ is sufficiently large, there exists α > 0 such that (Eα, C1
0 (G)) is closable

on L2(G; dx) and its closure (Eα,D(Eα)) is a regular semi-Dirichlet form on L2(G; dx).
Moreover, there exists C′ > 1 such that for any u ∈ D(Eα),

1

C′ ηα(u, u) ≤ Eα(u, u) ≤ C′ηα(u, u) .

Let M be the Markov process associated with (Eα,D(Eα)). For u ∈ D(Eα)loc, we have the
decomposition (7) and Itô’s formula (28).
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