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INFINITESIMAL DERIVATIVE OF THE BOTT CLASS
AND THE SCHWARZIAN DERIVATIVES

TARO ASUKE*
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Abstract. An infinitesimal derivative of the Bott class is defined by generalizing
Heitsch’es construction. We prove a formula relating the infinitesimal derivative to the
Schwarzian derivatives, which gives a generalization of the Maszczyk formula for the
Godbillon-Vey class of real codimension-one foliations. As an application, a residue of in-
finitesimal derivatives with respect to the Julia set in the sense of Ghys, Gomez-Mont and
Saludes is introduced.

Introduction. The Bott class is a secondary characteristic class of transversally holo-
morphic foliations defined in a similar manner to the Godbillon-Vey class. It is significant that
the Bott class varies continuously under deformations of foliations. The derivative of the Bott
class can be defined if the family is smooth. Moreover, the derivatives with respect to infin-
itesimal deformations are also defined, which we call infinitesimal derivatives in this article.
An explicit construction of them was presented by Heitsch [14], [15], where the infinitesimal
derivative of the Bott class was given if normal bundles are trivial. If the normal bundle is not
necessarily trivial, then the derivative of the imaginary part was given. The real part of the
Bott class proves useful in the study of Fatou-Julia decompositions of foliations [13] as well
as of the Futaki invariant [11], [12]. For this reason, it would be worthwhile if the infinites-
imal derivative of the Bott class is defined without additional assumptions. In this paper, by
modifying Heitsch’es construction, we define the infinitesimal derivatives of the Bott class in
full generality. Some applications concerning the Fatou-Julia decomposition in the sense of
Ghys, Gomez-Mont and Saludes will be also discussed.

It is shown by Maszczyk [19] that the infinitesimal derivative of the Godbillon-Vey class
of real codimension-one foliation is described in terms of classical Schwarzian derivative. The
formula is easily seen to be valid also for the Bott class of complex codimension-one folia-
tions. It will be shown that the same is also true for higher codimensional cases if we replace
the classical Schwarzian derivative with the projective Schwarzian derivatives. In particular,
we show that the infinitesimal derivatives of the Bott class of transversally complex projective
foliations vanish. It is in analogy with the fact that the imaginary part of the Bott class is
trivial if the foliation is transversally Hermitian or transversally complex affine. Examples are
given in the final section.
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1. Relevant definitions. In this paper, all manifolds are smooth and without bound-
ary, unless otherwise stated.

DEFINITION 1.1. A foliation F of a manifold M is said to be transversally holomor-
phic of complex codimension g if there is an open covering U = {U;} of M with the follow-
ing properties:

(1) Each U; is homeomorphic to V; x D2‘1, where V; is an open subset of R” and D%
is an open ball in C? (p + 2¢g = dim M).

(2) The foliation restricted to U; is given by the slices {V; x {z}}, where z € D%,

(3) Under the identification in 1), the transition function ¢;; from U; to U; is of the
form @j; (x, z) = (¥ji(x, 2), v;i(2)), where y;; is a local biholomorphic diffeomorphism.
Such an atlas {U, {¢;;}} is called a foliation atlas. An open covering of M is adapted if it is
simple and gives a refinement of a foliation atlas for F.

DEFINITION 1.2. Let F be a transversally holomorphic foliation. Denote by E =
E(F) the complex subbundle Tc M = TM ® C locally spanned by 9/ ax,i and 9/ lei, where
(X, zk) = (x,l, R x,f, z,i, e, zZ) are local coordinates as in Definition 1.1. The complex
normal bundle Q(F) of F is by definition Tc M/E. The line bundle Kr = /\q O(F)* is

called the canonical bundle, and — K r = /\q Q(F) is the anti-canonical bundle.

NOTATION 1.3. We denote by /(1)(U) the ideal of C-valued differential forms £2*(U)
on U, locally generated by dz', ..., dz7. We set Ipy(U) = 1(1)(U)k, I(I;C)(U) = Ipl)N
£27(U), and denote the sheaves generated by these ideals by /) and 1(1,1). Define 1(1,; H =
I{;C)/I(IZ), namely, an element of I(';{J)(U) is a family {w;}, for which w; € I(I;C) is defined on
an open subset V; of U, such that | JV; = U and wj — w; € I(ll’)(V,- NVyitv,nv; #0.
Finally, we set Iu.y = @, 1), -

Note that Iy = {0} for k > ¢. If p < [, then I(’;{ n = I(I;C) because I(’l’) = {0}. In
what follows, by abuse of notation, the sheaf of germs of sections of a vector bundle V is also

denoted by V. Then, E* = 1(10’1).

NOTATION 1.4. Let S be a presheaf on M and U an open covering of M. The set
of Cech r-cochains with values in S is denoted by C "U; S), or by lold (S) if U is obvious.
Components of Cech cochains are represented by attaching or removing indices, namely, a
cochain {w; } is denoted by w and vice versa.

Elements of C” (U; 22%) are called Cech-de Rham (r, s)-cochains. Cr U; £2%) is also
denoted by A" (U). If c € A" (U4) and ¢’ € A"*(U4), then the product c U ¢’ € A" 15T (1Y)
is defined by (c U ¢)ig...i,,, = (=D cigeiy A C;w ., The Cech differential and the de Rham

iy
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differential are denoted by § and d, respectively. The Cech-de Rham differential D is defined
by D =4+ (—1)d.

DEFINITION 1.5. Let C* U; Z) be the Cech complex with coefficients in Z. Then
C"(U; Z) C A"OWU). The quotient A**(U)-module A**(U)/C*(U; Z) equipped with the
natural differential is called the modified Cech-de Rham complex.

Let &/ = {U;} be an adapted covering. Then —K r is trivial when restricted to each
Ui. Let e; be a trivialization of —K |y, and {J;;} a family of non-zero functions such that
ej = e;J;j. Noting that log J;; is well-defined, since the covering is adapted, we set ® =
(271\/—_1)_1810g J. It is classical that @ represents c1(Q(F)) in I:IZ(M; Z). Let V; be a
Bott connection defined on Uj;, and let 6; be its connection form with respect to e;.

DEFINITION 1.6. Weset 8;; = 0; —6; —dlogJ;j and call B = {B;;} the difference
cochain of {V;}.

Note that 8;; € I(1)(U; N U}). In the modified Cech-de Rham complex, the Bott class is
represented in terms of the following cochains:

DEFINITION 1.7. Set

—1 1
ur(V,e) = ———=(0 +logJ), ui(V,e)=

7 osT
2741 271\/—_1(9+ og/).

-1 1 S

= ———(do d v = .
v1(V,e) 27“/__1(51 +pB) an 11(V, e) 27_“/__1(619—}—,3)

When V and e are clear, they will be omitted.
We note that Du; = vy — ® and Du; = v; — ©.

THEOREM 1.8 ([3]). Let B, (F) be the Bott class of F. Then, in the modified Cech-de
Rham complex, B, (F) is represented by the cochain By(V, e) defined by the formula

Bq(V,e)=u1UviI+@Uu1va_1+~-~+@qUu1,

which is independent of the choices of U, the family of local trivializations e of —K r, and the
family of Bott connections V.

DEFINITION 1.9. Let {Fs}ses be a family of transversally holomorphic foliations, of
a fixed codimension, of a fixed manifold. Then {F} is said to be a continuous deformation
of Fy if {F;} is a continuous family as plane fields and the transversal holomorphic structures
also vary continuously, where 0 € § is the base point. A smooth family {F}scs is said to be
smooth if it is a smooth family of plane fields and the transversal holomorphic structures vary
smoothly.

Given a smooth family { g} of transversally holomorphic foliations, set— Ky = /\qQ (Fs).
We may assume that there is a family {e; ;} of local trivializations of — K; such that each e; ; is
defined on U;. Let {Js ;;} be functions such that e; ; = ey ; Js;j. Then we may further assume
that J ;; is independent of s. We denote J; ;; by J;;. The cocycle &5 = (2nJ—_1)_18 log Js
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is also independent of s and denoted by ®. Choose then a smooth family {V,} of local Bott
connections, and denote by {0 ;} the connection forms of V with respect to {es ;}. Let {B;,i;}
be the difference cochain of V. Then by definition 65 j — 05 ; = d log J;j + Bs,;;. Finally, for
any cochain wg, we denote by @ the partial derivative of wy with respect to s.

Under these choices of cochains, we have the following

PROPOSITION 1.10. Let ui(s) = u1(Vs,es) and vi(s) = v1(Vy, e5), respectively,
and let i1(s) = —1/Qn~/—1)6;. Then, 0By (Fy)/0s naturally determines an element of
H2+t\(M; C), which is represented by ZZ:O V() Uity (s) Uy (s)4k,

PROOF. First, note that 1 (s) is the partial derivative of u1(s) with respect to s. Set
1(s) = —1/(271«/—1)(:19} + BS). Then Du1(s) = v1(s). We note that

9 1 . _
5Bq<vs,es>=§)@"Uu1<s)w1<s)‘f k

q—1g—k—1
+Y ) O Uuis) Uvi(s) Uin(s) U ()0

k=0 [=0

Set px = ;’;(f O T Uui(s) Uvi(s) Ui (s) Uvi(s)9 % fork =1, ..., q. Then we have

3 q
5 Ba(Vs,e0) + Dp1 + -+ 4+ Dpg = Y i) Vinn(s) Ui ()17 O
k=0
COROLLARY 1.11. Assume that each Vy is a global connection. Then 0 B, (F;)/ds is
represented by a global (2q + 1)-form (=2 /—1)~4+tD (g + D65 A (d6y)1.

The above representative is the same as the one given by Heitsch [15] when normal
bundles are trivial.

The imaginary part of the Bott class is an element of H24+!(M; R). Indeed, it can be
described without using the cocycle @ as follows.

THEOREM 1.12 (cf. [2]). Let &;,(V, e) be the cocycle in the Cech-de Rham complex
defined by the formula

&‘

—1

q
£,(V,e) = TZ@’; U@ —in) Uo? + ok U@ —apui?).
k=0

Then &, (V, e) represents §;(F) = ~—1(By (F) — B, (F)), which is independent of the choice
of Vande.

PROOF. Setay =Y /"' @% Uity Ut Uy — i) Un? "7 Then

q
Zﬁ’f Ui — i) Vo] —Dlag+ - +ag_1) = By(V,e) — Bg(V, e).
k=0

The claim follows from this equation and its complex conjugate. a
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If log J takes values in /—1R and if 8 = 0, then ¥} = u; — i1, v; and v are globally
well-defined differential forms, and the representative of &, in Theorem 1.12 coincides with
the standard one.

2. Infinitesimal derivatives of the Bott class. We will introduce infinitesimal
derivatives of the Bott class by following Heitsch [14]. In what follows, tensors are usually
represented in the form of matrices, and the multiplications are considered under the usual
multiplication laws together with the tensor or wedge products.

Let fe; = (¢;15---» gi’q)} be a family of local trivializations of Q(F) and {w; =
’(Qi., e Q‘f)} its dual. Let Aji be the matrix valued function such that (¢, |, ..., gi’q) =
(gj’l, .. .,gj’q)éji. Then Aini = ;. Let V. = ({8,}, {éij}) be a pair of a family of
local Bott connection forms and the difference cochain with respect to {e¢;}. That is, 6;
is the connection form with respect to e; of a Bott connection V; on U; so that Ve, =
(Vi Ve ) = (€poennei )0, and B = AjMdA; + AG0,A; — 6, where
Ei,k@i)kl _ (Q,-)kl ® ¢, One has then dw; + 0, A w; = 0, éji = _Ajiéijé;il and
Eij € I (Uij), where Uij = U; NU;.

DEFINITION 2.1. Set E5 ® Q(F) = N’E* ® O(F). LetU = {U;} and s € (E* ®
Q(F))(U), where U is an open subset of M contained in U;. Define a mapping dv,; : (E* ®
Q)W) — (EST1 @ Q(F)(U) by

dv,i(s)=e;(dp+6; ANop),

where ¢ = w;(s) and ¢ is considered as an s-form by arbitrarily extending it. We equip
{é "(E* ®@ Q(F))} with the Cech differential § and the differential dvy . The total complex with
differential § + (— 1)’dz is denoted by £*(Q(F)).

LEMMA 2.2. dy; is independent of i, and the family {dv ;} induces a well-defined
mapping dv : E* ® Q(F) — EST' ® Q(F).

PROOF. Ifsisasectionof (E°® Q(F))(U;NU|), then dz,j(gjgj (8)) =dv,i(e;w;(s))
+€i(éij A w;(s)). The right hand side is equal to dv ;(e;w;(s)) as a section of (E5t1 @

Q(F)(U; N Uj) because E* = 1(10’1). O

DEFINITION 2.3. Let H*(M; ®F) be the cohomology of ((E*® Q(F))(M), dv), and
‘H*(M; ©F) the cohomology of the total complex (£*(Q(F)), 8 4+ (—1)*dy).

The first definition is justified by the fact that ((E* ® Q(F))(M), dv) is a resolution
of ®f if V is a global Bott connection ([9]) and by Lemma 2.2. It is easy to see that the
natural mapping H? (M; ©®r) — HP(M; ©r) is injective if p = 1. Indeed, an isomorphism
between H”(M; @) and HP (M; ®r) can be constructed by using a partition of unity. How-
ever, we distinguish them because a certain difference will occur when defining infinitesimal
derivatives (cf. Definitions 2.16 and 4.11).
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DEFINITION 2.4 (cf. [15]). An element 1 of HY(M; Or) is called an infinitesimal
deformation of F. If ({o ;}, {L’j D € EL(Q(F)) is a representative of M, then the pair ({—o ;},
{—gij}) is called the infinitesimal derivative of w = {w;}.

Since E* = 1(10 1)» an infinitesimal derivative ({—o ;}, {—s ij}) satisfies the following
relations for some gl(g; C)-valued function g ;j on U;; and some gl(g; C)-valued 1-form ¢’,
on U;:

(2.5.) e;(d@; (@) +8; Aw;(@)) =e;0; Aw;,

(2.5.b) (@j—ai) —e;dw;(s;) +0w;s;;)) =e;g, 0,

(2.5.0) 88)ijk =0,

where each o; is arbitrarily extended to a Q (F)-valued differential form. Note that g;; = —g;;

does not hold in general.
Infinitesimal derivatives of Bott connections can be defined in the following way, if ©

is represented by an element of C O(E* ® Q(F)). Note that cocycles in C‘O(E *® Q(F)) are
elements, which are closed under dy, of (E '® Q(F)(M).

DEFINITION 2.6. Supposethat i € H'(M; ©f) andleto = {o,;} € CO(E*® Q(F))
be a representative of u. Then any pair_z/ = ({Q/i}, {gij D satisfying (2.5.a) and (2.5.b) with
s = 0 is called an infinitesimal derivative of the Bott connection V. = ({6}, {ﬁij 1 with
respect to o.

The infinitesimal derivative of the Bott class is defined as follows.

DEFINITION 2.7. Letp € H'(M; ©F)andlet o € (E' ® Q(F))(M) be a represen-
tative. Set

/

-1
¢'=up', 6=u6, B=up, g=trg and ulzm(9/+g).

The cohomology class in H24t1(M; C) represented by

q
—k
Dy By(V, V) = Z of Uu uf
k=0
is called the infinitesimal derivative of the Bott class with respect to p, and is denoted by
Dy By (F).

The independence of the infinitesimal derivatives from the choices of o, V, V/ and local
trivializations will be shown in Theorems 2.14 and 2.17.

Since the Bott class can be defined in terms of K alone, it is natural to expect that
so is its infinitesimal derivative. Indeed, it can be done as follows. Let {e;} be a family of
local trivializations of —K 7, where ¢; is defined on U;. Let {J;;} be a family of smooth
functions such that e; = ¢; J;;. A Bott connection on Q(F)|y, naturally induces a connection
on —K r|y,;, which is also called a Bott connection. Then, a family of local Bott connections
on —K r is a pair ({6;}, {B;;}) satisfying 0; — 6; = dlog J;; + B;;, where 0; is the connection
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form, with respect to e;, of a Bott connection on —K r|y,. Finally, let {w;} be the family of
local trivializations of K £ dual to {e;}.
Recalling that E* = [ (10 1y We introduce the following

DEFINITION 2.8. We denote (E* ® Q(F))(U) also by I(lo’l)(U; QO(F)), and set
I(t]—l,q)(U; —-Kr) = I(t]—l,q)(U) ® (—Krlv).

Letgp € 1(’2171,,,)(Ui NU;; —Kx). Then on U;, ¢ can be written as ¢ = ¢; ® ¢;, where
@ € I(I;_Lq)(U,-). Set then dv ;¢ = e;(dg; + 0; A ;). Since B;; € I(1)(U;;), the identity
dv,j¢ = dv i holds. Hence {dv ;} induces a globally well-defined map, which is denoted
by dv. One has dy o dy = 0. Indeed, the identity dv (dv (e;¢;)) = e;(d6; A ¢;) holds on U;.
The equation d6; A ¢; = 0 holds in 1(’;_1,q)(U,-), since ¢; € I(’;_Lq)(Ui) and do; € I1)(U;).

DEFINITION 2.9. Set K = C” (I(i;r:’fql) (U; —Kr)) and equip it with the differen-

tials § and dy. Let K* be the total complex with the differential §+(—1)"dv, and H*(M; —K r)
the cohomology of K*. We regard the complex (/ (»;—ir_ql—ql) (M; —K ), dy) as a subcomplex of

(K*,8 + (—1)"dy), and denote its cohomology by H*(M; —K r).

The natural mapping H'(M; —Kz) — H!'(M; —K#) is injective, and one can con-
struct an isomorphism by using a partition of unity.

A version of infinitesimal deformations of — K r is defined as follows.

DEFINITION 2.10. Anelement u of H!(M; —K r) is called an infinitesimal deforma-
tion of —Kx. If ({07}, {sij}) € Klisa representative of y, then the cocycle ({—o;}, {—si;})
is called the infinitesimal derivative of w = {w;} with respect to (o, s).

If ({—oi}, {—sij}) is an infinitesimal derivative, then the following identities hold:

(2.11.a) ei(d(w;(07)) + 6; A (i(07))) = €i0] A w; |
(2.11.b) (0j —0i) —ej(dw;j(sij) +0; Nw;(sij)) =ejgijw;,
2.11.¢) Sik —sik +5ij =0.

Suppose that local trivializations and local connections of Q(F) are given. Then those of
—K 7 are induced in the following way. Let {¢;} be a family of local trivializations of Q(F),
and {e; } a family of local trivializations of —K  definedby ¢; = ¢; | A---Ae; . We locally
trivialize K r by the dual {w; = g% Ao A Q’f} of {e;}. Then {6; = tr;} is a family of local
Bott connection forms with respect to {e;}. They satisfy the equations dw; + 6; A w; = 0 and
0; — 6; =dlog J;j + Bij, where J;; = detAij and B;; = tréij'

LEMMA 2.12. Let p € H'(M; OF) and letm = ({o;}, {s;;}) € E'U; Q(F)) be its

representative. Set

q
rom)i =Y oln- AT Adk@) AT A Al @
k=1
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q
rmi =Y (Dol A AT Ak ) AT A A0l e
k=1
Thenr = ro ® r1 induces isomorphismsr: H'(M; O ) — H (M;—K r) andr: H'(M; O F)
— HY(M; —KF), where the induced mappings are denoted by r by abuse of notation. More-
over, if m satisfies (2.5.a), (2.5.b) and (2.5.c), then r (m) satisfies (2.11.a), (2.11.b) and (2.11.c)
with ¢ = tr0" and g = tr g.

PROOF. ltis clear that r (;m) € C*. By (2.5.2), d(w;(c;)) +0; A (w;(g;)) = Q/i ANw;
for some gl(g; C)-valued 1-form Q’i. Since 6 = trf and 8 = tré, we have dro(m); + 6; A
ro(m); = (tr0"); A w; ® e; and ro(m); — ro(m); = dvri(m);j + (trg,)®j ®ej. Itis easy
to see that 6r1(m);jx = 0. Hence r(m) is closed under § + (—1)"dv and the last part of the
lemma follows.

Assume that m is exact. Then o; = e, (df; + 0, fi) and s;; = gjfj — e; fi for some
collection {e; f;} of local sections of Q(F). Set p; = Zzzl(—l)k’lgli Aee A g’fl A
fik A Ql§+l VANRERIV Q‘f ® e¢;. Then dvp; = ro(m); and p; — p; = r1(m);;. Conversely, let
m = ({o;}, {sij}) be a cocycle in K. Then (2.11.a), (2.11.b) and (2.11.c) hold. Let {g’j} be a
family of 1-forms and {g’j j} a family of functions such that Q’j A (wi (o)) = —g’j A w; and
Ql; Awj(sij) = gljja)j. Seto; =Y1_, g’j ®e;pands;; = i gﬁj ®¢; - Then (o, ) is
well-defined as an element of £'(Q(F)) and is independent of the choice of {g’? } and {g’? j }.
We have d(w;(c;) Awi) = d(@;(@;) Nwi +@;(g;) N0 Ao and d(w;(0;) N @;) =

0; Nw; ANwi(0i) + w; Ad(wi(oi)) = —0; ANw;(0;) Nwi —w; N6 A wi(o;). Hence
dw;(@))+0; Aw;(a;) =0inIj .
On the other hand, (d(w;(s;;)) + 8;;(s;;) Nwj = —0; A @; Awj(sij) —@; A

(—gijwj —0j ANwj(sij) +wj(o;) —wj(01) +wi(s;;)0; Nwj+0;w;(s;;) Aw;. It follows
that gj(d(gj(gij)) + Q]Qj(gij)) =0;—-0; We also have és = 0. Therefore, if we set
r’'(m) = (o, s), then r'(m) is closed and it induces a mapping of the cohomology which is
equal to »~!. Finally, the construction shows that H!(M; © ) is mapped to H'(M; —K r)
under the mapping r. O

Infinitesimal derivatives of the Bott class are determined by infinitesimal deformations
of —K r as follows.

DEFINITION 2.13. Let u € H'(M; —K#) and 0 = {0;} € I("(F1 q)(M; —Kr) a
representative of ... Then any pair V' = ({6}, {g;;}) satisfying (2.11.a) and (2.11.b) is called
an infinitesimal derivative of the Bott connection V = ({0;}, {8;;}) with respect to o.

THEOREM 2.14. Let u € H'(M; —K ) be an infinitesimal deformation and o =
{oi} € I(qqfl’q)(M; —KF) a representative of jn. Let V' = ({0/}, {gij}) be the infinitesimal
derivative of 'V with respect to o. Set

q
Do By (V. V) =Y vk Uujuvf ™",
k=0
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where | = —1/Q2n/—=1)(0" + g). Then Dy B, (V, V') represents a class in H?* (M ),
which is independent of the choice of cochains and connections.

PROOF. Note that, since o is globally well-defined, if we define ¢ ; as in the proof of
Lemma 2.12, then {o ;} induces a globally well-defined element of I(ll)(M ; OQ(F)), which we
denote by o. Under these settings, the following lemma holds.

LEMMA 2.15. Let @i be (r, si)-cochains, where 0 < k < g. Suppose that (</)k)i0~~~i,k€
I(Sf) for any k and any iy, ..., i,. Write (‘/’k)io~~irk = Zm(ak§i0“'irk)m A o and set
(@1 G Diggin, = 2o @hsigeoiy Jm A O} Then (9| 0;) A i = —gx A wi(07) and Yo go U
U1 U{grl o) Upr1 U - Uy = 0. Moreover, poU - - -Ugr—1 U{gk| ;) Ugry1U- - -
U @4 is independent of i.

Proof of Lemma 2.15. First note that we can obtain (¢x| o ;) by taking a contraction
from ¢; ® o ; and then a reduction to a differential form. Note also that the last part of the
lemma follows from the assumption s = 0 and the identity (2.11.a). If ® € [ (’;), then we can

also consider the contractionof w ® o ;. Let py, ..., p, € I(*;). Then (p1 A --- A pyla) =
(Prla ) Apa A App+- -+ p1 A Apu—1 A{pn| o ;). Under the assumption, goU- - -Ug, =
0, so that the lemma holds. O

We now return to the proof of the theorem.

Claim 1. Dy By (V, V') is closed.

We have D(Dy By(V, V') = (—271+/=1)"@tD 31 _(d6 + B* UD®' + g) U (db +
B)47*, since D(d6 + B) = 0. We will show that (d6 + B)¥ UD(@’ + ¢) U (d6 + B)?F =
—(d6 + B)¥U ((df| o) + (Bl o)) U (d6 + B)?~%. Then the claim follows from Lemma 2.15.
We have d6] A w; = db6; A (wi(0)) = —(d6;| o) by (2.11.a). On the other hand, ejé;. ANwj =
e,-@l./ A w; + e,-,B,-j A (wi(0)) + eidgij N Wi by (2.11.3) and (2.11.b). Then (5@/ — dg),'j Nw; =
Bij N (wi(0)) = —(Bijl o) A w;. Finally, ¢; (8 gijx)w; = 0 by (2.11.b) and by the assumption
s = {S,’j} =0.

Claim?2. Dy By (V, V') is independent of the choice of V" once o is fixed.

Let ({él.’ },{gij}) be another infinitesimal derivative of V with respect to o. Then e; (él./ —
0)) Aw; = 0and §;j = g;;. Hence (d6 + B)F U (0’ + §) U (d6 + B)7~ = (d0 + B)* U (0’ +
9) U (d6 4 B)47* for each k.

Claim 3. The class [Ds B4 (V, V’)] is independent of the choice of o.

Let {6;} be another representative of u and V' = ({97 },{gij}) an infinitesimal derivative
of V with respect to {6; }. It suffices to show that Y7 _ (d0+p)*U(0'+§—0"—g)U(do+B)7~*
is exact. Set ¥ = ¢ — o. Then there is an element t = {1;} € Iéjll’q)(u; —Kr) and a
family {A;} of functions on U; such that e;w; (¥;) = e;(d(w; (7)) + 0; A (wi(7;)) + hiw;)
and7; — 7, = 0. Letz”/, m = 1,..., g, be 1-forms such that 0" A w;(7;) = —1}" A w;.
Then ei(él.’ — 9;) N wj = —e,-((d@,'lgi) + dh;) A w; and ejhja)j —eihjw; = ei((ﬁijlli) +
(Gij — 9ij)) A wi. The identity >7_(d6 + B¥ U (0’ + §— 6" — g) U (d6 + p)1~* =
D(Zzzo(dG + B)¥ U h U (db + B)?~%) follows from Lemma 2.15.

Claim 4. The class [Ds B4 (V, V’)] is independent of the choice of V.
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Let V = ({@i}, {pij}) be another Bott connection and set ¥; = ¢; — 6;. Then ¥; €
I(ll)(U,-). Assume that {o;} satisfies (2.11.a), (2.11.b) and (2.11.c). Then d(w;(c;)) + ¢i A
(wi(07)) = ¢! A w; for some 1-form ¢]. Since (2.11.b) for V is the same as (2.11.b) for V
because s = {s;;} = 0, ({¢;}, {g;;}) is an infinitesimal derivative of V. If we denote {¢;} by
¥, then DY = (do + p) — (d6 + B). Setting ' = ¢’ — 6, one has ¥; A (w; (7)) = ¥ Aw;.
It then follows that
(2.15.2) (=27v=1)4 (DB, (V, V') — Dy B, (V, V')

q k-1

= > Y Wdo+p'UDY Ude+p) ' U +9)Udp+p)
k=1 1=0

q
+ @0+ B Uy U g+ p)tF
k=0
q—1g—k—1
+3° 3T @O+ U@ +9)U o+ B) UDY U (dg +p)T KT
k=0 [=0

Since ¢ € I(ll)(l/{), one has

(2.15.b) DO + B)" U O + g) U (b + BX Uy Ude + p)h)
= —(d0+B)"U{db]a)+ (Bla) U o+ B Uy U(de + p)
—(d6+ B)" U B + g9) U o + B UDY Uy + p),

and

2150)  D(=(d6+B)" U U g+ p) U +g)Ude+p))
= —(d6+B)" UDY U e+ p) Ul +9)U(dp+p)
— @0+ B)" Uy U (dg + p)* U((dgla) + (pla) U (dg + p)',

where m + k + 1 = g — 1. Adding (2.15.b) and (2.15.c) to the right hand side of (2.15.a),
varying m, k, [ and by using Lemma 2.15, we see that D, B, (V, \A ) B, (V, V') is exact.

Claim5. Dy By(V, V') is independent of the choice of the family of local trivializations
{ei}.

We fix o and V = ({6;}, {Bi;}), and let {elf } be another family of local trivializations.

1a),- and

Then we may assume that e, = e;u; for some C*-valued function u;. Hence ; = u
e;. = ujui_laijel’.. The connection form of V with respect to {e/} is ({6; + ul._ldui}, {Bij}) so
that ({9{ }, {gij}) is also an infinitesimal derivative of V. This completes the proof of Claim 5

and the theorem follows. O

DEFINITION 2.16. If u € HY(M; —K r), then we denote by D, B, (F) the cohomol-
ogy class in H24+1(M; C) represented by D, B4 (V, V') in Theorem 2.14.

It follows from Lemma 2.12 and Theorem 2.14 that Definition 2.16 is an alternative
definition of the infinitesimal derivative of the Bott class.
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THEOREM 2.17. Ifﬂ e H'(M; OF), then Dy By(F) = Dy By (F).

It is known that a smooth family of transversally holomorphic foliations induces an ele-
ment of H'(M; ©r) = H'(M; —K £) ([14]).

THEOREM 2.18. Ifu € HY(M; —KF) is induced by a smooth family {Fy}, then

d
D,U.Bq(]:) = a_Bq(]:s)
s s=0
PROOF. Let és be the one defined after Definition 1.9 and let 6 = 9.3 |s=0. Then 6 is an
infinitesimal derivative of 6 [15, Theorem 2.23]. Hence D, () B, (F) = (3/9s) By (Fs)|s=0 by
Proposition 1.10. O

The infinitesimal derivative of the Bott class constructed above is related with the previ-
ously constructed infinitesimal derivatives as follows.

THEOREM 2.19. Letpu € H'(M; OF).

(1) If —Kgx is trivial, then D, B, (F) coincides with the infinitesimal derivative of the
Bott class in [15]. B

(2) Let D,,&;(F) be the infinitesimal derivative of the imaginary part of the Bott class
defined in [15]. Then Dy &,(F) = —2Im Dy B, (F).

PROOF. These infinitesimal derivatives are constructed under the assumption that § = 0
and g = 0. Hence D, B, (F) is represented by a global (2g + 1)-form (=27 v/ —1)_(‘1“)(61 +
1)8" A (d9)?. The claims are now obvious. |

3. Schwarzian Derivatives. In what follows, the natural coordinates of C? will be
denoted by z = ’(zl, ..., z%) unless otherwise stated.

DEFINITION 3.1 ([18], [22], etc.). Let y be a biholomorphic local diffeomorphism of
C9. Letu ="'(u',...,u) be the natural coordinates of the target and set y* = u¥ o y. The
projective Schwarzian derivative (the Schwarzian derivatives or the Schwarzians for short)
X, of y is given as follows:

azt 3%yk 9
3, = i A dt dS
4 Z duk 971975 37! Bdo @
k,l,t,s
-1 (odlogJ, ol dlog J, ol
- | —= 75  — d t dz* 81— d t dz* ,
+Zq+1< aor Olsg g @4 @A + == o @d @ dz

I,t,s

where Dy denotes the differential of y, J,, = det Dy is the Jacobian and §; ; is the Kronecker
delta. If ¢ > 1, then let Et”s be the coefficient of (3/3z') ® dz' ® dz* in ¥, and define a
tensor A, by the formula

I q
Ay = L3 (s 5ot s Vad @z
Yy = q_l 8Z[ t,u“'s,l .
u

=1 =1
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We have

—1 3%logJ, -1 dlogJ, —1 dlogJ, ‘
Ay = a4 @d - dz} ® dz’
v Z 7+1 azar © 9 ,Z;qﬂ 07 g4l op ¥

—Z —1 dlogJ, 37! 3%y*

; .
q+1 07 dukozoz d= @ dz.

I,t,s
If g = 1, then A, is defined by the above formula because X', = 0 and coincides with the
classical Schwarzian derivative. Indeed,

1 " 3 AN
Ay =— (L —2(L) )azwdz
2 y/ 2 y/
holds, where y’ = dy/dz, y" = d*y /dz*> and y" = d’y /dZ>.

It is classical that y is a restriction of a projective transformation if and only if A, =0
if g = 1. If ¢ > 1, then y is a restriction of a projective transformation if and only if
X, = 0. Itis also known that X, is symmetric and trace-free in the sense that Z’,{S = Z‘é’ p
and qu=1 Ell’s = 0. One of the significant properties of X, is that it is a cocycle, namely,
Yyor = £* X, + X, holds for any local biholomorphic mapping y and ¢ ([20], [21]). On the
other hand, A, is a kind of the curvature tensor for X, ([10], [20]), but is not a cocycle if
g > 1. We refer to [18], [21], [23], [20], [7] and [22] for more details of the Schwarzians.

In terms of matrix valued differential forms, the above tensors are expressed as follows.

LEMMA 3.2. SetdlogJ, = (dlogJ,/dz',...,dlog J,/dz9). Then

9
2y=8—®Dy71~dDy®dZ

q
3
Z < ® (dlog Jy - dz) ® dz* +o7 - ®dz" ® (dlog Jy, - dz))

and

-1 -1
A, =——ddlogJ, ®dz — ——3dlogJ,Dy "' -dDy @ dz
-1 -1
————@logJ, -d ——(logJ, -dz).
qul( og Jy z)®q+1( ogJy -dz)

4. Relation between the infinitesimal derivative of the Bott class and the
Schwarzian derivatives. Let @ = {w;} be a family of local trivializations of —Kx and
V a family of local Bott connections on —K r induced by a family of Bott connections on
Q(F). Foreachi,letz; = ’(zl-l, AU z;’) be the local coordinates in the transversal direction
and {y;;} the transition functions in the transversal direction so that z; = y;;(z;). Finally, if
w is an element of H'(M; —K r), then 1 can be regarded as an element of H'(M; ©f) by
Lemma 2.12. Let o = {0;} be a representative of j as an element of H!(M; ©@x). If Visa
vector bundle, then (A'T*M) A (T*M Q@ V) A(AN? "1 T* M) is identified with AIT*M @V .
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DEFINITION 4.1. Let V be a vector bundle over M. Sections of V are said to be foli-
ated if they are locally constant along the leaves and if they are transversally holomorphic. Let
I'7(V) be the sheaf of germs of foliated sections of V. The Cech complex with coefficients
in I'7(V) is denoted by CV';_-(L{; V), and its cohomology group is denoted by I-VI;-(M; V).

DEFINITION 4.2. Let ¢ be a (, s)-cochain. For 0 < k < r, define a family d)¢ =
{Bw)®)ig-i, } of Q(F)*-valued s-forms on Uj,,...;, by setting

q
Qi iy
Oy Pigiy-—ir = Z —0 ®dz
= 0%
where (8/02! Yhdz]! A -+ Adzl = (@h/0z])dz]! A~ Adz} for any function h. Set then
0= Yicod: CrU: Kp) —> CrUs K5 @ Q(F)").
LEMMA 4.3. The mapping 3 induces a homomorphism on the cohomology, and the
induced homomorphism is independent of the choice of the foliation atlas.

The proof is straightforward and omitted. We denote this homomorphism again by J.

DEFINITION 4.4. Let[dlog J]be the class in I:I]l_-(M; Q(F)*) represented by d log J .
Set £L = —Qr/—1)~@tDj((d log H?) e é;fr(u; Kr ® Q(F)*), and L(F) = [L] €
HE(M: KF ® Q(F)).

The class [d log J] is independent of the choice of the foliation atlas.

DEFINITION 4.5. Let X be a vector field on an open set U of C? and w a p-form.
Setixw = w( - ,..., -, X) and define a Q(F)*-valued p-form (w || X)) by the formula
(@IZ)) =20 5]  Adz' @ dz*, where 1y, = ty5,i. If 7 is a Q* (F)-valued p-form
and 0 = ) ;(3/97") ® o' is a Q(F)-valued 1-form, then define a (p + 1)-form (n| o) by
setting (n | o) = >, (ta;n) Ao

The next lemma is easy.

LEMMA 4.6. Let n = {niy.i,} € éjff(u; Kr ® Q(F)*) and (a,b) = ({a;}, {bij}) €
EYQ(F)). Define then an element (n|(a, b)) of A9 U) & ATTL9WU) ¢ A2 U) by
setting (0 [(a, b))ig---ig.ig-wigp1 = (Mig--ig | di,) D (=D mig-..i, | bijiyyy)- Then (- | - ) induces a
well-defined pairing

(1) : HH-(M; Kr ® Q(F)*) x H'(M; ©5) — H**'(M; C).
PROPOSITION 4.7. Ifu € Hl(M; —KF), then Dy By (F) is equal to (L(F)| ).

PROOF. In this proof, the index iy is denoted by k. Since D, B, (F) is independent of

the choice of connections and representatives, we may choose w; = dzl.1 A A dzl.q and
assume that 6; = 0. Then B;; = —dlog J;;. Let {0;} € KC! be a representative of , and o =
{0 ;} a representative of u as an element of H'(M; ©f), where e, = (8/82}, e B/BZ;I).

We may assume that oy = o} AdzZA---Adz] +--4dz} A-- ~/\dzq71/\gq by Lemma 2.12.
y KNGz k k k k OY
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We set
o log Jo1
Ap = det

ok log Jy—14

Then ((d log J)¥U8'U(d log J)47%)g.., = (—1)74FD/2d ey (0x) A, since ¢ U- - -Ucy =
(=D *=D/2c0 Ao Ay if each ¢; is a (1, 1)-cochain. Let p (k) be the (g, g)-cochain given
by p(k)o..q = (—=1)49"D/2(dlogJoy A -+ AdlogJy—1,4l0;), where 0 < k < g means
the k-th index of 0, ..., g. Then p(k) = (—1)?4=D/2(ay | o ) Ax = (=199 D20 (0}) Ay
Hence (D" p(k))o..q = (—179+D2dawy (op) Ax — ((dlog J)7 | o ;). On the other hand, we
can show that (D’ p (k))o..q+1 = ((d log NHFkugu @ log J)‘f’k)o...qH by direct calculations.
Thus D, B, (F) is cohomologous to — (2 /= 1)+ ((d log J)?| o). O

We will need the explicit form of coboundaries in proving Proposition 5.10. The cocycle
L is calculated as follows.

LEMMA 4.8. Let A be the foliated Cech 1-cochain valued in Q*(F) defined by Ajj =
Ay,;. Then
q+1

Lig..iyy =
T @ry/=Tetg -

3 (seno)((dlog I U Ay iy,

€64+

PROOF. We denote the indices ig, ...,iqg by O,...,q. If we set (A\dlogJ)p..u;q =
dlog Jug Ndlog Jyy1,qg A -+ Adlog g, thendlog Jor AdlogJio A---AdlogJy_14 =
(Adlog J)o...q—1:¢- Since d(jyhdz; = dd;h @ dz; — hDyﬁldDyj,' ® dz;,

duy(A\?dlog J)o..q
gq—1
= Y (A\dlogD)o..;—1,q Addglog Jig A (N\dlog J)i11.q-1:q ® dzg
=0
gq—1
— > (Adlog N)o..i-1.4 A (3 10g Jig Dy, dDyig) A (N\d10g Dit1.q-1:4 ® dzg .
=0

On the other hand, the following equation holds by Lemma 3.2, namely,

(4.8.2) — Y (Adlog)o.i—t:g A (d10g Jigll Skg) A (N\d1og Dis1g-1g
0<i<q—1
17k

— (g + D> (A d1og o k—1:9 A Akg A (N1 D113
+q (\dlog J)o..k—1:4 A (d10g Jig|l Zig) A (N\d10g )it1.g-1:4



INFINITESIMAL DERIVATIVE OF THE BOTT CLASS 407

= (q + D(AdlogJ)o..k—1.¢ ANddglog Jrg A (N\dlog )is1..q—1;¢ ® dzg
q—1
=D (Adlog ))o..i-1.q A (33108 Jig Dy dDyig) A (N\d1og D)ig1g-1.4 ® dzg,
=0

where Xj; = X, As we have (¢ + 1)(Ajj — Aik + Aji) = (dlog Jij|| Zij), the left hand
side of (4.8.a) is equal to
qg—1
— @+ 1) Y (N\dlogD)o.1-1:9 A (Agr = Akt + Akg) A (N d10g I)i11.4-1:4
1=0
+ (g + D> (A\d10g )0 k—1:g A Agk A (Nd10g Dii1.g-1:g
q—1

= —(@@+ DY DTN Adg Noa-1111-g-1:9 A (Agt — A)
=0

+ (g + DA\ d10g J)0.k—1,g—1 k+1--g—2:k A Akgq
+ (g + D* (DTN dlog J)ook—1:g A (N 10 Dii1ig—1:q A Agk -

Noticing that (/\ d10g J)o..i=1,141..g—1:¢ = —(/\d 102 J)0..k—1,g k41,1 —1,141--g—1:k if k 7
! and taking the sum of the above equality with respect to k, we obtain

d(N\dlog J)o..

q
=@+ DY (DT AdIog Mo k-1 kt1g-1:g A Agk
k=0

qg—1

—(@+1 Z Z(—l)‘ﬁl*l(/\dlog I)0- k= 1,g kA 1A =1, 041 g — 15k A Akt
1=0 k£l

qg—1

+@+1D Z(/\dlog )0 k—1,g—1,k+1,--q—2;k N Akg
k=0

from which the lemma follows. O

DEFINITION 4.9. Given u € H'(M; —Kr) ando € I(lo’l)(M; Q(F)) a representa-
tive of 4 as an element of H'(M; ®r), we define a Cech-de Rham (1, 2)-cochain L (1) by
setting L(pL)ij = <Aij|0'j>.

A generalization of the Maszczyk formula [19] for arbitrary transversally holomorphic
foliations now follows from Proposition 4.7 and Lemma 4.8.

THEOREM 4.10. Ifu € HY(M; —K ), then D, B, (F) is represented by the Cech-de
Rham (q, q + 1)-cocycle, whose value on Uj,...;, is given by
(g+1)
Qm/—1)atl(g — 1)!

Z (sgn7)((dlog J)1~' U L(1)i )iz (q) -

T€6q+]
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If g = 1, then the infinitesimal derivative of the Bott class is represented by the Cech-de Rham

1 J//// 3 7///2
47<—/ — E — dZ NO,
4 4 14

where o is a representative of L.

(1,2)-cocycle

Note that (L(F)| u) is well-defined for any i € H!(M; —K ). Hence we can extend
Definitions 2.7 and 2.16 as follows.

DEFINITION 4.11. Let u € H'(M; —Kr). The infinitesimal derivative of the Bott
class with respect to u is defined to be (L(F)| ).

DEFINITION 4.12. The Bott class of a transversally holomorphic foliation F is said
to be infinitesimally rigid if (L(F)|u) = 0 forany u € HY(M; OF).

DEFINITION 4.13. A transversally holomorphic foliation F is said to be transversally
complex projective on U if F admits a structure of a (PSL(g + 1; C), C P9)-foliation on U
whose underlying transversal holomorphic structure coincides with the original one. If U =
M, then F is said to be transversally complex projective. A transversal complex projective
structure is also called a transversal projective structure for short. If a transversal complex
projective structure P is given on an open subset U, then a foliation atlas is said to be adapted
to P if the atlas gives the structure P on U.

By Lemma 4.8, L£(F) is the obstruction for F to admit a transversal projective structure
if g = 1. If ¢ > 1, it remains true that £(F) vanishes if F admits a transversal projec-
tive structure. However, it will be an obstruction for existence of certain reduced structures
because A is a kind of the curvature tensor of the Schwarzian derivative X.

It is well-known that if a foliation admits a first-order transversal geometric structure
such as Hermitian metrics or complex affine structures, then the imaginary part of the Bott
class vanishes. There is an infinitesimal version of this fact involving complex projective
structures, which are of second order.

THEOREM 4.14. The Bott class of transversally projective foliations is infinitesimally
rigid.

Indeed, the Bott class is infinitesimally rigid if £L(F) = 0. Note that there are transver-
sally projective foliations with non-trivial Bott classes (Example 7.2, see also [5]). On the
other hand, it is classical that the Bott class admits continuous deformations ([8], see also
Example 7.1). Note also that the imaginary part of Theorem 4.14 follows from [6].

REMARK 4.15. There is an obvious analogue of above constructions for the
Godbillon-Vey class of real foliations, and the infinitesimal derivative of the Godbillon-Vey
class is represented in terms of the Schwarzians. The codimension-one case is exactly the
Maszczyk formula [19]. Theorem 4.14 for real foliations and the Godbillon-Vey class is
highly non-trivial, because it is well-known that the Godbillon-Vey class admits continuous
deformations (cf. [16]).
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In contrast to real foliations, the Godbillon-Vey class of transversally holomorphic foli-
ations is known to be infinitesimally rigid [5]. The proof of Theorem 4.10 is independent of
results in [5] and we have another proof the rigidity as follows.

COROLLARY 4.16. The Godbillon-Vey class of transversally holomorphic foliations
is rigid under both actual and infinitesimal deformations, where infinitesimal deformations
and actual deformations mean elements of H'(M; —K ) and smooth deformations as in
Definition 1.9, respectively.

PROOF. We give a proof of the rigidity under infinitesimal deformations, from
which the rigidity under actual deformations easily follows. Let c¢;(F) be the first Chern
class of Q(F) and GV, (F) the Godbillon-Vey class of F. It is known that GV, (F) =
c&;(F)c1(F)4, where c is anon-zero real constant [ 1, Theorem A]. We denote by D, GV, (F)
the infinitesimal derivative of GV, (F) with respect to u (see [15]), where u € H "M:—K ).
Since c1(F) is rigid under deformations, we have D,GVy,(F) = c(Duéy)ci(F)? =
c\/—_l(D,LBq (F) — DyBy(F))e1(F)4 by Theorem 2.19. By Theorem 4.10, D, B, (F)
is represented by a Cech-de Rham (¢, 9 + 1)-cocycle whose value on Uj,..;, belongs to
Iy (Uiy...i q) (see Notation 1.3). On the other hand, it is well-known that ¢ (F) is represented
by an element of I(1)(M) (cf. [8]). It follows that D, B, (F)c1(F)? is trivial as a cohomology
class. Since c1(F) is areal class, Dy, By (F)ci(F)? is also trivial. O

5. Localization.

DEFINITION 5.1. LetU = {U;}ies be an open covering of M and w = {w,'ow,'p}
a Cech-de Rham (r, s)-cochain. Set I, = {i € I ;thereexists (i1,...,ir) € I" such that
i iy,...ir 7 0} and define the support of w by suppw = Uielw U;. If suppw is relatively
compact, then w is said to be of compact support.

Let w be a globally defined differential form and denote by s(w) the support of  in the
usual sense. If V is an open set containing s(w), then, taking refinements of coverings, we
may assume that s(w) C suppw C V.

The localization of D, B, (F) is defined by means of I"-vector fields. The notions of I"-
vector fields and basic X-connections below are originally due to Heitsch [16]. The following
definitions are slight modifications of those in [16].

DEFINITION 5.2 ([3]). A vector field X defined on an open set Ox of M is said to be
a I'-vector field for F if [E, X] C Eon Ox. Set Zx = {X € E} U (M \ Ox). Then F and
X form a transversally holomorphic foliation Fx on the open set M \ Zx. If X is a I"-vector
field on Oy, then X induces a foliated section of Q(F) on Oy, which is denoted by X .

Note that Zy is saturated by leaves of F if Oy is saturated. Given a I"-vector field X,
we denote by Uy an open neighborhood (which is not necessarily saturated) of Zx and by Vx
an open neighborhood of M \ Uyx. We will choose Uy arbitrarily small.
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DEFINITION 5.3. Let X be a I"-vector field for 7 on Oy, and let Uy and Vx be as
above. A Bott connection VX = {ViX } of —K r is said to be a basic X-connection for F
supported off Vy if (Vl.X )xs = Lyxs provided U; C Uy, where Ly denotes the Lie derivative
with respect to X.

Note that basic X-connections depend only on X .

One can always obtain a globally well-defined basic X-connection from a family of
local basic X-connections by using a partition of unity. Thus obtained connection is a basic
X-connection for F supported off Vy in the sense of Heitsch. Once an isomorphism Q(F) =
CXp ® O(Fx) is fixed, a basic X-connection induces a Bott connection for Fx on Vy.

Let W be an open subset of M. We denote by Hcl(W; ®r|w) the cohomology of ele-
ments of I(qq_l’q)(W; —K ) with compact support. Elements of HCI(W; ®r|w) can be re-
garded as infinitesimal deformations of F whose support is compact and is contained in W.

DEFINITION 5.4. Let X be a I'-vector field for 7 on Oy, and let Uy and Vy
be as above. Let W be an open subset of M and p € Hcl(W; Or|w). Then, denote by
res Dy, B, (F, X) an element of HX ' (UxNW; C) represented by D, B, (VX, (VX)) where
VX is a basic X-connection supported off Vy, and (VX)' is the infinitesimal derivative of VX
with respect to o.

It is clear that res D, B, (F, X) depends on X o but not on X itself, so that the residue is
also denoted by res D, B, (F, X ).

THEOREM 5.5. res Dy By (F, X) is well-defined. Let 1 : Ux N W — M be the
inclusion and 14 : HCZqH(UX NW;C) — HXYY(M;C) the natural mapping. Then
tyres Dy By (F, X) = Dy By(F). Moreover, if Zx is decomposed into connected components
Z1, ..., Zy, then the residue is naturally decomposed into elements of H2‘1+1(Ui NW;C)as
well, where Ui, i = 1, ..., r, are mutually disjoint open neighborhoods of Z;.

PROOF. By the assumption, u is represented by a cocycle compactly supported in W. It
follows from (2.11.a) and (2.11.b) that the support of the infinitesimal derivative of any Bott
connection is compact and contained in W, when taken the wedge product with elements of
I(4y(M). On the other hand, if basic X-connections are used in calculation, cochains such as
(d6 + B)4 vanish on Vx thanks to the Bott vanishing for Fx. It follows that the supports of
the coboundaries constructed in Claims 3 and 4 in the proof of Theorem 2.14 are compact and
contained in Ux N W. The last claim also follows from similar arguments. a

Let X be a I"-vector field for Fy on Oy,, and let Uy, and Vx, be as above. If there is
a trivialization eyy of —Kr|yy, , then the residue of the Bott class is defined as an element

of HCZqH(UXO; C/Z) [3]. When residues are considered, a version of Theorem 2.18 holds
under some additional conditions.

THEOREM 5.6. Let {(Fs, X5, e5)} be a smooth family of triples with the following
properties:
(D) {Fs} is a smooth family of transversally holomorphic foliations.
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(2) {Xs} is a smooth family such that each X, is a I"-vector field for F; and that Zx,
is independent of s. We denote Zx_ by Zx.

(3) There are open neighborhoods Ux of Zx and Vx of M\ Ux such that {es} restricted
to Vx is a smooth family of trivializations of — K, |vy.
Assume that eq is foliated and that Lxeqg = 0, where Lx denotes the Lie derivative with re-
spectto X. Let u € H'(M; —Kx) be the infinitesimal deformation induced by {Fy}. Then

res D, B, (F, X) = i res B, (Fs, X5, e5)
ds s=0
PROOF. Under the assumptions, we can repeat the proof of Theorem 2.18 in a com-
pactly supported manner. Indeed, since there is a trivialization of —K z on Vy, the cocycle
® in Proposition 1.10 is zero on Vy. Moreover, since e is foliated with respect to Fx, the
cochains #1 and v; belong to I(1)(Fx). Hence the cochains p; are equal to zero on Vy.
Therefore, the equality in the statement holds in HE"H (M; C). O

REMARK 5.7. It is natural to choose X¢ as ey if ¢ = 1. Theorem 5.6 fails if the
assumption on e is dropped as shown in Example 7.3, although the left hand side is inde-
pendent of eg. The assumption is needed in order that Proposition 1.10 works in a compactly
supported manner.

Localization using £ is given as follows. Let Hcl. (W; ®£|w) be the cohomology of K*
(Definition 2.9) with compact support.

THEOREM 5.8. Let F be a transversally holomorphic foliation of M. Suppose that F
admits on an open set V of M, possibly V.=, a transversal complex projective structure P.
Let U be an open neighborhood of M \ V. Finally, let i € HY(W; ©x|w), where W is an
open subset of M, and let o be a representative of u. Then (L | o) represents an element of
HC2 qtl (U NW; C), which is independent of the choice of representatives, where the foliation
atlas is always chosen to be adaptedto P on V.

PROOF. By the choice of the foliation atlas, the support of £ is contained in U. Hence
the support of (L | o) is contained in U N W. If we choose another foliation atlas adapted
to P and obtain £, then £ and £ are cohomologous as cocycles supported on U. It is not
difficult to show that (£ | o) and (£ | o) represent the same cohomology class if o and ¢’ are
representatives of [. O

DEFINITION 5.9. An element of HE"H(U N W; C) obtained in Theorem 5.8 is de-

noted by res(L(F, P)| u).
PROPOSITION 5.10. Let W be an open subset of M and let u € Hcl(W; —Krlw).
Then res D, By (F, X) = res(L(F,P)|u) € HCZqH(W; C) holds for any I'-vector field X

and any transversal projective structure P.

This follows from the fact that the support of the coboundaries constructed in Proposi-
tion 4.7 are compact.
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6. Relation to the Fatou-Julia decomposition. If the complex codimension is equal
to one, the localization in terms of the (classical) Schwarzian £(F) and the Fatou-Julia de-
composition in the sense of Ghys, Gomez-Mont and Saludes [13] are related as follows. Let
B £ be the sheaf of germs of locally L°°-foliated sections of E(]—" )*® Q(F), where E(]—" ) de-
notes the complex conjugate of Q(F). Then H(M; B) is the space of locally L>°-foliated
sections of @(]—" )* ® Q(F). The space H OM; Br) is a Banach space with the essential
supremum norm, and there is a natural mapping 8 : H*(M; BF) — H'(M; @ ). The image
of § consists of infinitesimal deformations preserving Fg, where Fg denotes the underlying
real foliation.

LEMMA 6.1. Let M be a closed manifold and let 0 € HO(M; Br). Set u = 8(o).
Then (L | o) is well-defined as an integrable 3-form. It is equal to (L(F)| u) as an element of
Hom¢ (HYE™M=3(M: C), C) = H3(M; C).

PROOF. After extending o as a section of E* ® Q(F) by requiring o7 = 0, we
approximate it by differential forms of class C*°. The lemma follows by the Lebesgue con-
vergence theorem. O

More detailed information on H%(M; B ) was obtained in [13]. Let F be the Fatou
set and J the Julia set. The Julia set is measurably decomposed into the recurrent compo-
nent Jo and the ergodic components Ji, ..., J.. There is a corresponding decomposition
H'M; Br) = Di—o HO(Ji; BF) @ HO(F; Bf). It is almost by definition that the map-
ping 8 restricted to B _, H O(Jx; BF) is injective [13, p. 307]. Moreover, §| Jo 1s equal to
zero and the image of 8|, is one-dimensional for k # 0. Recalling that H OM;Bg)is a
Banach space, choose a basis oy of unit length of H%(Jy; BF) for each k > 0. By choos-
ing a section, we fix an isomorphism ¢: HI(M; Or) = HO(J; Br) ® H; & Ho, where
H O(J ; Br) @ H;y = Imaged and Hp = cokerd. Elements of H; correspond to infinites-
imal deformations preserving Fg, which cannot be induced by infinitesimal deformations
supported on J, and elements of 7o correspond to infinitesimal deformations which do not
preserve Fg.

We normalize the volume of M to be 1 and denote by |Ji| the volume of J;. Note that
|Jk] > 0 for k > 0. We propose the following

DEFINITION 6.2. The infinitesimal derivative of the Bott class with respect to the er-
godic component Ji, k > 0, is the element of H3(M; C) determined by |Ji| (£ |ox) and
denoted by 9, By (F).

It is easy to see that 0, By (F) is independent of the choice of oy.

PROPOSITION 6.3. Let € H'(M; ©F) and let ;n = .y + 1 + o be the decom-
position given by the isomorphism . Decompose further py as Y ;._, ak(|Jx| ox). Then there
is a decomposition of (L(F)| u) in H3(M; C) as

(L) ) =D ardy Bi(F) + (LF) i) + (LF)| o) -
k=1
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It follows from the classification of the Fatou components [13] that each Fatou compo-
nent admits transversal projective structures.

DEFINITION 6.4. Let U be a neighborhood of the Julia set J. Fix a transversal pro-
jective structure P on the Fatou sets. Given . € H'(M; @) and a smooth representative o
of u, we denote by res(L(F, P)| u) an element of HS(U; C) represented by (L | o).

The class res(L(F, P)| ) is independent of the choice of a foliation atlas adapted to P
as well as the representative o. If J can be decomposed into connected components, then the
residue admits a natural decomposition.

REMARK 6.5. The Julia set affects (L(F)| ty) so that it need not vanish. In addition,
the image of res(L(F, P)| u) in H*(M; C) and Y ey akdy, B1(F) are distinct in general.
See Example 7.1.

Let X be a I"-vector field on Oyx. If {O;} is a foliation atlas for Oy, then there are
projections 7r; : O; — C which give the transversal holomorphic structure. The (1, 0)-part
X; of m;«X|o, is well-defined and holomorphic, since X is a I"-vector field. By integrating
2Re X;, we can find a refinement {V;} of {O;} such that the transversal direction of transition
functions is the restriction of translations in C and that X; = d/dz; on V;, where z; denotes
the transversal coordinates on V;. Hence a projective structure is determined, and is denoted
by Px. Itis clear that Px depends only on X . Note that the flat connection with respect to
the local trivializations {X;} of Q(F) is a unique basic X-connection.

DEFINITION 6.6. The transversal projective structure Py as above is called the
transversal projective structure associated with X.

There are foliated trivializations of Q(F) on the most of the Fatou components. Indeed,
wandering Fatou components are locally trivial fibrations over finite Riemann surfaces, and
each restriction of F to semi-wandering and dense components is a G-Lie foliation [13]. Let
F’ be the union of wandering Fatou components of which the base spaces are closed surfaces
of genus g # 1, and let U be an arbitrarily small neighborhood of J U F’. There always
exists a foliated trivialization X ¢ of Q(F) on a neighborhood O of M \ U, and an element
res Dy, B1(F, X ) of H3(U; C).

PROPOSITION 6.7. Let X be any lift of X g to a I"-vector field. Thenres D, B1(F, X)
= res(L(F, Px,)| ) € H (Ux; C).

This corresponds to the following fact, where a version of residues res*‘j‘, Bi(F,e) is
defined by using transversal invariant Hermitian metric and trivialization of Q(F) ([3, Defi-
nition 5.1]).

PROPOSITION 6.8 (cf. [3, Corollary 5.4]). Let F', W and X be as above. Then there
is a well-defined element res B1(F, X, e) of HS(W; C), where e = {e;} is a family of local
trivializations of Q(F) such that e; = X if Uy C M\ (J U F’). Moreover, res B|(F, X, e) =
resy, B1(F, e).
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PROOF. Since there is a foliated trivialization of Q(F) (= —Kx) on Fy \ F’, the argu-
ments in [3] remain valid even if Fy is replaced with F’. O

7. Examples.

EXAMPLE 7.1. Let X = 210z%(8/82z°) + A12'(8/0z") be a holomorphic vector field
on C2, where ", zl) are the natural coordinates. Assume that AgA; 7% 0 and that A = Ap/Aq
is not a negative real number. Then X induces a transversally holomorphic foliation F; of
§3. The family {7} is a smooth family of transversally holomorphic foliations, and Bj (F5,)
is the natural image of (A + )»’1)[53], where [S3] is the generator of H3(S3; Z) [8]. Let
Y be the I'-vector field for F, induced by vzl(a/ azl). Then Zy consists of two circles Cg
and C;. Let u € H'(M; F,) be the infinitesimal deformation induced by the family {F,}.
Let U; be a tubular neighborhood of C; and identify HS(U,'; C) with H'(C;; C) by integra-
tion along the fiber. The residue res D, Bi (Fy, Y) is naturally decomposed into the sum of
resc; Dy B1(Fo,Y) € HI(C,-; C) fori = 0, 1. By Theorem 5.6, resc, Dy B1(Fu, Y) = [Col
and resc, D, B1(Fy, Y) = —a2[C}]. Let Py be the projective structure on a neighborhood
of §3\ (UpUU) associated with Y. Thenres(L(Fy, Py)| i) is the sum of res; (L(Fy, Py)| i)
€ HY(C;; €) fori = 0, 1. We have res; (L(Fy, Py)| n) = resc; Dy B1(Fy, Y) by Proposi-
tion 6.7.

If @ = 1, then Fj is the Hopf fibration and is transversally projective. Hence £(F1) = 0
and Bj(F1) is infinitesimally rigid. However, res; (L (F7, Py)| u) can be non-trivial because
Py might not be extended to the whole S°. On the other hand, the Julia set is empty so that
the localization given in Section 6 is trivial. If & # 1, then £(F,) is non-trivial. Indeed,
B (Fy) is not infinitesimally rigid and F, cannot admit any transversal projective structures.
The Julia set is equal to Cp U C7 and is of Lebesgue measure zero so that d; By (F,) = 0. It
follows that (L(F)| M’F) + (L(F)| o) # 0. An example of non-trivial p o is given in [4].

There are similar foliations on $?*! obtained from the vector field >°7_ A;z/ (3/9z)
on C4*' If the convex hull of A0, . . ., Aq does not contain the origin, a foliation F;, of §2a+1
is induced and
(ho+ -+ )
It follows from Theorem 2.18 that most of foliations such as F, do not admit any transversal
projective structures.

By(Fp) = [s24+1].

EXAMPLE 7.2. Let H = {(a})o<i,j<¢ aj = 0if i > 0} be the subgroup of G =
SL(g+1; C) and I" a discrete subgroup of G such that M = I'\G/U(q) is a closed manifold,
where U(qg) is considered as a subgroup of SL(g + 1; C) by the mapping A € U(g) —
(detA)’1 ® A € SL(g + 1; C). The cosets {gH }4ec induce a transversally holomorphic
foliation F of M. The Bott class of F is non-trivial ([5]) and is infinitesimally rigid because
F is transversally projective.

EXAMPLE 7.3 ([17]). LetY, = 23:1 )\.ij (8/8zj) be a holomorphic vector field on
C4, and let F; be the foliation of S' x C? induced by the vector field 9/d¢ + Y,, where S 1
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is identified with R/Z, and (zl, ..., z%) and r denote the standard coordinates of C? and R,
respectively. Suppose that 6;, j = 1, ..., g, are non-zero complex numbers. Then Y5 is a
I"-vector field for any A. Let e = (3/dz') A --- A (3/0z9) be a trivialization of —K 7, . Then

(81 4+ +8,)1

s,
8184 [S°]

By (Fy, Ys,e) = M+t Ag)

1
2w/ —1
where [S!] denotes the natural generator of H 1(S'; Z). Hence the residue Dy B, (F;., Ys) can
vary if I"-vector fields are deformed even if F) is fixed. On the other hand, e is foliated with
respectto Fy; if Ay +- -+ 4y = 81 +-- -+ 84 = 0. The derivative of B, (F;., Ys, e) is trivial
in this case.
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