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Abstract. We obtain a complete classification of four-dimensional conformally flat
homogeneous pseudo-Riemannian manifolds.

1. Introduction. Conformally flat manifolds are a classical field of investigation in
pseudo-Riemannian geometry. In this framework, it is a natural problem to classify confor-
mally flat homogeneous pseudo-Riemannian manifolds. A conformally flat (locally) homoge-
neous Riemannian manifold is (locally) symmetric [17]. Hence, it admits as univeral covering
either a space form Rn,Sn(k),H n(−k), or one of Riemannian products R × Sn−1(k),R ×
H n−1(−k),Sp(k)× H n−p(−k) [13].

In pseudo-Riemannian settings, the problem of classifying conformally flat homoge-
neous manifolds is more complicated and interesting. Three-dimensional examples were clas-
sified independently in [8] and [3], showing the existence of non-symmetric examples. Using
the general results introduced in [8], the same authors contributed in [9] to solve the classifi-
cation problem for Lorentzian manifolds of any dimension, under some assumptions on the
structure of the eigenvalues of the Ricci operator of such a manifold. Up to our knowledge,
no classification results have been obtained yet for metrics of different signatures, except for
the cases with a diagonalizable Ricci operator [8].

In the present paper we shall provide a complete classification of four-dimensional con-
formally flat homogeneous pseudo-Riemannian manifolds. A fundamental step for this clas-
sification will be to understand which forms (Segre types) of the Ricci operator, and under
which restrictions, may exist for conformally flat pseudo-Riemannian manifolds. As we shall
see, nondegenerate forms of the Ricci operator can only occur when a conformally flat ho-
mogeneous pseudo-Riemannian four-manifold is (locally) isometric to some Lie group, while
the possible degenerate forms are also realized by some homogeneous spaces with nontrivial
isotropy, for which we can use Komrakov’s classification [10] to deduce all possible examples.

Because of the results obtained in [9], we shall focus mainly on the case of a pseudo-
Riemannian metric of neutral signature. However, we shall also explain how our results apply
to the Lorentzian case.

The paper is organized in the following way. In Section 2, we report some basic in-
formation on four-dimensional conformally flat pseudo-Riemannian manifolds and describe
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the possible forms of the Ricci operator at an arbitrary point. In Section 3, we show that a
fundamental distinction arises in terms of isotropy between the cases with nondegenerate and
degenerate Ricci operator (Theorem 3.1). Two different approaches will be then used in Sec-
tions 3 (for the examples with nondegenerate Ricci operator) and 4 (for the examples with
degenerate Ricci operator) when the isotropy is trivial, and in Section 5 to classify homoge-
neous examples with degenerate Ricci operator and nontrivial isotropy.

Acknowledgments. The authors wish to express their sincere gratitude to the Referee for the valu-
able and useful comments. The first author was partially supported by funds of the University of Salento
and MIUR (PRIN 2012). This work was prepared during the stay of the second author at the Univer-
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2. Conformally flat homogeneous four-manifolds. Let Mn
q be a pseudo-Rieman-

nian manifold of index q . The Weyl conformal curvature tensor fields C of type (1, 3) and c
of type (1, 2) of M are defined by

(2.1) C(X, Y )Z = R(X, Y )Z− 1

n− 2
(QX∧Y +X∧QY)Z+ S

(n− 1)(n− 2)
(X∧Y )Z ,

and

(2.2) c(X, Y ) = (∇XQ)Y − (∇YQ)X − 1

2(n− 1)
(X(S)Y − Y (S)X) ,

respectively. In these equations,R,Q and S respectively denote the curvature tensor, the Ricci
operator and the scalar curvature, and (X ∧ Y )(Z) = 〈Y,Z〉X − 〈X,Z〉Y . When C = 0, the
equation (2.1) yields that the Ricci curvature completely determines the curvature of (M, g).
It is well known that

• if n ≥ 4, then Mn
q is conformally flat if and only if C = 0, in this case, c = 0,

• if n = 3, then C = 0, and M is conformally flat if and only if c = 0.

Let now (M, g) be a locally homogeneous pseudo-Riemannian manifold. Then, for each
pair of points p,p′ ∈ M , there exists a local isometry f between neighbourhoods of p and p′,
such that f (p) = p′. In particular, for any choice of an index k, f ∗ : Tp′M → TpM satisfies
f ∗(∇iRp′) = ∇iRp for all i = 0, . . . , k. Consequently, chosen a pseudo-orthonormal basis
{ei}p for TpM , by means of the isometries between p and any other point p′ ∈ M , one can
build a pseudo-orthonormal frame field {ei} on M , with respect to which the components of
the curvature tensor and its covariant derivatives up to order k are globally constant on M .

In the special case when (M, g) is conformally flat, this is equivalent to determining a
pseudo-orthonormal frame field {ei} on (M, g), such that the components of the Ricci tensor
� and its covariant derivatives ∇i�, for i = 1, . . . , k, are constant globally onM . To note that
in particular, with respect to {ei}, the components of the Ricci operatorQ are constant.
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Assume now that Mn
q is conformally flat. Following [8], we define a tensor field A of

type (1, 1) by setting

(2.3) A = 1

n− 2

(
Q− S

2(n− 1)
Id

)
,

where Id is the identity and S is the scalar curvature of (M, g). Then, at any point p ∈ M ,
Ap is a self-adjoint linear endomorphism of the tangent space TpM . SinceMn

q is conformally
flat, the equations (2.1) and (2.2) yield

R(X, Y ) = AX ∧ Y +X ∧ AY , and (∇XA)Y = (∇YA)X ,
respectively. The following result was obtained in [8].

THEOREM 2.1 ([8]). Let Mn
q be a conformally flat homogeneous pseudo-Riemannian

manifold and λ1, . . . , λr be the distinct eigenvalues of the tensor field A on M with algebraic
multiplicities m1, . . . ,mr , respectively. If for i ∈ {1, . . . , r}, the eigenvalue λi is real and the
dimension of its eigenspace coincides with its algebraic multiplicity, then we have

(2.4)
∑
j �=i

mj
λj + λi

λj − λi
= 0 .

As it is well known, contrarily to the case of a definite positive inner product, a self-
adjoint linear operator in a pseudo-Riemannian manifold needs not to be diagonalizable, but
can assume different canonical forms. The above Theorem 2.1 was used in [8] to classify con-
formally flat homogeneous pseudo-Riemannian manifolds with diagonalizable Ricci operator.
This classification, which does not differ essentially from the Riemannian case, is reported in
the following.

THEOREM 2.2 ([8]). LetMn
q be an n(≥3)-dimensional conformally flat homogeneous

pseudo-Riemannian manifold with diagonalizable Ricci operator. Then,Mn
q is locally isomet-

ric to one of the following:
(i) A pseudo-Riemannian space form.

(ii) A product manifold of an m-dimensional space form of constant curvature k �= 0
and an (n − m)-dimensional pseudo-Riemannian manifold of constant curvature
−k, where 2 ≤ m ≤ n− 2.

(iii) A product manifold of an (n− 1)-dimensional pseudo-Riemannian manifold of in-
dex q−1 of constant curvature k �= 0 and a one-dimensional Lorentzian manifold,
or a product of an (n− 1)-dimensional pseudo-Riemannian manifold of index q of
constant curvature k �= 0 and a one-dimensional Riemannian manifold.

Note that all examples listed in Theorem 2.2 are (locally) symmetric (in particular, Ricci-
parallel). Because of Theorem 2.2, we shall focus on the case when the Ricci operator is not
diagonalizable. We start describing the possible canonical forms of a self-adjoint operator A
(equivalently, Q) on a four-dimensional conformally flat pseudo-Riemannian manifold. We
obtain the following.
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THEOREM 2.3. Let (M, g) denote a four-dimensional conformally flat homogeneous
pseudo-Riemannian manifold.

(A) If g is of signature (2, 2), then there exists a pseudo-orthonormal frame field
{e1, e2, e3, e4}, with e3, e4 time-like vector fields, such that the self-adjoint operator A, de-
fined by (2.3), takes one of the following forms:

I) The minimal polynomial of A does not admit any repeated roots:
(Ia) diag(r, . . . ,−r);

(Ib)

⎛
⎜⎜⎝
r 0 0 s

0 t 0 0
0 0 ±t 0
s 0 0 r

⎞
⎟⎟⎠ ,

s �= 0,
r2 + s2 = t2

; (Ic)

⎛
⎜⎜⎝

r 0 s 0
0 t 0 u

−s 0 r 0
0 −u 0 t

⎞
⎟⎟⎠ , s, u �= 0 .

II) The minimal polynomial of A has roots with multiplicity two:

(IIa)

⎛
⎜⎜⎝

±r 0 0 0
0 r + ε/2 −ε/2 0
0 ε/2 r − ε/2 0
0 0 0 ±r

⎞
⎟⎟⎠ ;

(IIb)

⎛
⎜⎜⎝
r + ε/2 0 −ε/2 0

0 s + δ/2 0 −δ/2
ε/2 0 r − ε/2 0
0 δ/2 0 s − δ/2

⎞
⎟⎟⎠ ;

(IIc)

⎛
⎜⎜⎝
r + ε/2 0 0 −ε/2

0 s t 0
0 −t s 0
ε/2 0 0 r − ε/2

⎞
⎟⎟⎠, t �= 0 ;

(IId)

⎛
⎜⎜⎝
r + 1/2 0 −1/2 s

0 r − 1/2 −s 1/2
1/2 s r − 1/2 0
−s −1/2 0 r + 1/2

⎞
⎟⎟⎠ , s �= 0 .

III) The minimal polynomial of A has a root with multiplicity three:

(IIIa)

⎛
⎜⎜⎝

r
√

2/2 0 0√
2/2 r −√

2/2 0
0

√
2/2 r 0

0 0 0 ±r

⎞
⎟⎟⎠ ;
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(IIIb)

⎛
⎜⎜⎝

±r 0 0 0
0 r

√
2/2 0

0 −√
2/2 r

√
2/2

0 0
√

2/2 r

⎞
⎟⎟⎠ .

IV) The minimal polynomial of A has a root with multiplicity four:

(IV)

⎛
⎜⎜⎝

r 1/2 0 1/2
1/2 r + ε/2 −1/2 −ε/2
0 1/2 r 1/2

−1/2 ε/2 1/2 r − ε/2

⎞
⎟⎟⎠ .

In the formulae above, ε, δ = ±1.

(B) If g is Lorentzian, then there exists a pseudo-orthonormal frame field
{e1, e2, e3, e4}, with e4 time-like, such that the self-adjoint operator A takes one of the fol-
lowing forms:

I′) The minimal polynomial of A does not admit any repeated roots:

(Ia′) diag(r, . . . ,−r); (Ib′)

⎛
⎜⎜⎝
t 0 0 0
0 ±t 0 0
0 0 r s

0 0 −s r

⎞
⎟⎟⎠ ,

s �= 0,
r2 + s2 = t2.

II′) The minimal polynomial of A has a root with multiplicity two:

(II′)

⎛
⎜⎜⎝

±r 0 0 0
0 ±r 0 0
0 0 r + ε/2 −ε/2
0 0 ε/2 r − ε/2

⎞
⎟⎟⎠ .

III′) The minimal polynomial of A has a root with multiplicity three:

(III′)

⎛
⎜⎜⎝

±r 0 0 0
0 r

√
2/2 0

0
√

2/2 r
√

2/2
0 0 −√

2/2 r

⎞
⎟⎟⎠ .

PROOF. According to [11], for an inner product of signature (2, 2) on a vector space
V , a self-adjoint linear operator may take 10 different forms, depending on its minimal poly-
nomial. If A is diagonalizable, the equation (2.4) yields that the operator A admits at most
two eigenvalues r and −r . This gives the case (Ia).
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If A has a pair of complex eigenvalues r ± is, and two real eigenvalues t �= u, then
according to (2.4) we have{

3t3 − (s + 2r)t2 − 2rut + (3u− t)(r2 + s2) ,

3u3 − (t + 2r)u2 − 2rtu+ (3t − u)(r2 + s2) ,

whose solutions are u = ±t, r2 + s2 = t2. This gives the case (Ib).
If the minimal polynomial of A does not admit any repeated root and has two pairs of

complex eigenvalues r ± is and t ± iu, then the equation (2.4) does not give any restriction
on the eigenvalues, and A takes the form listed in the case (Ic).

If the minimal polynomial admits a real root r with multiplicity two and two other real
eigenvalues s and t , then by (2.4) we have either t = −s = r , t = s = −r or t = s = r .
Following [11], this gives the case (IIa). The case (III) is obtained by a similar argument.
For the cases (IIb), (IIc), (IId) and (IV), Theorem 2.1 does not yield any restriction, and we
have the general possible form of self-adjoint operators with such properties. This ends the
proof for the case of neutral signature. A similar argument applies to the case of a Lorentzian
metric, for which we may also refer to [8, Theorem 2.4]. �

Following the standard terminology (see for example [15, Section 5.1] or [11]), given a
self-adjoint operator with respect to a nondegenerate inner product, its Segre type, or Segre
characteristic, lists between square brackets [ ] the sizes of Jordan blocks in the decomposition
of the operator. The comma separates eigenvalues corresponding to space-like eigenvectors
from those corresponding to time-like and light-like eigenvectors.

Round brackets group together different blocks referring to the same eigenvalue, while
vertical lines around eigenvalues within round brackets mean that those eigenvalues are not
included in the coincidence. When different blocks refer to the same eigenvalue, the Segre
type is said to be degenerate. For this reason, we shall refer to the Ricci operator of a locally
homogeneous pseudo-Riemannian manifold as either nondegenerate or degenerate, according
to the corresponding property of its Segre type.

Because of Theorem 2.3, the possible Segre types of the Ricci operatorQ (equivalently,
of A) for a conformally flat homogeneous four-dimensional manifold are all and the ones
listed in Tables I and II.

Let now (M, g) denote a pseudo-Riemannian manifold. At any point p ∈ M and for any
index k, consider the Lie algebra

g(k, p) = {Y ∈ so(q, n− q); Y.R(p) = Y.∇R(p) = · · · = Y.∇kR(p) = 0} ,(2.5)

where Y acts as a derivation. This Lie algebra measures the “isotropy” of the Riemann tensor
and its first k derivatives at the point p ∈ M , and is associated to the Lie subgroup G ⊂
SO(q, n − q) of linear isometries ϕ : TpM → TpM satisfying ϕ∗(∇iR(p)) = ∇iR(p) for
i = 0, . . . , k.

Lie subalgebras g(k, p) form a decreasing sequence of the Lie algebra so(q, n − q)

of skew-symmetric endomorphisms of the tangent space TpM at p ∈ M . Thus, g(k, p) =
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Case Ia Ib Ic IIa IIb

Nondegenerate type — [1, 111̄] [11̄11̄] — [22]
Degenerate types [(11), (11)] [(1, 1)11̄] [(11̄11̄)] [(1, 1)2] [(22)]

[(1|(1, 1)|1)] [1, (12)]
[(11, 1)1] [(1, 12)]
[1(1, 11)]
[(11, 11)]

Case IIc IId IIIa IIIb IV

Nondegenerate type [211̄] [22̄] [13] [1,3] [4]
Degenerate types — — [(13)] [(1,3)] —

TABLE I. Segre types ofQ for an inner product of signature (2, 2).

Case Ia Ib II III

Nondegenerate type — [11, 11̄] — [1,3]

Degenerate types [(11)(1, 1)] [(11), 11̄] [(11), 2] [(1, 3)]
[1(11, 1)] [1(1, 2)]
[(111), 1] [(11, 2)]
[(111, 1)]

TABLE II. Segre types of Q for a Lorentzian inner product.

g(k + 1, p) for a sufficiently high k ∈ N . The smallest k for which g(k, p) = g(k + 1, p)
(at all points p ∈ M) is called the Singer index of (M, g) and is denoted by kM , and hp =
g(k, p) = g(k + 1, p) is called the isotropy subalgebra (at p). Every pseudo-Riemannian
manifold (M, g) which is infinitesimally homogeneous, that is, k-curvature homogeneous for
some k > kM , is locally homogeneous [14, 16]. For a homogeneous pseudo-Riemannian
manifold, g(k, p) is isomorphic to g(k, p′) for every p,p′ ∈ M and every non-negative
integer k. So, in this case we simply write gk and h.

To note that if (M, g) is conformally flat, by (2.5) we have

(2.6) g(k, p) = {A ∈ so(q, n− q);A.Q(p) = A.∇Q(p) = · · · = A.∇kQ(p) = 0}
for any point p ∈ M and non-negative integer k.

3. Cases with nondegenerate Ricci operator. In the study of conformally flat
pseudo-Riemannian four-manifolds, a fundamental difference arises between the cases with
nondegenerate Ricci operator Q and the ones where Q is degenerate. In fact, we have the
following.
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THEOREM 3.1. Let (M, g) be a four-dimensional conformally flat pseudo-Riemannian
four-manifold. At any point p ∈ M , we have that g(0, p) = {0} if and only if Qp is nonde-
generate. In particular, in this case hp = 0.

PROOF. Suppose first that g(0, p) �= {0}. Then, the Ricci operator Qp at p must
be degenerate. In fact, if Qp is nondegenerate, we can use the pseudo-orthonormal basis
expressing Qp in its canonical form to prove that g(0, p) = 0. This argument holds true for
all the possible nondegenerate cases of the Ricci operator. We report below the full details for
Segre type [22], the other cases are obtained by a similar argument.

So, suppose that the Ricci operator Qp is of nondegenerate Segre type [22]. According
to Theorem 2.3, the operator A has the form IIb with respect to an orthonormal frame field
{e1, e2, e3, e4}, with e3, e4 time-like. By (2.3), we have Q = (n− 2)A+ tr(A)Id. So, setting
a = 4r + 2s and b = 2r + 4s, the Ricci operatorQp will take the form

(3.7) Qp =

⎛
⎜⎜⎝
a + ε 0 −ε 0

0 b + δ 0 −δ
ε 0 a − ε 0
0 δ 0 b − δ

⎞
⎟⎟⎠ , a �= b, ε, δ = ±1 .

If Y = (aij ) now denotes an arbitrary element of so(2, 2), we have aij = −εiεjaji for all
1 ≤ i, j ≤ 4. In particular, if Y ∈ g(0, p), then we must have YQp(ei)−QpY(ei) = 0 for all
1 ≤ i ≤ 4. Using (3.7), a straightforward calculation then yields Y = 0. Hence, g(0, p) = 0.

Conversely, suppose now that Qp is degenerate. Then, for any of the canonical forms
listed in Theorem 2.3, we explicitly calculated g(0, p) and found g(0, p) �= {0}. For any
indices k, h = 1, . . . , 4, we put Ekh = (δikδjh)1≤i,j≤4. With respect to the same pseudo-
orthonormal basis {e1, . . . , e4} for which Ap (andQp) takes its canonical form, we explicitly
found:

1) Segre type [(1, 1)11̄]: g(0, p) = Span(E23 + E32).

2) Segre type [(11̄11̄)]: g(0, p)=Span(E21 −E12−E43+E34, E24−E13−E31 + E42).

3) Segre type [(1, 1)2]: g(0, p) = Span(E14 + E41).

4) Segre type [1, (12)]: g(0, p) = Span(E21 − E12 + E31 + E13).

5) Segre type [(1, 12)]:
g(0, p) = Span(E21 − E12 + E13 + E31, E14 + E41, E43 − E24 − E34 − E42).

6) Segre type [(22)]: g(0, p) = Span(E21−E12+δ(δ−ε)(E14+E41)+εδ(E43−E34),

E32 + E23 + δ(ε + δ)(E43 − E34)− εδ(E14 + E41)).

7) Segre type [(13)]: g(0, p) = Span(E14 + E41 + E34 − E43).

8) Segre type [(1, 3)]: g(0, p) = Span(E21 − E12 + E14 + E41).

9) Segre type [(11), 11̄]: g(0, p) = Span(E12 − E21).
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10) Segre type [(11), 2]: g(0, p) = Span(E12 − E21).

11) Segre type [1(1, 2)]: g(0, p) = Span(E24 − E23 + E32 + E42).

12) Segre type [(11, 2)]: g(0, p) = Span(E21 − E12, E31 + E41 − E13 + E14,

E32 + E42 − E23 + E24).

13) Lorentzian Segre type [(1, 3)]: g(0, p) = Span(E12 + E14 − E21 + E41).
Finally, we remark that one finds g0 �= {0} also for degenerate types with a diagonalizable

Ricci operator. However, since the classification for those types has been already given in [8],
we did not report the corresponding algebra g(0, p) here. �

If (M, g) is a four-dimensional conformally flat homogeneous pseudo-Riemannian man-
ifold, then the Segre type of its Ricci operator is the same at any point, and Theorem 3.1 yields
at once the following.

COROLLARY 3.2. Let (M, g) be a four-dimensional conformally flat homogeneous
pseudo-Riemannian four-manifold. If the Ricci operator Q of (M, g) is nondegenerate, then
(M, g) is locally isometric to a Lie group equipped with a left-invariant pseudo-Riemannian
metric.

Taking into account the above result, we shall now classify conformally flat homoge-
neous pseudo-Riemannian four-manifolds, in the cases where Q is nondegenerate. We start
proving the following result.

THEOREM 3.3. Let (M, g) be a conformally flat homogeneous pseudo-Riemannian
four-manifold. If the Ricci operator Q of (M, g) is not diagonalizable and nondegenerate,
then Q can only be of Segre type [1, 111̄] if g is neutral, or [11, 11̄] if g is Lorentzian.

PROOF. This result is obtained from a case-by-case argument, starting from the possi-
ble nondegenerate Segre types of tensor A, as classified in Theorem 2.3.

If A is of nondegenerate Segre type [22], then, according to Theorem 2.3, there exists a
pseudo-orthonormal frame field {ei}, with respect to which A takes the form IIb with r �= s.
As explained in the proof of Theorem 3.1, the Ricci operator will be then described by (3.7)
(at any point p) with respect to the frame field {ei}.

By Corollary 3.2, (M, g) is locally isometric to a Lie group with a left-invariant metric.
Let {e1, . . . , e4} denote a left-invariant orthonormal frame field. The Levi-Civita connection
is then completely described by ∇ei ej = Γ kij ek , where Γ kij are some real constants, satisfying

(3.8) Γ kij = −εj εkΓ jik ,
for all indices i, j, k. Using (3.7) to calculate ∇ekQ, we find

∇ekQ =

⎛
⎜⎜⎜⎝

2Γ 3
11ε φk −2Γ 3

k1ε ψk

φk 2Γ 4
k2δ −θk −2Γ 4

k2δ

2Γ 3
k1ε θk −2Γ 3

k1ε ηk

−ψk 2Γ 4
k2δ ηk −2Γ 4

k2δ

⎞
⎟⎟⎟⎠ , k = 1, . . . , 4 ,
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where we put

φk = Γ 2
k1(a − b + ε − δ)+ Γ 4

k1δ + Γ 3
k2ε, ψk = Γ 2

k1δ + Γ 4
k1(b − a − δ − ε)− Γ 4

k3ε,

θk = Γ 3
k2(b − a + δ + ε)− Γ 4

k3δ + Γ 2
k1ε, ηk = −Γ 3

k2δ − Γ 4
k3(a + b + δ − ε)− Γ 4

k1ε.

Since (M, g) is homogeneous and conformally flat, we must have

(3.9) (∇XQ)(Y ) = (∇YQ)(X)
for all tangent vector fields X,Y . Denoting by Γk the matrix (Γk)ij = Γ ikj , for all indices
i, j, k, we apply the equation (3.9) and determine the Levi-Civita coefficients as follows:

Γ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −2αε+η(a−b+δ)
δ

−γ −η
2αε−η(a+b−δ)

δ
0 −2αε+η(a−b+δ)

δ
−β(a−b+ε)+νε

2δ

−γ −2αε+η(a−b+δ)
δ

0 −η
−η −β(a−b+ε)+νε

2δ β 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

Γ2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 β − 2αε(b−a)+η(b−a)2+2δαε
2δε −β

−β 0 −ν −μ
− 2αε(b−a)+β(b−a)2+2δαε

2δ ε −ν 0 ν

−β −μ −ν 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

Γ3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −−2αε+η(a−b+δ)
δ

γ η
−2αε+η(a−b+δ)

δ
0 −−2αε+η(a−b+δ)

δ
− ν(a−b−ε)−βε

2δ

γ −−2αε+η(a−b+δ)
δ

0 η

η − ν(a−b−ε)−βε
2δ −β 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

Γ4 =

⎛
⎜⎜⎝

0 −β α β

β 0 ν μ

α ν 0 −ν
β μ ν 0

⎞
⎟⎟⎠ ,

where we put α = Γ 3
41, β = Γ 4

41, γ = Γ 3
31, μ = Γ 4

42, η = Γ 4
31 and ν = Γ 4

43. We can now
calculate the curvature of (M, g) in terms of Γ kij . In particular, with respect to {ei}, a standard
calculation yields

R(e1, e3)e1 = −(1/2δ)(ν + β)(a − b)(ηe2 + δ(−2αε + η(a − b + δ))e4) ,

R(e2, e4)e2 = (1/2εδ)(a − b)(−2αε + η(a − b))(−νe1 + βe3) .

On the other hand, since (M, g) is conformally flat, by (3.7) we obtain

R(e1, e3)e1 = (1/3)(b − 2a)e3 , R(e2, e4)e2 = (1/3)(a − 2b)e4 .
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Comparison between the above equations for R(e1, e3)e1 and R(e2, e4)e2, easily permits to
conclude that a = b = 0, which contradicts the Segre type of Q. Thus, this case cannot
occur. By similar argument and calculations, we found that none of nondegenerate Segre
types [11̄11̄], [211̄], [22̄], [13], [1, 3] and [4] can occur for a four-dimensional conformally flat
pseudo-Riemannian manifold of neutral signature, and that nondegenerate Segre type [1, 3]
cannot occur in Lorentzian settings. �

We now completely describe four-dimensional conformally flat pseudo-Riemannian Lie
groups of neutral signature, whose Ricci operator is of nondegenerate Segre type [1, 111̄].

THEOREM 3.4. Let (M, g) be a conformally flat homogeneous four-dimensional man-
ifold with the Ricci operator of Segre type [1, 111̄]. Then, (M, g) is locally isometric to one
of the following unsolvable Lie groups:

(i) Either SU(2)× R (when ε = 1) or SL(2,R)× R (when ε = −1), equipped with a
left-invariant neutral metric, admitting a pseudo-orthonormal basis {e1, e2, e3, e4} for the Lie
algebra, such that the Lie brackets take the form

[e1, e2] = εαe3 , [e1, e3] = −εαe2 , [e2, e3] = 2α(e1 + εe4),

[e2, e4] = −αe3 , [e3, e4] = αe2 ,

(ii) SL(2,R) × R, equipped with a left-invariant neutral metric, admitting a pseudo-
orthonormal basis {e1, e2, e3, e4} for the Lie algebra, such that the Lie brackets take the form

[e1, e2] = −εαe1 , [e1, e3] = αe1 , [e1, e4] = 2α(εe2 − e3) ,

[e2, e4] = −εαe4 , [e3, e4] = αe4 ,

where α �= 0 is a real constant and ε = ±1.

PROOF. We already know from Corollary 3.2 that (M, g) is locally isometric to some
Lie group G with a left-invariant metric. Consider a pseudo-orthonormal basis {e1, . . . , e4}
of the Lie algebra g of G, with respect to which the operator A takes the form (Ib). Then, by
(2.3) we haveQ = (n−2)A+ tr(A)Id. We set a = 4r , b = 2s and c = 2(r+ t). With respect
to {ei}, the Ricci operator is then given by

(3.10) Q =

⎛
⎜⎜⎝

a 0 0 b

0 c 0 0
0 0 −c 0

−b 0 0 a

⎞
⎟⎟⎠ with b2 = c2 − ac �= 0 .

Note that b2 = c2 − ac �= 0 implies c �= 0 and so, a = (c2 − b2)/c.
The Levi-Civita connection is described by ∇ei ej = Γ kij ek for some real constants Γ kij

satisfying (3.8). Proceeding as in the proof of Theorem 3.3, we first calculate ∇ekQ and apply
(3.9) to express all coefficients Γ kij in function of β = Γ 4

23, γ = Γ 4
32, Γ 3

41 = θ and Γ 4
42 = η.
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Explicitly, we find

Γ1 =

⎛
⎜⎜⎜⎜⎜⎝

0 −η − θ(b2−2c2)
bc

0

η 0 c4(2γ+4β)+b4(β−γ )+b2c2(γ−3β)
4c5

ηc
b

− θ(b2−2c2)
bc

c4(2γ+4β)+b4(β−γ )+b2c2(γ−3β)
4c5 0 −θ

0 ηc
b

α 0

⎞
⎟⎟⎟⎟⎟⎠
,

Γ2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 − b(b2(β−γ )−c2(β−γ ))
2c3

η(b2+c2)
2bc

0 0 0 0

− b(b2(β−γ )−c2(β−γ ))
2c3 0 0 −β

η(b2+c2)
2bc 0 β 0

⎞
⎟⎟⎟⎟⎟⎠
,

Γ3 =

⎛
⎜⎜⎜⎜⎜⎝

0 − 4βc2+b4(β−γ )+b2c2(γ−3β)
2c3b

0 θ(b4−3b2c2+4c4)

2b2c2

4βc2+b4(β−γ )+b2c2(γ−3β)
2c3b

0 0 γ

0 0 0 0
θ(b4−3b2c2+4c4)

2b2c2 γ 0 0

⎞
⎟⎟⎟⎟⎟⎠
,

Γ4 =

⎛
⎜⎜⎜⎜⎜⎝

0 ηc
b

θ 0

− ηc
b

0 − 4βc4+b4(β−γ )−b2c2(γ+3β)
4c4 η

θ − 4βc4+b4(β−γ )−b2c2(γ+3β)
4c4 0 − θ(b2−2c2)

bc

0 η
θ(b2−2c2)

bc
0

⎞
⎟⎟⎟⎟⎟⎠
.

We now calculate the curvature tensor of (M, g) with respect to {ei}. Using the above descrip-
tion of the Levi-Civita connection, a direct calculation yields that the scalar curvature van-
ishes. On the other hand, by (3.10) we have that the scalar curvature is given by 2(c2 − b2)/c.
Therefore, c = ±b. Taking into account this condition, the components of the Ricci operator
with respect to {ei} are given by

Q11 = 2(η2 − βγ − θ2) , Q12 = 3
2θ(β − γ ) , Q13 = ± 3

2η(β − γ ) ,

Q14 = ±(−2η2 − 2θ2 + β2 − γ 2) , Q22 = 2γβ − 4η2 + β2 − γ 2, Q23 = 0

Q24 = ∓ 3
2θ(γ + β) , Q33 = 2γβ − β2 + γ 2 + 4θ2 , Q34 = 3

2η(γ + β) ,

Q44 = 2(η2 − βγ − θ2) ,

which, compared with (3.10), yield that the coefficients Γ kij satisfy one of the following sets
of conditions:

either η = γ = θ = 0, η = β = θ = 0 or β = γ = η ± θ = 0.
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Consequently, with respect to the pseudo-orthonormal basis {ei}, the Lie brackets are com-
pletely described either by

[e1, e2] = εαe3 , [e1, e3] = −εαe2 , [e2, e3] = 2α(e1 + εe4) ,

[e2, e4] = −αe3 , [e3, e4] = αe2

(for the first two sets of the above conditions), or by

[e1, e2] = −εαe1 , [e1, e3] = αe1 , [e1, e4] = 2α(εe2 − e3) ,

[e2, e4] = −εαe4 , [e3, e4] = αe4

(for the remaining set of conditions), where α �= 0 is a real constant and ε = ±1.
Finally, for the first of the two cases listed above, we consider the new basis of g given by

{ê1 = e1 + εe4, ê2 = e2, ê3 = e3, ê4 = e1 − εe4}, and we see that the non-zero Lie brackets
are given by

[ê1, ê2] = 2εαê3 , [ê1, ê3] = −2εαê2 , [ê2 , ê3] = 2αê1 .

In the same way, setting {ê1 = e1, ê2 = e2 − εe3, ê3 = e4, ê4 = e2 + εe3}, the non-zero Lie
brackets for the second case are

[ê1, ê2] = −2εαê1 , [ê1, ê3] = 2εαê2 , [ê2, ê3] = −2εαê3 .

Thus, we conclude that in both cases the four-dimensional Lie algebra is the direct sum of a
one-dimensional algebra r and a three-dimensional unsolvable Lie algebra. More precisely,
from the classification of three-dimensional real Lie algebras (see for example [1]), we con-
clude that in the first case, G is locally isometric to one of the direct products SU(2)× R or
SL(2,R)× R, depending on the value of ε, while in the second case,G is SL(2,R)× R, for
both values of ε. �

By a similar argument we obtained the Lorentzian analogue of the above result, given by
the following.

THEOREM 3.5. Let (M, g) be a conformally flat homogeneous Lorentzian four-
manifold with the Ricci operator of Segre type [11, 11̄]. Then, (M, g) is locally isometric
to the unsolvable Lie group SL(2,R)× R, equipped with a left-invariant Lorentzian metric,
admitting a pseudo-orthonormal basis {e1, e2, e3, e4} for the Lie algebra, such that the Lie
brackets take one of the forms

(i) [e1, e2] = −2α(εe3 + e4) , [e1, e3] = εαe2 , [e1, e4] = αe2 ,

[e2, e3] = εαe1 , [e2, e4] = αe1 ,

(ii) [e1, e2] = 2α(εe3 + e4) , [e1, e3] = εαe2 , [e1, e4] = αe2 ,

[e2, e3] = εαe1 , [e2, e4] = αe1 ,

where α �= 0 is a real constant and ε = ±1. For the first Lie algebra, considering the new
basis {ê1 = e1, ê2 = e2, ê3 = e3 + εe4, ê4 = e3 − εe4} for g, the nonvanishing Lie brackets
are

[ê1, ê2] = −2εαê3 , [ê1, ê3] = 2εαê2, [ê2, ê3] = 2εαê1 .
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Similarly, with respect to the basis {ê1 = e1, ê2 = e2, ê3 = e3 + εe4, ê4 = e3 − εe4}, the
nonvanishing Lie brackets for the second Lie algebra are

[ê1, ê2] = 2εαê3 , [ê1, ê3] = 2εαe2 , [ê2, ê3] = 2εαê1 .

4. Cases with degenerate Ricci operator and trivial isotropy. We are left to deter-
mine conformally flat homogeneous pseudo-Riemannian four-manifolds with a Ricci operator
of degenerate Segre type.

We first consider the Ricci-parallel examples. Note that if a four-dimensional homo-
geneous pseudo-Riemannian manifold (M, g) is Ricci-parallel, then its Ricci operator Q is
necessarily degenerate [4], [6]. Moreover, it is well known that a Ricci-parallel conformally
flat manifold is locally symmetric.

If Q is diagonalizable, we may refer to Theorem 2.2 for the complete classification of
Ricci-parallel examples in any dimension greater than or equal to three. On the other hand,
Ricci-parallel homogeneous pseudo-Riemannian four-manifolds have been investigated in [4]
for the Lorentzian case and in [6] for the neutral signature case. Finally, not only locally sym-
metric examples, but all conformally flat (simply connected, complete) pseudo-Riemannian
manifolds satisfying the weaker condition R(X, Y ) ·Q = 0 have been completely described
in [7]. Sorting out the conformally flat Ricci-parallel (hence, locally symmetric) examples in
the classification given in the Main theorem of [7] and in [4], [6], we get the following.

PROPOSITION 4.1. Let (M, g) be a conformally flat Ricci-parallel homogeneous
pseudo-Riemannian four-manifold andQ its Ricci operator.

(i) If Q is diagonalizable, then (M, g) is locally isometric to one of the spaces (of
dimension n = 4) listed in Theorem 2.2.

(ii) If Q is not diagonalizable, then either
(a) (M, g) is locally isometric to a complex sphere in C3 [7], defined by

z2
1 + z2

2 + z2
3 = ib (b �= 0 , b ∈ R) , or

(b) (M, g) is a (conformally flat, locally symmetric) Walker manifold. In this case,
Q is two-step nilpotent, that is, Q2 = 0.

For the description of four-dimensional Walker manifolds, we may refer to [2], [5] and
references therein. With regard to which Segre types of the Ricci operator allow the existence
of conformally flat Ricci-parallel homogeneous four-manifolds, the above Proposition 4.1
yields the following.

COROLLARY 4.2. Conformally flat Ricci-parallel homogeneous pseudo-Riemannian
four-manifolds only occur for the following degenerate Segre types of the Ricci operator:

(a) When g is of neutral signature: [(11), (11)], [(11, 1)1], [1(1, 11)], [(11, 11)] if Q
is diagonalizable; [(11̄11̄)], [(1, 12)] and [(22)] if Q is not diagonalizable.

(b) When g is Lorentzian: [(11)(1, 1)], [(111), 1], [1(11, 1)], [(111, 1)] if Q is diago-
nalizable; [(11, 2)] if Q is not diagonalizable.
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Proposition 4.1 leaves us to consider conformally flat pseudo-Riemannian homogeneous
four-manifolds, with Ricci operator of a degenerate Segre type, which are not locally sym-
metric. Indeed, what makes particularly interesting to determine conformally flat (locally)
homogeneous pseudo-Riemannian manifolds is the fact that, contrarily to the Riemannian
case [17], they need not to be (locally) symmetric.

So, let now (M, g) denote a four-dimensional conformally flat homogeneous pseudo-
Riemannian manifold, not Ricci-parallel, with degenerate Ricci operator. Then, Theorem 3.1
yields that g0 �= 0, but this is not sufficient to conclude that the isotropy subalgebra h does not
vanish. Indeed, to study four-dimensional conformally flat homogeneous pseudo-Riemannian
manifold with degenerate Ricci operator, we shall consider two distinct cases, according to
whether h �= 0 or not. The rest of this Section is devoted to the case when h = 0.

If h = 0, then (M, g) is locally isometric to some four-dimensional Lie group, equipped
with a left-invariant conformally flat pseudo-Riemannian metric. We start considering metrics
of neutral signature, for which the possible cases are listed in the following.

THEOREM 4.3. Let (M, g) be a conformally flat, not Ricci-parallel, homogeneous
four-manifold of neutral signature, with a degenerate and not diagonalizable Ricci operator
Q. If (M, g) has trivial isotropy, then (M, g) is locally isometric to a Lie group G, equipped
with a left-invariant neutral metric, and Q is of one of the Segre types [1, (12)], [(1, 12)],
[(22)], [(13)] or [(1, 3)]. More precisely, we list below an explicit description of the Lie alge-
bra g of G, with respect to a pseudo-orthonormal basis {e1, e2, e3, e4}, with e3, e4 time-like:

(1) Segre type [1, (12)]: G is the solvable Lie group = R�E(1, 1), whose Lie algebra
g is described by

[e1, e2] = −c1e1 + ε

√
2(4c2

1 + 4c2
2 − 1)

4c2
e2 + ε

√
2(4c2

1 + 2c2
2 − 1)

4c2
e3 ,

[e1, e3] = c1e1 − ε

√
2(4c2

1 − 2c2
2 − 1)

4c2
e2 − ε

√
2(4c2

1 − 4c2
2 − 1)

4c2
e3 ,

[e1, e4] = δc1e2 + δc1e3, [e2, e3] = 3c1e2 + 3c1e3 ,

[e2, e4] = −δc1e1 + δε

√
2

4c2
e2 + δε

√
2(1 − 2c2

2)

4c2
e3 ,

[e3, e4] = δc1e1 − δε

√
2(1 + 2c2

2)

4c2
e2 − δε

√
2

4c2
e3 ,

for any real constants c1, c2 �= 0.

(2) Segre type [(1, 12)]: An explicit solution is given by the solvable Lie group G =
R � R3, whose Lie algebra g is described by

[e1, e2] = −[e1, e3] = − 1

2c1
e1 − c2e2 − c2e3 , [e2, e3] = 2c2

1 + 1

2c1
e2 + 2c2

1 + 1

2c1
e3 ,

[e2, e4] = −[e3, e4] = c3e2 + c3e3 + c1e4 ,
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for any real constants c1 �= 0, c2, c3.

(3) Segre type [(22)]: An explicit solution is given by the solvable Lie group G =
R �H (where H denotes the Heisenberg group), whose Lie algebra g is described by

[e1, e2] = 1 − 4c2
1

4c1
e2 + 1

8c1
e4 , [e1, e3] = 1 + 8c2

1

4c1
e1 + 1 + 8c2

1

4c1
e3 ,

[e1, e4] = 1 + 16c2
1

8c1
e2 + 1 + 4c2

1

4c1
e4 , [e2, e3] = 1 + 4c2

1

4c1
e2 + 1 + 16c2

1

8c1
e4 ,

[e3, e4] = − 1

8c1
e2 − 1 − 4c2

1

4c1
e4 ,

for any real constant c1 �= 0.

(4) Segre type [(13)]: An explicit solution is given by the solvable Lie group G =
R � E(1, 1), whose Lie algebra g is described by

[e1, e2] = 3

4c3
1

e1 +
√

2

2c1
e2 + 3

4c3
1

e3 , [e1, e3] =
√

2

c1
e1 +

√
2

c1
e3 ,

[e1, e4] = −c1e1 −
√

2

4c1
e2 − c1e3 , [e2, e3] = 3

4c3
1

e1 +
√

2

2c1
e2 + 3

4c3
1

e3 ,

[e2, e4] = −3
√

2

4c1
e1 − c1e2 − 3

√
2

4c1
e3 , [e3, e4] = −c1e1 +

√
2

4c1
e2 − c1e3 ,

for any real constant c1 �= 0.

(5) Segre type [(1, 3)]: G is the solvable Lie group = R�E(1, 1), whose Lie algebra
g is described by

[e1, e2] = (c1 − c2)e2 −
√

2

4c2
e3 + (c1 − c2)e4 , [e1, e3] = 3

√
2

4c2
e2 − c2e3 + 3

√
2

4c2
e4 ,

[e1, e4] = −(c1 + c2)e2 +
√

2

4c2
e3 − (c1 + c2)e4 , [e2, e4] = √

2φc2(e2 + e4) ,

[e2, e3] = [e3, e4] = − 3φ

4c2
e2 +

√
2φc2

2
e3 − 3φ

4c2
e4 ,

where φ = ±
√

1 − 2c1c
3
2/c

2
2, for any real constants c1, c2 �= 0 such that 1 − 2c1c

3
2 ≥ 0.

PROOF. We follow the same arguments used in Theorems 3.3 and 3.4 for the cases with
a nondegenerate Ricci operator. From Table I, there exist eight distinct admissible degener-
ate Segre types for the (non-diagonal) Ricci operator of a conformally flat four-manifold of
neutral signature. Among these cases, when considered for left-invariant neutral metrics of
four-dimensional Lie groups, Segre types [(1, 1)11̄] and [(1, 1)2] lead to a contradiction, just
like we showed for most of nondegenerate Segre types in the proof of Theorem 3.3. More-
over, Segre type [(11̄11̄)] only yields Ricci-parallel examples. In the remaining five cases,
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we can proceed as in the proof of Theorem 3.4. We found some explicit (not Ricci-parallel)
examples realizing the prescribed degenerate Segre type for the Ricci operator. We can de-
scribe the general solutions for Segre types [1, (12)] and [(1, 3)]. In the remaining cases, it is
really difficult to identify the underlying Lie group structure for the general solutions. For this
reason, we only inserted a special solution of the general equations coming from the required
form of the Ricci operator.

For the different cases (1) through (5) listed above, we now report the Ricci operator with
respect to the given pseudo-orthonormal basis {e1, e2, e3, e4}, and a more explicit description
of the Lie algebra:

(1): With respect to {e1, e2, e3, e4}, the Ricci operator is given by

Q =

⎛
⎜⎜⎝

−4c2
2 0 0 0

0 1 − 4c2
2 −1 0

0 1 −1 − 4c2
2 0

0 0 0 0

⎞
⎟⎟⎠ .

So, it is easily seen that Q is indeed of Segre type [1, (12)].
Moreover, time-like vector e4 acts on the Lorentzian Lie algebra g3 =Span{e1, e2, e3}.

With respect to the classification given in [12], this solvable Lie algebra, depending on the
values of c1 and c2, corresponds to either the case (1) or the case (4) (with three equal eigen-
values for the self-adjoint operator L and a two-dimensional eigenspace). So, it is the Lie
algebra of E(1, 1). The same conclusion follows independently from the classification given
in [1].

(2): In this case, we find

Q =

⎛
⎜⎜⎝

0 0 0 0
0 1 −1 0
0 1 −1 0
0 0 0 0

⎞
⎟⎟⎠ .

Hence, Q is of Segre type [(1, 12)].
Next, the null vector e2 − e3 acts on the Lie algebra g3 =Span{e1, e4, u = e2 + e3}.

Moreover,

[e1, u] = 0 , [u, e4] = 0 , [e1, e4] = 0 ,

so that g3 is abelian, that is, g = r � r3.

(3): The Ricci operator is given by

Q =

⎛
⎜⎜⎝

1 0 −1 0
0 1 0 −1
1 0 −1 0
0 1 0 −1

⎞
⎟⎟⎠ ,

which is of Segre type [(22)].
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Moreover, the null vector e1 − e3 acts on g3 =Span{u := e1 + e3, e2, e4}. Since

[u, e2] = −[u, e4] = −2c1e2 − 2c1e4 , [e2, e4] = 0 ,

the derived algebra of g3 is one-dimensional, and g3 is the Lie algebra of the Heisenberg
group.

(4): We have

Q =

⎛
⎜⎜⎜⎜⎝

3c2
1

√
2 0 0√

2 3c2
1 −√

2 0

0
√

2 3c2
1 0

0 0 0 3c2
1

⎞
⎟⎟⎟⎟⎠ .

Thus, Q is of Segre type [(13)].
Next, time-like vector e4 acts on the Lorentzian Lie algebra g3 =Span{e1, e2, e3}, which,

by the classification of [12], is the Lie algebra of E(1, 1).

(5): In this case,

Q =

⎛
⎜⎜⎜⎜⎝

−3c2
2 0 0 0

0 −3c2
2

√
2 0

0 −√
2 −3c2

2

√
2

0 0
√

2 −3c2
2

⎞
⎟⎟⎟⎟⎠ .

So, Q is of Segre type [(1, 3)].
Moreover, space-like vector e1 acts on the Lie algebra g3 =Span{e1, e2, e3} (Lorentzian,

but of signature (+,−,−)), which, by the classification of [12] (or [1]), is the Lie algebra of
E(1, 1). �

We can proceed in the same way for Lorentzian metrics, proving the following.

THEOREM 4.4. Let (M, g) be a conformally flat, not Ricci-parallel, homogeneous
Lorentzian four-manifold, with a degenerate and not diagonalizable Ricci operator Q. If
(M, g) has trivial isotropy, then it is locally isometric to a Lie group G, equipped with a
left-invariant Lorentzian metric, and Q is of Segre type either [(11, 2)] or [(1, 3)]. More
precisely, we list below an explicit description of the Lie algebra g of G, with respect to a
pseudo-orthonormal basis {e1, e2, e3, e4}, with e4 time-like:

(1) Segre type [(11, 2)]: an explicit solution is given by the solvable Lie group G =
R �H , whose Lie algebra g is described by

[e1, e2] = c1e3 + c1e4 ,

[e1, e3] = −[e1, e4] = −(1/2c2)e1 − c1e2 − c3e3 − c3e4 ,

[e3, e4] = ((2c2
2 + 1)/2c2)(e3 + e4) ,

[e2, e3] = −[e2, e4] = −c2e2 + c4e3 + c4e4 ,
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for any real constants c1, c3, c4 and c2 �= 0. The Ricci operator is given by

Q =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 1 −1
0 0 1 −1

⎞
⎟⎟⎠ ,

and the light-like vector e3 − e4 acts on the Lie algebra g3 = Span{e1, e2, e3 + e4} of H .

(2) Segre type [(1, 3)] : G is the solvable Lie group = R�E(1, 1), whose Lie algebra
g is described by

[e1, e2] = (c1 + √
2c2)e2 − (1/4c2)e3 − (c1 + √

2c2)e4,

[e1, e3] = −(3/4c2)e2 + √
2c2e3 + (3/4c2)e4 ,

[e1, e4] = (c1 − √
2c2)e2 − (1/4c2)e3 + (−c1 + √

2c2)e4 ,

[e2, e4] = (φ/c2)(e2 − e4) ,

[e2, e3] = −[e3, e4] = (3
√

2φ/16c3
2)e2 − (φ/2c2)e3 − (3

√
2φ/16c3

2)e4 ,

where φ = ±
√

4
√

2c1c
3
2 − 1, for any real constants c1, c2 �= 0 such that 4

√
2c1c

3
2 − 1 ≥ 0.

The Ricci operator is given by

Q =

⎛
⎜⎜⎜⎝

−6c2
2 0 0 0

0 −6c2
2

√
2 0

0
√

2 −6c2
2

√
2

0 0 −√
2 −6c2

2

⎞
⎟⎟⎟⎠ ,

and e1, space-like, acts on the Lorentzian Lie algebra g3 = Span{e2, e3, e4} of E(1, 1).

5. Cases with degenerate Ricci operator and nontrivial isotropy. It is a well-
known fact that the same homogeneous space can admit several different realizations as a
coset space. In particular, condition h �= 0 does not exclude the possibility that this manifold
is (also) isometric to some Lie group. A very basic example is given by the three-sphere S3:
its Ricci operator is obviously degenerate, and h �= 0 is three-dimensional, but S3 is also
isometric to the Lie group SU(2).

However, condition h �= 0 ensures thatM also corresponds to one of the examples listed
in [10]. Thus, in order to complete the classification of four-dimensional conformally flat
homogeneous pseudo-Riemannian manifolds, we consider the classification of homogeneous
pseudo-Riemannian four-manifolds given in [10]. We start illustrating the argument used in
[10] to describe the Ricci curvature of a homogeneous pseudo-Riemannian four-manifold.

Consider a homogeneous manifold M = G/H (with H connected), the Lie algebra g

of G and the isotropy subalgebra h, and m = g/h the factor space, which is identified with a
subspace of g complementary to h. The pair (g, h) uniquely defines the isotropy representation

ψ : g → gl(m) , ψ(x)(y) = [x, y]m for all x ∈ g , y ∈ m .



50 G. CALVARUSO AND A. ZAEIM

Given a basis {h1, . . . , hr , u1, . . . , un} of g, where {hj } and {ui} are bases of h and
m, respectively, a bilinear form on m is determined by the matrix g of its components with
respect to the basis {ui}, and is invariant if and only if tψ(x) ◦ g + g ◦ ψ(x) = 0 for all
x ∈ g. Invariant pseudo-Riemannian metrics g on the homogeneous space M = G/H are in
a one-to-one correspondence with nondegenerate invariant symmetric bilinear forms g on m

[10].
Next, g uniquely defines its invariant linear Levi-Civita connection, described in terms

of the corresponding homomorphism of h-modules Λ : g → gl(m) such that Λ(x)(ym) =
[x, y]m for all x ∈ h, y ∈ g. Explicitly, one has

Λ(x)(ym) = 1
2 [x, y]m + v(x, y) for all x, y ∈ g ,

where v : g × g → m is the h-invariant symmetric mapping uniquely determined by

2g(v(x, y), zm) = g(xm, [z, y]m)+ g(ym, [z, x]m) for all x, y , z ∈ g .

The curvature tensor is then determined by

(5.11)
R : m × m → gl(m)

(x, y) �→ [Λ(x),Λ(y)] −Λ([x, y]) .
Finally, the Ricci tensor � of g , described in terms of its components with respect to {ui}, is
given by

(5.12) �(ui, uj ) =
4∑
r=1

Rri(ur, uj ) , i, j = 1, . . . , 4 ,

the Ricci operator Q is uniquely determined by condition g(Q(X), Y ) = �(X, Y ), and the
scalar curvature is calculated as the trace of Q. We then have all the needed information to
check whether the equation (2.1) holds, that is, if M4 = G/H is conformally flat.

We applied the above argument to all the spaces included in Komrakov’s classifica-
tion [10] of four-dimensional homogeneous pseudo-Riemannian with nontrivial isotropy, and
checked the possible forms for the Ricci operator. The results we obtained are resumed in the
following.

THEOREM 5.1. Let (M, g) be a conformally flat homogeneous, not locally symmet-
ric pseudo-Riemannian four-manifold with nontrivial isotropy, whose Ricci operator Q is
not diagonalizable and degenerate. Then, Q is of Segre type either [(22)], [(1, 12)], or
[(11, 2)]. Conformally flat homogeneous, not locally symmetric pseudo-Riemannian four-
manifolds with Ricci operator of these Segre types are listed in Tables III, IV and V.

PROOF. Following the notation and the classification used in [10], the space identified
by the type n.mk : q is the one corresponding to the q-th pair (g, h) of type n.mk , where
n = dim(h) (= 1, . . . , 6), m is the number of the complex subalgebra hC of so(4,C) and k is
the number of the real form of hC .
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We list in these tables all conformally flat pseudo-Riemannian homogeneous four-
manifolds with nontrivial isotropy and non diagonalizable Ricci operator, which are not lo-
cally symmetric. In each of the different cases, {u1, u2, u3, u4} is the basis of m used in [10]
in the description of the quotient space M = G/H , and {ω1, ω2, ω3, ω4} the corresponding
dual basis of one-forms. Moreover, ωiωj and uiωj respectively denote the symmetric tensor
product of ωi and ωj , and the tensor product ui ⊗ ωj . �

Case Invariant metric Ricci operator

1.31:2 −2aω1ω4 + 2aω2ω3 + bω3ω3 + 2cω3ω4
λ+1
2a (−u1ω3 + u2ω4)+ 1

2a u1ω4

− λ2+1
2a u2ω3, λ �= 0

1.31:4 2a(−ω1ω4 + ω2ω3)+ bω3ω3 + 2cω3ω4
λ
a (−u1ω3 + u2ω4)+ 1

2a u1ω4

+ 1−λ2

2a u2ω3

1.31:5 2a(−ω1ω4 +ω2ω3)+ 2cλμ−dλ2−μd−2cλ
μ(μ−1) ω3ω3

+ 2cω3ω4 + dω4ω4

λμ
2a (u1ω3 − u2ω4)+ μ2−2μ

2a u1ω4

− λ2μ+λ2−2μ+4
2a(μ−1) u2ω3, (λ, μ) �= (0, 2)

1.31:7 2a(−ω1ω4 + ω2ω3)+ bω3ω3 + 2cω3ω4
+ (bλ − 2c)ω4ω4

λ
a(1+λ) (−u1ω3 + u2ω4 + u1ω4

+ 1−λ
2λ u2ω3), λ �= 0

1.31:15 2a(−ω1ω4+ω2ω3)−dω3ω3+2cω3ω4+dω4ω4
1

2a (2u1ω4 + u2ω3)

1.31:16 2a(−ω1ω4+ω2ω3)+dω3ω3+2cω3ω4+dω4ω4
1

2a (−2u1ω4 + u2ω3)

1.31:24 2a(−ω1ω4+ω2ω3)+2d(λ2−λ)ω3ω3+2cω3ω4
+ dω4ω4

λ−2
2a(λ−1) u1ω4 − 3λ2−8λ+4

2a u2ω3,

λ �= 0, 2
3 , 2

1.31:25 2a(−ω1ω4+ω2ω3)−2d(λ2−λ)ω3ω3+2cω3ω4
+ dω4ω4

2−λ
2a(λ−1) u1ω4 − 3λ2−8λ+4

2a u2ω3,

λ �= 0, 2
3 , 2

1.31:28 2a(−ω1ω4 + ω2ω3)+ 2dω3ω3 + 2cω3ω4
+ dω4ω4

1
2a (u1ω4 − 3u2ω3)

1.31:29 2a(−ω1ω4 + ω2ω3)− 2dω3ω3 + 2cω3ω4
+ dω4ω4

− 1
2a (u1ω4 + 3u2ω3)

1.31:30 2a(−ω1ω4 + ω2ω3)+ b(λ2 − λ)ω3ω3
− (bμ+ dλ − d − b)ω3ω4 + dω4ω4

μ2λ2−λ2−λμ+λ−μ2+μ
2a(−λ−μ+λμ) (u2ω4 − u1ω3)

+ λμ−μ3+μ3λ−λ−μ2λ−μ+2μ2

2a(−λ−μ+λμ) u1ω4

− 2λ2−λ−λ3+λμ+λ3μ−μ−λ2μ
2a(−λ−μ+λμ) u2ω3,

λ, μ �= 1

TABLE III. Non-symmetric examples with Q of Segre type [(22)].
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Case Invariant metric Ricci operator

1.11:1 2aω1ω3 + 2cω2ω4 + dω4ω4
a2−c2

2a2c
u2ω4, a �= ±c

1.11:2 2aω1ω3 + 2cω2ω4 + dω4ω4
2(p−1)
b

u2ω4, p �= 0, 1

1.31:5 2a(−ω1ω4 + ω2ω3)+ bω3ω3 + 2cω3ω4 − 2c
λ ω4ω4

λ2+4
2a u2ω3, λ �= 0 = μ

1.31:7 2a(−ω1ω4 + ω2ω3)+ bω3ω3 + 2cω3ω4 − 2cω4ω4
1

2a u2ω3, λ = 0

1.31:12 2a(−ω1ω4 + ω2ω3)+ 2cω3ω4 + dω4ω4
(λ−μ)2−1

2a u1ω4, λ �= μ± 1

1.31:12 2a(−ω1ω4 + ω2ω3)+ bω3ω3 + 2cω3ω4 + dω4ω4
2μ(μ−1)

a u1ω4, λ = 1 − μ,μ �= 0, 1

1.31:12 2a(−ω1ω4 + ω2ω3)+ bω3ω3 + 2cω3ω4 + dω4ω4
(1+2λ)(−3+2λ)

8a u1ω4, μ = 1
2 , λ �= 1±2

2

1.31:19 2a(−ω1ω4 + ω2ω3)+ 2cω3ω4 + dω4ω4 − 1
2a u1ω4

1.31:21 2a(−ω1ω4 + ω2ω3)+ 2cω3ω4 + dω4ω4
λ(λ−2)

2a u1ω4, λ �= 0, 2

1.31:21 2a(−ω1ω4 + ω2ω3)+ bω3ω3 + 2cω3ω4 + dω4ω4 − 3
8a u1ω4, λ = 1

2

1.31:24 2a(−ω1ω4 + ω2ω3)+ bω3ω3 + 2cω3ω4 + dω4ω4
2
a u1ω4, λ = 2

3

1.31:25 2a(−ω1ω4 + ω2ω3)+ bω3ω3 + 2cω3ω4 + dω4ω4 − 2
a u1ω4, λ = 2

3

1.31:30 2a(ω2ω3 − ω1ω4)+ bω3ω3 + b(1 − μ)ω3ω4 + dω4ω4
1−μ2

2a u1ω4, λ = 1 �= ±μ
1.31:30 2a(ω2ω3 − ω1ω4)+ bω3ω3 + d(1 − λ)ω3ω4 + dω4ω4

λ2−1
2a u2ω3, ±λ �= 1 = μ

1.41:2 a(ω2ω2 − 2ω1ω3)+ bω3ω3 + 2cω3ω4 + dω4ω4
ad < 0, b �= 0

− 12
d (u1ω1 + u2ω2 + u3ω3 + u4ω4)

− 4b
ad
u1ω3, p = 3

1.41:9 a(−2ω1ω3 + ω2ω2)+ bω3ω3 + 2cω3ω4

− a(4r+1)
4 ω4ω4

4r−3
8a u1ω3, r > − 1

4 , �= 3
4 , p = − 1

2

1.41:10 a(−2ω1ω3 + ω2ω2)+ bω3ω3 + 2cω3ω4 + dω4ω4
ad < 0

2p(p+1)
a u1ω3, p �= 0,−1, r = p + p2

2.21:2 2a(ω1ω3 + ω2ω4)+ bω2ω2
p2−4

2a u4ω2, p �= 0,±2

2.21:3 2a(ω1ω3 + ω2ω4)+ bω2ω2
1

2a u4ω2

2.51:4 2a(ω1ω3 + ω2ω4)+ bω3ω3
2h−h2+4g

2a u1ω3, 2h− h2 + 4g �= 0

3.31:1 2a(ω1ω3 + ω2ω4)+ bω3ω3 − 2p
a u1ω3, p �= 0

TABLE IV. Non-symmetric examples with Q of Segre type [(1, 12)].
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Case Invariant metric Ricci operator

1.12:1 c(ω1ω1 + ω3ω3)+ 2bω2ω4 + dω4ω4
4c2+b2

2bc2 u2ω4

1.12:2 c(ω1ω1 + ω3ω3)+ 2bω2ω4 + dω4ω4
2(p−1)
b

u2ω4, p �= 0, 1

1.41:2 a(−2ω1ω3 + ω2ω2)+ bω3ω3 + 2cω3ω4
+ dω4ω4, ad > 0, b �= 0

− 12
d (u1ω1 + u2ω2 + u3ω3 + u4ω4)

− 4b
da
u1ω3, p = 3

1.41:9 a(−2ω1ω3 + ω2ω2)+ bω3ω3 + 2cω3ω4

− a(4r+1)
4 ω4ω4

4r−3
8a u1ω3, p = − 1

2 , r < − 1
4

1.41:10 a(−2ω1ω3 + ω2ω2)+ bω3ω3 + 2cω3ω4
+ dω4ω4, ad > 0

2p(p+1)
a u1ω3, p �= 0,−1, r = p(p + 1)

2.52:2 2aω1ω3 + a(ω2ω2 + ω4ω4)+ bω3ω3
2(p+r2)

a u1ω3, p �= −r2, s = 0

3.32:1 2aω1ω3 + a(ω2ω2 + ω4ω4)+ bω3ω3
2p
a u1ω3, p �= 0

TABLE V. Non-symmetric examples with Q of Segre type [(11, 2)]
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