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INFINITESIMAL DERIVATIVE OF THE BOTT CLASS
AND THE SCHWARZIAN DERIVATIVES

TARO ASUKE∗
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Abstract. An infinitesimal derivative of the Bott class is defined by generalizing
Heitsch’es construction. We prove a formula relating the infinitesimal derivative to the
Schwarzian derivatives, which gives a generalization of the Maszczyk formula for the
Godbillon-Vey class of real codimension-one foliations. As an application, a residue of in-
finitesimal derivatives with respect to the Julia set in the sense of Ghys, Gomez-Mont and
Saludes is introduced.

Introduction. The Bott class is a secondary characteristic class of transversally holo-
morphic foliations defined in a similar manner to the Godbillon-Vey class. It is significant that
the Bott class varies continuously under deformations of foliations. The derivative of the Bott
class can be defined if the family is smooth. Moreover, the derivatives with respect to infin-
itesimal deformations are also defined, which we call infinitesimal derivatives in this article.
An explicit construction of them was presented by Heitsch [14], [15], where the infinitesimal
derivative of the Bott class was given if normal bundles are trivial. If the normal bundle is not
necessarily trivial, then the derivative of the imaginary part was given. The real part of the
Bott class proves useful in the study of Fatou-Julia decompositions of foliations [13] as well
as of the Futaki invariant [11], [12]. For this reason, it would be worthwhile if the infinites-
imal derivative of the Bott class is defined without additional assumptions. In this paper, by
modifying Heitsch’es construction, we define the infinitesimal derivatives of the Bott class in
full generality. Some applications concerning the Fatou-Julia decomposition in the sense of
Ghys, Gomez-Mont and Saludes will be also discussed.

It is shown by Maszczyk [19] that the infinitesimal derivative of the Godbillon-Vey class
of real codimension-one foliation is described in terms of classical Schwarzian derivative. The
formula is easily seen to be valid also for the Bott class of complex codimension-one folia-
tions. It will be shown that the same is also true for higher codimensional cases if we replace
the classical Schwarzian derivative with the projective Schwarzian derivatives. In particular,
we show that the infinitesimal derivatives of the Bott class of transversally complex projective
foliations vanish. It is in analogy with the fact that the imaginary part of the Bott class is
trivial if the foliation is transversally Hermitian or transversally complex affine. Examples are
given in the final section.
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1. Relevant definitions. In this paper, all manifolds are smooth and without bound-
ary, unless otherwise stated.

DEFINITION 1.1. A foliation F of a manifold M is said to be transversally holomor-
phic of complex codimension q if there is an open covering U = {Ui} of M with the follow-
ing properties:

(1) Each Ui is homeomorphic to Vi ×D2q , where Vi is an open subset of Rp andD2q

is an open ball in Cq (p + 2q = dimM).
(2) The foliation restricted to Ui is given by the slices {Vi × {z}}, where z ∈ D2q .
(3) Under the identification in 1), the transition function ϕji from Ui to Uj is of the

form ϕji(x, z) = (ψji(x, z), γji(z)), where γji is a local biholomorphic diffeomorphism.
Such an atlas {U, {ϕji}} is called a foliation atlas. An open covering of M is adapted if it is
simple and gives a refinement of a foliation atlas for F .

DEFINITION 1.2. Let F be a transversally holomorphic foliation. Denote by E =
E(F) the complex subbundle TCM = TM ⊗ C locally spanned by ∂/∂xik and ∂/∂z̄jk , where
(xk, zk) = (x1

k , . . . , x
p
k , z

1
k, . . . , z

q
k ) are local coordinates as in Definition 1.1. The complex

normal bundle Q(F) of F is by definition TCM/E. The line bundle KF = ∧q
Q(F)∗ is

called the canonical bundle, and −KF = ∧q
Q(F) is the anti-canonical bundle.

NOTATION 1.3. We denote by I(1)(U) the ideal of C-valued differential formsΩ∗(U)
on U , locally generated by dz1, . . . , dzq . We set I(k)(U) = I(1)(U)

k , Ip(k)(U) = I(k)(U) ∩
Ωp(U), and denote the sheaves generated by these ideals by I(k) and Ip(k). Define Ip(k,l) =
I
p

(k)/I
p

(l), namely, an element of Ip(k,l)(U) is a family {ωi}, for which ωi ∈ I
p

(k) is defined on

an open subset Vi of U , such that
⋃
Vi = U and ωj − ωi ∈ I

p

(l)(Vi ∩ Vj ) if Vi ∩ Vj �= ∅.

Finally, we set I(k,l) = ⊕
p I

p

(k,l).

Note that I(k) = {0} for k > q . If p < l, then Ip(k,l) = I
p

(k) because Ip(l) = {0}. In
what follows, by abuse of notation, the sheaf of germs of sections of a vector bundle V is also
denoted by V . Then, E∗ ∼= I 1

(0,1).

NOTATION 1.4. Let S be a presheaf on M and U an open covering of M . The set
of Čech r-cochains with values in S is denoted by Čr (U;S), or by Čr (S) if U is obvious.
Components of Čech cochains are represented by attaching or removing indices, namely, a
cochain {ωi} is denoted by ω and vice versa.

Elements of Čr (U;Ωs) are called Čech-de Rham (r, s)-cochains. Čr (U;Ωs) is also
denoted by Ar,s(U). If c ∈ Ar,s (U) and c′ ∈ At,u(U), then the product c ∪ c′ ∈ Ar+t,s+u(U)
is defined by (c ∪ c′)i0···ir+t = (−1)stci0···ir ∧ c′ir ···ir+t . The Čech differential and the de Rham
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differential are denoted by δ and d , respectively. The Čech-de Rham differential D is defined
by D = δ + (−1)rd .

DEFINITION 1.5. Let Č∗(U; Z) be the Čech complex with coefficients in Z. Then
Čr (U; Z) ⊂ Ar,0(U). The quotient A∗,∗(U)-module A∗,∗(U)/Č∗(U ; Z) equipped with the
natural differential is called the modified Čech-de Rham complex.

Let U = {Ui} be an adapted covering. Then −KF is trivial when restricted to each
Ui . Let ei be a trivialization of −KF |Ui and {Jij } a family of non-zero functions such that
ej = eiJij . Noting that log Jij is well-defined, since the covering is adapted, we set Θ =
(2π

√−1)−1δ log J . It is classical that Θ represents c1(Q(F)) in Ȟ 2(M; Z). Let ∇i be a
Bott connection defined on Ui , and let θi be its connection form with respect to ei .

DEFINITION 1.6. We set βij = θj − θi − d logJij and call β = {βij } the difference
cochain of {∇i}.

Note that βij ∈ I(1)(Ui ∩Uj ). In the modified Čech-de Rham complex, the Bott class is
represented in terms of the following cochains:

DEFINITION 1.7. Set

u1(∇, e) = −1

2π
√−1

(θ + log J ) , ū1(∇, e) = 1

2π
√−1

(θ + log J ) ,

v1(∇, e) = −1

2π
√−1

(dθ + β) and v̄1(∇, e) = 1

2π
√−1

(dθ + β) .

When ∇ and e are clear, they will be omitted.

We note that Du1 = v1 −Θ and Dū1 = v̄1 −Θ .

THEOREM 1.8 ([3]). Let Bq(F) be the Bott class of F . Then, in the modified Čech-de
Rham complex, Bq(F) is represented by the cochain Bq(∇, e) defined by the formula

Bq(∇, e) = u1 ∪ vq1 +Θ ∪ u1 ∪ vq−1
1 + · · · +Θq ∪ u1 ,

which is independent of the choices of U , the family of local trivializations e of −KF , and the
family of Bott connections ∇.

DEFINITION 1.9. Let {Fs}s∈S be a family of transversally holomorphic foliations, of
a fixed codimension, of a fixed manifold. Then {Fs} is said to be a continuous deformation
of F0 if {Fs} is a continuous family as plane fields and the transversal holomorphic structures
also vary continuously, where 0 ∈ S is the base point. A smooth family {Fs}s∈S is said to be
smooth if it is a smooth family of plane fields and the transversal holomorphic structures vary
smoothly.

Given a smooth family {Fs} of transversally holomorphic foliations, set−Ks=∧qQ(Fs).
We may assume that there is a family {es,i} of local trivializations of −Ks such that each es,i is
defined on Ui . Let {Js,ij } be functions such that es,j = es,iJs,ij . Then we may further assume
that Js,ij is independent of s. We denote Js,ij by Jij . The cocycle Θs = (2π

√−1)−1δ log Js
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is also independent of s and denoted by Θ . Choose then a smooth family {∇s} of local Bott
connections, and denote by {θs,i} the connection forms of ∇s with respect to {es,i}. Let {βs,ij }
be the difference cochain of ∇s . Then by definition θs,j − θs,i = d log Jij + βs,ij . Finally, for
any cochain ωs , we denote by ω̇s the partial derivative of ωs with respect to s.

Under these choices of cochains, we have the following

PROPOSITION 1.10. Let u1(s) = u1(∇s , es) and v1(s) = v1(∇s , es), respectively,
and let u̇1(s) = −1/(2π

√−1)θ̇s . Then, ∂Bq(Fs)/∂s naturally determines an element of
H 2q+1(M; C), which is represented by

∑q

k=0 v1(s)
k ∪ u̇1(s) ∪ v1(s)

q−k .

PROOF. First, note that u̇1(s) is the partial derivative of u1(s) with respect to s. Set
v̇1(s) = −1/(2π

√−1)(dθ̇s + β̇s ). Then Du̇1(s) = v̇1(s). We note that

∂

∂s
Bq(∇s , es) =

q∑
k=0

Θk ∪ u̇1(s) ∪ v1(s)
q−k

+
q−1∑
k=0

q−k−1∑
l=0

Θk ∪ u1(s) ∪ v1(s)
l ∪ v̇1(s) ∪ v1(s)

q−k−l−1 .

Set ρk = ∑q−k
l=0 Θ

k−1 ∪ u1(s)∪ v1(s)
l ∪ u̇1(s) ∪ v1(s)

q−k−l for k = 1, . . . , q . Then we have

∂

∂s
Bq(∇s, es)+ Dρ1 + · · · + Dρq =

q∑
k=0

v1(s)
k ∪ u̇1(s) ∪ v1(s)

q−k . �

COROLLARY 1.11. Assume that each ∇s is a global connection. Then ∂Bq(Fs)/∂s is
represented by a global (2q + 1)-form (−2π

√−1)−(q+1)(q + 1)θ̇s ∧ (dθs)q .

The above representative is the same as the one given by Heitsch [15] when normal
bundles are trivial.

The imaginary part of the Bott class is an element of H 2q+1(M; R). Indeed, it can be
described without using the cocycleΘ as follows.

THEOREM 1.12 (cf. [2]). Let ξq(∇, e) be the cocycle in the Čech-de Rham complex
defined by the formula

ξq(∇, e) =
√−1

2

q∑
k=0

(v̄k1 ∪ (u1 − ū1) ∪ vq1 + vk1 ∪ (u1 − ū1) ∪ v̄q1 ) .

Then ξq(∇, e) represents ξq(F) = √−1(Bq(F)−Bq(F)), which is independent of the choice
of ∇ and e.

PROOF. Set αk = ∑q−k−1
r=0 Θk ∪ ū1 ∪ v̄r1 ∪ (u1 − ū1) ∪ vq−k−r−1

1 . Then

q∑
k=0

v̄k1 ∪ (u1 − ū1) ∪ vq1 − D(α0 + · · · + αq−1) = Bq(∇, e)− Bq(∇, e) .

The claim follows from this equation and its complex conjugate. �
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If log J takes values in
√−1R and if β = 0, then ũ1 = u1 − ū1, v1 and v̄1 are globally

well-defined differential forms, and the representative of ξq in Theorem 1.12 coincides with
the standard one.

2. Infinitesimal derivatives of the Bott class. We will introduce infinitesimal
derivatives of the Bott class by following Heitsch [14]. In what follows, tensors are usually
represented in the form of matrices, and the multiplications are considered under the usual
multiplication laws together with the tensor or wedge products.

Let {e i = (e i,1, . . . , e i,q)} be a family of local trivializations of Q(F) and {ω i =
t (ω1

i , . . . , ω
q
i )} its dual. Let Aji be the matrix valued function such that (e i,1, . . . , e i,q ) =

(ej,1, . . . , ej,q )Aji . Then Ajiω i = ωj . Let ∇ = ({θ i}, {β ij }) be a pair of a family of

local Bott connection forms and the difference cochain with respect to {e i}. That is, θ i
is the connection form with respect to e i of a Bott connection ∇ i on Ui so that ∇ ie i =
(∇e i,1, . . . ,∇e i,q ) = (e i,1, . . . , e i,q )θ i , and β

ij
= A−1

ji dAji + A−1
ji θjAji − θ i , where

e i,k(θ i )
k
l = (θ i)

k
l ⊗ e i,k . One has then dω i + θ i ∧ ω i = 0, β

ji
= −Ajiβ ijA−1

ji and

β
ij

∈ I(1)(Uij ), where Uij = Ui ∩ Uj .

DEFINITION 2.1. Set Es ⊗ Q(F) = ∧sE∗ ⊗ Q(F). Let U = {Ui} and s ∈ (Es ⊗
Q(F))(U), where U is an open subset of M contained in Ui . Define a mapping d∇,i : (Es ⊗
Q(F))(U) → (Es+1 ⊗Q(F))(U) by

d∇,i (s) = e i(dϕ + θ i ∧ ϕ) ,

where ϕ = ω i(s) and ϕ is considered as an s-form by arbitrarily extending it. We equip
{Čt (Es ⊗Q(F))} with the Čech differential δ and the differential d∇ . The total complex with
differential δ + (−1)td∇ is denoted by E∗(Q(F)).

LEMMA 2.2. d∇,i is independent of i, and the family {d∇,i} induces a well-defined
mapping d∇ : Es ⊗Q(F) → Es+1 ⊗Q(F).

PROOF. If s is a section of (Es⊗Q(F))(Ui∩Uj ), then d∇,j (ejωj (s)) = d∇,i(e iω i(s))
+e i(β ij ∧ ω i(s)). The right hand side is equal to d∇,i(e iω i(s)) as a section of (Es+1 ⊗
Q(F))(Ui ∩ Uj) because E∗ ∼= I 1

(0,1). �

DEFINITION 2.3. LetH ∗(M;ΘF ) be the cohomology of ((Es⊗Q(F))(M), d∇ ), and
H∗(M;ΘF ) the cohomology of the total complex (E∗(Q(F)), δ + (−1)sd∇).

The first definition is justified by the fact that ((E∗ ⊗ Q(F))(M), d∇) is a resolution
of ΘF if ∇ is a global Bott connection ([9]) and by Lemma 2.2. It is easy to see that the
natural mappingHp(M;ΘF ) → Hp(M;ΘF ) is injective if p = 1. Indeed, an isomorphism
betweenHp(M;ΘF ) and Hp(M;ΘF ) can be constructed by using a partition of unity. How-
ever, we distinguish them because a certain difference will occur when defining infinitesimal
derivatives (cf. Definitions 2.16 and 4.11).
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DEFINITION 2.4 (cf. [15]). An element µ of H1(M;ΘF ) is called an infinitesimal

deformation of F . If ({σ i}, {s ij }) ∈ E1(Q(F)) is a representative of µ, then the pair ({−σ i},
{−s ij }) is called the infinitesimal derivative of ω = {ω i}.

Since E∗ ∼= I 1
(0,1), an infinitesimal derivative ({−σ i}, {−s ij }) satisfies the following

relations for some gl(q; C)-valued function g
ij

on Uij and some gl(q; C)-valued 1-form θ ′
i

on Ui :

e i(d(ω i(σ i))+ θ i ∧ (ω i(σ i))) = e iθ
′
i ∧ ω i ,(2.5.a)

(σ j − σ i)− ej (d(ωj (s ij ))+ θjωj (s ij )) = ejg ij ωj ,(2.5.b)

(δs)ijk = 0 ,(2.5.c)

where each σi is arbitrarily extended to aQ(F)-valued differential form. Note that gij = −gji
does not hold in general.

Infinitesimal derivatives of Bott connections can be defined in the following way, if µ

is represented by an element of Č0(E∗ ⊗Q(F)). Note that cocycles in Č0(E∗ ⊗Q(F)) are
elements, which are closed under d∇ , of (E1 ⊗Q(F))(M).

DEFINITION 2.6. Suppose thatµ ∈ H 1(M;ΘF ) and let σ = {σ i} ∈ Č0(E∗⊗Q(F))
be a representative of µ. Then any pair ∇′ = ({θ ′

i}, {g ij }) satisfying (2.5.a) and (2.5.b) with

s = 0 is called an infinitesimal derivative of the Bott connection ∇ = ({θ i}, {β ij }) with
respect to σ .

The infinitesimal derivative of the Bott class is defined as follows.

DEFINITION 2.7. Let µ ∈ H 1(M;ΘF ) and let σ ∈ (E1 ⊗Q(F))(M) be a represen-
tative. Set

θ ′ = tr θ ′ , θ = tr θ , β = trβ , g = tr g and u′
1 = −1

2π
√−1

(θ ′ + g) .

The cohomology class in H 2q+1(M; C) represented by

DσBq(∇,∇′) =
q∑
k=0

vk1 ∪ u′
1 ∪ vq−k1

is called the infinitesimal derivative of the Bott class with respect to µ, and is denoted by
DµBq(F).

The independence of the infinitesimal derivatives from the choices of σ , ∇, ∇′ and local
trivializations will be shown in Theorems 2.14 and 2.17.

Since the Bott class can be defined in terms of KF alone, it is natural to expect that
so is its infinitesimal derivative. Indeed, it can be done as follows. Let {ei} be a family of
local trivializations of −KF , where ei is defined on Ui . Let {Jij } be a family of smooth
functions such that ej = eiJij . A Bott connection onQ(F)|Ui naturally induces a connection
on −KF |Ui , which is also called a Bott connection. Then, a family of local Bott connections
on −KF is a pair ({θi}, {βij }) satisfying θj − θi = d log Jij + βij , where θi is the connection
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form, with respect to ei , of a Bott connection on −KF |Ui . Finally, let {ωi} be the family of
local trivializations of KF dual to {ei}.

Recalling that E∗ ∼= I 1
(0,1), we introduce the following

DEFINITION 2.8. We denote (E∗ ⊗ Q(F))(U) also by I 1
(0,1)(U ;Q(F)), and set

I∗
(q−1,q)(U ; −KF ) = I∗

(q−1,q)(U)⊗ (−KF |U).
Let ϕ ∈ Ip(q−1,q)(Ui ∩ Uj ; −KF ). Then on Ui , ϕ can be written as ϕ = ϕi ⊗ ei , where

ϕi ∈ I
p

(q−1,q)(Ui). Set then d∇,iϕ = ei(dϕi + θi ∧ ϕi). Since βij ∈ I(1)(Uij ), the identity
d∇,j ϕ = d∇,iϕ holds. Hence {d∇,i} induces a globally well-defined map, which is denoted
by d∇ . One has d∇ ◦ d∇ = 0. Indeed, the identity d∇(d∇(eiϕi)) = ei(dθi ∧ ϕi) holds on Ui .
The equation dθi ∧ ϕi = 0 holds in Ip(q−1,q)(Ui), since ϕi ∈ Ip(q−1,q)(Ui) and dθi ∈ I(1)(Ui).

DEFINITION 2.9. Set Kr,s = Čr (I
s+q−1
(q−1,q)(U; −KF )) and equip it with the differen-

tials δ and d∇ . Let K∗ be the total complex with the differential δ+(−1)rd∇ , andH∗(M;−KF )
the cohomology of K∗. We regard the complex (I∗+q−1

(q−1,q)(M; −KF ), d∇) as a subcomplex of
(K∗, δ + (−1)rd∇), and denote its cohomology by H ∗(M; −KF ).

The natural mapping H 1(M; −KF ) → H1(M; −KF ) is injective, and one can con-
struct an isomorphism by using a partition of unity.

A version of infinitesimal deformations of −KF is defined as follows.

DEFINITION 2.10. An elementµ of H1(M; −KF ) is called an infinitesimal deforma-
tion of −KF . If ({σi}, {sij }) ∈ K1 is a representative of µ, then the cocycle ({−σi}, {−sij })
is called the infinitesimal derivative of ω = {ωi} with respect to (σ, s).

If ({−σi}, {−sij }) is an infinitesimal derivative, then the following identities hold:

ei(d(ωi(σi))+ θi ∧ (ωi(σi))) = eiθ
′
i ∧ ωi ,(2.11.a)

(σj − σi)− ej (d(ωj (sij ))+ θj ∧ ωj (sij )) = ejgij ωj ,(2.11.b)

sjk − sik + sij = 0 .(2.11.c)

Suppose that local trivializations and local connections ofQ(F) are given. Then those of
−KF are induced in the following way. Let {e i} be a family of local trivializations of Q(F),
and {ei} a family of local trivializations of −KF defined by ei = e i,1 ∧ · · · ∧ e i,q . We locally

trivialize KF by the dual {ωi = ω1
i ∧ · · · ∧ ωqi } of {ei}. Then {θi = tr θ i} is a family of local

Bott connection forms with respect to {ei}. They satisfy the equations dωi + θi ∧ ωi = 0 and
θj − θi = d log Jij + βij , where Jij = detAij and βij = trβ

ij
.

LEMMA 2.12. Let µ ∈ H1(M;ΘF ) and let m = ({σ i}, {s ij }) ∈ E1(U;Q(F)) be its
representative. Set

r0(m)i =
q∑
k=1

ω1
i ∧ · · · ∧ ωk−1

i ∧ ωki(σ i) ∧ ωk+1
i ∧ · · · ∧ ωqi ⊗ ei ,
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r1(m)ij =
q∑
k=1

(−1)k−1ω1
j ∧ · · · ∧ ωk−1

j ∧ ωkj (s ij ) ∧ ωk+1
j ∧ · · · ∧ ωqj ⊗ ej .

Then r = r0 ⊕ r1 induces isomorphisms r : H1(M;ΘF )→H1(M;−KF ) and r : H 1(M;ΘF )
→ H 1(M; −KF ), where the induced mappings are denoted by r by abuse of notation. More-
over, ifm satisfies (2.5.a), (2.5.b) and (2.5.c), then r(m) satisfies (2.11.a), (2.11.b) and (2.11.c)
with θ ′ = tr θ ′ and g = tr g .

PROOF. It is clear that r(m) ∈ K∗. By (2.5.a), d(ω i(σ i))+ θ i ∧ (ω i(σ i)) = θ ′
i ∧ ω i

for some gl(q; C)-valued 1-form θ ′
i . Since θ = tr θ and β = tr β, we have dr0(m)i + θi ∧

r0(m)i = (tr θ ′)i ∧ ωi ⊗ ei and r0(m)j − r0(m)i = d∇r1(m)ij + (tr g
ij
) ωj ⊗ ej . It is easy

to see that δr1(m)ijk = 0. Hence r(m) is closed under δ + (−1)rd∇ and the last part of the
lemma follows.

Assume that m is exact. Then σi = e i(dfi + θ ifi) and sij = ejfj − e ifi for some

collection {e ifi} of local sections of Q(F). Set ρi = ∑q

k=1(−1)k−1ω1
i ∧ · · · ∧ ωk−1

i ∧
f ki ∧ ωk+1

i ∧ · · · ∧ ω
q
i ⊗ ei . Then d∇ρi = r0(m)i and ρj − ρi = r1(m)ij . Conversely, let

m = ({σi}, {sij }) be a cocycle in K1. Then (2.11.a), (2.11.b) and (2.11.c) hold. Let {σki} be a
family of 1-forms and {skij } a family of functions such that ωki ∧ (ωi(σi)) = −σki ∧ ωi and

ωkj ∧ ωj (sij ) = skijωj . Set σ i = ∑q

k=1 σ
k
i ⊗ e i,k and s ij = ∑q

k=1 s
k
ij ⊗ ej,k . Then (σ , s) is

well-defined as an element of E1(Q(F)) and is independent of the choice of {σki} and {skij }.
We have d(ω i(σ i) ∧ ωi) = d(ω i(σ i)) ∧ ωi + ω i(σ i) ∧ θi ∧ ωi and d(ω i(σ i) ∧ ωi) =
θ i ∧ ω i ∧ (ωi(σi)) + ω i ∧ d(ωi(σi)) = −θ i ∧ ω i(σ i) ∧ ωi − ω i ∧ θi ∧ ωi(σi). Hence
d(ω i(σ i))+ θ i ∧ ω i(σ i) = 0 in I 1

(0,1).
On the other hand, (d(ωj (s ij )) + θjωj (s ij )) ∧ ωj = −θj ∧ ωj ∧ ωj (sij ) − ωj ∧

(−gij ωj − θj ∧ ωj (sij )+ωj (σj )− ωj (σi))+ ωj (s ij )θj ∧ ωj + θjωj (s ij )∧ ωj . It follows
that ej (d(ωj (s ij )) + θjωj (s ij )) = σ j − σ i . We also have δs = 0. Therefore, if we set
r ′(m) = (σ , s), then r ′(m) is closed and it induces a mapping of the cohomology which is
equal to r−1. Finally, the construction shows that H 1(M;ΘF ) is mapped to H 1(M; −KF )
under the mapping r . �

Infinitesimal derivatives of the Bott class are determined by infinitesimal deformations
of −KF as follows.

DEFINITION 2.13. Let µ ∈ H 1(M; −KF ) and σ = {σi} ∈ I
q

(q−1,q)(M; −KF ) a
representative of µ. Then any pair ∇′ = ({θ ′

i}, {gij }) satisfying (2.11.a) and (2.11.b) is called
an infinitesimal derivative of the Bott connection ∇ = ({θi}, {βij }) with respect to σ .

THEOREM 2.14. Let µ ∈ H 1(M; −KF ) be an infinitesimal deformation and σ =
{σi} ∈ I

q

(q−1,q)(M; −KF ) a representative of µ. Let ∇′ = ({θ ′
i }, {gij }) be the infinitesimal

derivative of ∇ with respect to σ . Set

DσBq(∇,∇′) =
q∑
k=0

vk1 ∪ u′
1 ∪ vq−k1 ,
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where u′
1 = −1/(2π

√−1)(θ ′ + g). Then DσBq(∇,∇′) represents a class in H 2q+1(M; C),
which is independent of the choice of cochains and connections.

PROOF. Note that, since σ is globally well-defined, if we define σ i as in the proof of
Lemma 2.12, then {σ i} induces a globally well-defined element of I 1

(1)(M;Q(F)), which we
denote by σ . Under these settings, the following lemma holds.

LEMMA 2.15. Let ϕk be (rk, sk)-cochains, where 0 ≤ k ≤ q . Suppose that (ϕk)i0···irk∈
I
sk
(1) for any k and any i0, . . . , irk . Write (ϕk)i0···irk = ∑

m(αk;i0···irk )m ∧ ωmi and set

〈ϕk| σ i〉i0···irk = ∑
m(αk;i0···irk )m ∧ σmi . Then 〈ϕk| σ i〉 ∧ ωi = −ϕk ∧ ωi(σi) and

∑q

k=0 ϕ0 ∪
· · ·∪ϕk−1 ∪〈ϕk | σ i〉∪ϕk+1 ∪· · ·∪ϕq = 0. Moreover, ϕ0 ∪· · ·∪ϕk−1 ∪〈ϕk | σ i〉∪ϕk+1 ∪· · ·
∪ ϕq is independent of i.

Proof of Lemma 2.15. First note that we can obtain 〈ϕk| σ i〉 by taking a contraction
from ϕk ⊗ σ i and then a reduction to a differential form. Note also that the last part of the
lemma follows from the assumption s = 0 and the identity (2.11.a). If ω ∈ I ∗

(q), then we can
also consider the contraction of ω ⊗ σ i . Let ρ1, . . . , ρn ∈ I∗

(q). Then 〈ρ1 ∧ · · · ∧ ρn| σ 〉 =
〈ρ1| σ i〉∧ρ2∧· · ·∧ρn+· · ·+ρ1∧· · ·∧ρn−1∧〈ρn| σ i〉. Under the assumption, ϕ0∪· · ·∪ϕq =
0, so that the lemma holds. �

We now return to the proof of the theorem.
Claim 1. DσBq(∇,∇′) is closed.
We have D(DσBq(∇,∇′)) = (−2π

√−1)−(q+1)∑q
k=0(dθ + β)k ∪ D(θ ′ + g) ∪ (dθ +

β)q−k , since D(dθ + β) = 0. We will show that (dθ + β)k ∪ D(θ ′ + g) ∪ (dθ + β)q−k =
−(dθ + β)k ∪ (〈dθ | σ 〉 + 〈β| σ 〉) ∪ (dθ + β)q−k. Then the claim follows from Lemma 2.15.
We have dθ ′

i ∧ωi = dθi ∧ (ωi(σ )) = −〈dθi | σ 〉 by (2.11.a). On the other hand, ej θ ′
j ∧ωj =

eiθ
′
i ∧ωi + eiβij ∧ (ωi(σ ))+ eidgij ∧ωi by (2.11.a) and (2.11.b). Then (δθ ′ − dg)ij ∧ωi =

βij ∧ (ωi(σ )) = −〈βij | σ 〉 ∧ ωi . Finally, ei(δgijk)ωi = 0 by (2.11.b) and by the assumption
s = {sij } = 0.

Claim 2. DσBq(∇,∇′) is independent of the choice of ∇′ once σ is fixed.
Let ({θ̃ ′

i}, {g̃ij }) be another infinitesimal derivative of ∇ with respect to σ . Then ei(θ̃ ′
i −

θ ′
i )∧ωi = 0 and g̃ij = gij . Hence (dθ + β)k ∪ (θ̃ ′ + g̃)∪ (dθ + β)q−k = (dθ + β)k ∪ (θ ′ +

g) ∪ (dθ + β)q−k for each k.
Claim 3. The class [DσBq(∇,∇′)] is independent of the choice of σ .
Let {σ̃i} be another representative of µ and ∇̃′ = ({θ̃ ′

i }, {g̃ij }) an infinitesimal derivative
of ∇ with respect to {σ̃i}. It suffices to show that

∑q

k=0(dθ+β)k∪(θ̃ ′+g̃−θ ′−g)∪(dθ+β)q−k
is exact. Set ψ = σ̃ − σ . Then there is an element τ = {τi} ∈ I

q−1
(q−1,q)(U; −KF ) and a

family {hi} of functions on Ui such that eiωi(ψi) = ei(d(ωi(τi)) + θi ∧ (ωi(τi)) + hiωi)

and τj − τi = 0. Let τmi , m = 1, . . . , q , be 1-forms such that ωmi ∧ ωi(τi) = −τmi ∧ ωi .
Then ei(θ̃ ′

i − θ ′
i ) ∧ ωi = −ei(〈dθi | τ i〉 + dhi) ∧ ωi and ejhjωj − eihiωi = ei(〈βij | τ i〉 +

(g̃ij − gij )) ∧ ωi . The identity
∑q

k=0(dθ + β)k ∪ (θ̃ ′ + g̃ − θ ′ − g) ∪ (dθ + β)q−k =
D(∑q

k=0(dθ + β)k ∪ h ∪ (dθ + β)q−k) follows from Lemma 2.15.
Claim 4. The class [DσBq(∇,∇′)] is independent of the choice of ∇.
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Let ∇̃ = ({ϕi}, {ρij }) be another Bott connection and set ψi = ϕi − θi . Then ψi ∈
I 1
(1)(Ui). Assume that {σi} satisfies (2.11.a), (2.11.b) and (2.11.c). Then d(ωi(σi)) + ϕi ∧
(ωi(σi)) = ϕ′

i ∧ ωi for some 1-form ϕ′
i . Since (2.11.b) for ∇̃ is the same as (2.11.b) for ∇

because s = {sij } = 0, ({ϕ′
i}, {gij }) is an infinitesimal derivative of ∇̃. If we denote {ψi} by

ψ , then Dψ = (dϕ+ ρ)− (dθ + β). Setting ψ ′ = ϕ′ − θ ′, one has ψi ∧ (ωi(σi)) = ψ ′
i ∧ωi .

It then follows that

(−2π
√−1)q+1(DσBq(∇̃, ∇̃′)−DσBq(∇,∇′))(2.15.a)

=
q∑
k=1

k−1∑
l=0

(dθ + β)l ∪ Dψ ∪ (dϕ + ρ)k−l−1 ∪ (ϕ′ + g) ∪ (dϕ + ρ)q−k

+
q∑
k=0

(dθ + β)k ∪ ψ ′ ∪ (dϕ + ρ)q−k

+
q−1∑
k=0

q−k−1∑
l=0

(dθ + β)k ∪ (θ ′ + g) ∪ (dθ + β)l ∪ Dψ ∪ (dϕ + ρ)q−k−l−1 .

Since ψ ∈ I 1
(1)(U), one has

D((dθ + β)m ∪ (θ ′ + g) ∪ (dθ + β)k ∪ ψ ∪ (dϕ + ρ)l)(2.15.b)

= − (dθ + β)m ∪ (〈dθ | σ 〉 + 〈β| σ 〉) ∪ (dθ + β)k ∪ψ ∪ (dϕ + ρ)l

− (dθ + β)m ∪ (θ ′ + g) ∪ (dθ + β)k ∪ Dψ ∪ (dϕ + ρ)l,

and

D(−(dθ + β)m ∪ ψ ∪ (dϕ + ρ)k ∪ (ϕ′ + g) ∪ (dϕ + ρ)l)(2.15.c)

= − (dθ + β)m ∪ Dψ ∪ (dϕ + ρ)k ∪ (ϕ′ + g) ∪ (dϕ + ρ)l

− (dθ + β)m ∪ ψ ∪ (dϕ + ρ)k ∪ (〈dϕ| σ 〉 + 〈ρ| σ 〉) ∪ (dϕ + ρ)l ,

where m + k + l = q − 1. Adding (2.15.b) and (2.15.c) to the right hand side of (2.15.a),
varyingm, k, l and by using Lemma 2.15, we see thatDσBq(∇̃, ∇̃′)−DσBq(∇,∇′) is exact.

Claim 5. DσBq(∇,∇′) is independent of the choice of the family of local trivializations
{ei}.

We fix σ and ∇ = ({θi}, {βij }), and let {e′i} be another family of local trivializations.
Then we may assume that e′i = eiui for some C∗-valued function ui . Hence ω′

i = u−1
i ωi and

e′j = uju
−1
i αij e

′
i . The connection form of ∇ with respect to {e′i} is ({θi + u−1

i dui}, {βij }) so
that ({θ ′

i }, {gij }) is also an infinitesimal derivative of ∇. This completes the proof of Claim 5
and the theorem follows. �

DEFINITION 2.16. If µ ∈ H 1(M; −KF ), then we denote by DµBq(F) the cohomol-
ogy class in H 2q+1(M; C) represented by DσBq(∇,∇′) in Theorem 2.14.

It follows from Lemma 2.12 and Theorem 2.14 that Definition 2.16 is an alternative
definition of the infinitesimal derivative of the Bott class.
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THEOREM 2.17. If µ ∈ H 1(M;ΘF ), thenDµBq(F) = Dr(µ)Bq(F).
It is known that a smooth family of transversally holomorphic foliations induces an ele-

ment of H 1(M;ΘF ) ∼= H 1(M; −KF ) ([14]).

THEOREM 2.18. If µ ∈ H 1(M; −KF ) is induced by a smooth family {Fs}, then

DµBq(F) = ∂

∂s
Bq(Fs)

∣∣∣∣
s=0

.

PROOF. Let θ̇s be the one defined after Definition 1.9 and let θ̇ = θ̇s |s=0. Then θ̇ is an
infinitesimal derivative of θ [15, Theorem 2.23]. HenceDr(µ)Bq(F) = (∂/∂s)Bq(Fs)|s=0 by
Proposition 1.10. �

The infinitesimal derivative of the Bott class constructed above is related with the previ-
ously constructed infinitesimal derivatives as follows.

THEOREM 2.19. Let µ ∈ H 1(M;ΘF ).
(1) If −KF is trivial, then DµBq(F) coincides with the infinitesimal derivative of the

Bott class in [15].
(2) Let Dµξq(F) be the infinitesimal derivative of the imaginary part of the Bott class

defined in [15]. Then Dµξq(F) = −2 ImDµBq(F).
PROOF. These infinitesimal derivatives are constructed under the assumption that β = 0

and g = 0. HenceDµBq(F) is represented by a global (2q+1)-form (−2π
√−1)−(q+1)(q+

1)θ ′ ∧ (dθ)q . The claims are now obvious. �

3. Schwarzian Derivatives. In what follows, the natural coordinates of Cq will be
denoted by z = t (z1, . . . , zq) unless otherwise stated.

DEFINITION 3.1 ([18], [22], etc.). Let γ be a biholomorphic local diffeomorphism of
Cq . Let u = t (u1, . . . , uq) be the natural coordinates of the target and set γ k = uk ◦ γ . The
projective Schwarzian derivative (the Schwarzian derivatives or the Schwarzians for short)
Σγ of γ is given as follows:

Σγ =
∑
k,l,t,s

∂zl

∂uk

∂2γ k

∂zt∂zs

∂

∂zl
⊗ dzt ⊗ dzs

+
∑
l,t,s

−1

q + 1

(
∂ log Jγ
∂zt

δl,s
∂

∂zl
⊗ dzt ⊗ dzs + ∂ log Jγ

∂zs
δl,t

∂

∂zl
⊗ dzt ⊗ dzs

)
,

whereDγ denotes the differential of γ , Jγ = detDγ is the Jacobian and δl,t is the Kronecker
delta. If q > 1, then let Σl

t,s be the coefficient of (∂/∂zl) ⊗ dzt ⊗ dzs in Σγ and define a
tensor Λγ by the formula

Λγ = −1

q − 1

q∑
l=1

(
∂Σl

t,s

∂zl
−

q∑
u=1

Σl
t,uΣ

u
s,l

)
dzt ⊗ dzs .
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We have

Λγ =
∑
t,s

−1

q + 1

∂2 log Jγ
∂zt∂zs

dzt ⊗ dzs −
∑
t,s

−1

q + 1

∂ log Jγ
∂zt

−1

q + 1

∂ log Jγ
∂zs

dzti ⊗ dzs

−
∑
l,t,s

−1

q + 1

∂ log Jγ
∂zl

∂zl

∂uk

∂2γ k

∂zt∂zs
dzt ⊗ dzs .

If q = 1, then Λγ is defined by the above formula because Σγ = 0 and coincides with the
classical Schwarzian derivative. Indeed,

Λγ = −1

2

(
γ ′′′

γ ′ − 3

2

(
γ ′′

γ ′

)2)
dz⊗ dz

holds, where γ ′ = dγ /dz, γ ′′ = d2γ /dz2 and γ ′′′ = d3γ /dz3.

It is classical that γ is a restriction of a projective transformation if and only if Λγ = 0
if q = 1. If q > 1, then γ is a restriction of a projective transformation if and only if
Σγ = 0. It is also known that Σγ is symmetric and trace-free in the sense that Σl

t,s = Σl
s,t

and
∑q

l=1Σ
l
l,s = 0. One of the significant properties of Σγ is that it is a cocycle, namely,

Σγ ◦ζ = ζ ∗Σγ +Σζ holds for any local biholomorphic mapping γ and ζ ([20], [21]). On the
other hand, Λγ is a kind of the curvature tensor for Σγ ([10], [20]), but is not a cocycle if
q > 1. We refer to [18], [21], [23], [20], [7] and [22] for more details of the Schwarzians.

In terms of matrix valued differential forms, the above tensors are expressed as follows.

LEMMA 3.2. Set ∂ log Jγ = (∂ log Jγ /∂z1, . . . , ∂ log Jγ /∂zq). Then

Σγ = ∂

∂z
⊗Dγ−1 · dDγ ⊗ dz

+
q∑
k=1

−1

q + 1

(
∂

∂zk
⊗ (∂ log Jγ · dz)⊗ dzk + ∂

∂zk
⊗ dzk ⊗ (∂ log Jγ · dz)

)
,

and

Λγ = −1

q + 1
d∂ log Jγ ⊗ dz− −1

q + 1
∂ log JγDγ−1 · dDγ ⊗ dz

− −1

q + 1
(∂ log Jγ · dz)⊗ −1

q + 1
(∂ log Jγ · dz) .

4. Relation between the infinitesimal derivative of the Bott class and the
Schwarzian derivatives. Let ω = {ωi} be a family of local trivializations of −KF and
∇ a family of local Bott connections on −KF induced by a family of Bott connections on
Q(F). For each i, let zi = t (z1

i , . . . , z
q

i ) be the local coordinates in the transversal direction
and {γji} the transition functions in the transversal direction so that zj = γji(zi). Finally, if
µ is an element of H 1(M; −KF ), then µ can be regarded as an element of H 1(M;ΘF ) by
Lemma 2.12. Let σ = {σi} be a representative of µ as an element of H 1(M;ΘF ). If V is a
vector bundle, then (

∧l
T ∗M)∧(T ∗M⊗V )∧(∧q−l−1

T ∗M) is identified with
∧q

T ∗M⊗V .
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DEFINITION 4.1. Let V be a vector bundle over M . Sections of V are said to be foli-
ated if they are locally constant along the leaves and if they are transversally holomorphic. Let
ΓF (V ) be the sheaf of germs of foliated sections of V . The Čech complex with coefficients
in ΓF (V ) is denoted by Č∗

F (U;V ), and its cohomology group is denoted by Ȟ ∗
F (M;V ).

DEFINITION 4.2. Let ϕ be a (r, s)-cochain. For 0 ≤ k ≤ r , define a family ∂(k)ϕ =
{(∂(k)ϕ)i0···ir } of Q(F)∗-valued s-forms on Ui0···ir by setting

(∂(k)ϕ)i0i1···ir =
q∑
l=1

∂ϕi0i1···ir
∂zlik

⊗ dzlik ,

where (∂/∂zlik )hdz
l1
ik

∧ · · · ∧ dzlsik = (∂h/∂zlik )dz
l1
ik

∧ · · · ∧ dzlsik for any function h. Set then

∂̂ = ∑r
k=0 ∂(k) : ČrF (U;KF ) → ČrF (U;KF ⊗Q(F)∗).

LEMMA 4.3. The mapping ∂̂ induces a homomorphism on the cohomology, and the
induced homomorphism is independent of the choice of the foliation atlas.

The proof is straightforward and omitted. We denote this homomorphism again by ∂̂ .

DEFINITION 4.4. Let [d log J ] be the class in Ȟ 1
F (M;Q(F)∗) represented by d log J .

Set L = −(2π√−1)−(q+1)∂̂((d log J )q) ∈ Č
q

F (U;KF ⊗ Q(F)∗), and L(F) = [L] ∈
Ȟ
q

F (M;KF ⊗Q(F)∗).
The class [d log J ] is independent of the choice of the foliation atlas.

DEFINITION 4.5. Let X be a vector field on an open set U of Cq and ω a p-form.
Set ιXω = ω( · , . . . , · ,X) and define a Q(F)∗-valued p-form 〈ω ‖Σγ 〉 by the formula
〈ω ‖Σγ 〉 = ∑

i,t,s(ι∂i ω)Σ
i
t,s ∧ dzt ⊗ dzs , where ι∂i = ι∂/∂zi . If η is a Q∗(F)-valued p-form

and σ = ∑
i (∂/∂z

i) ⊗ σ i is a Q(F)-valued 1-form, then define a (p + 1)-form 〈η | σ 〉 by
setting 〈η | σ 〉 = ∑

i (ι∂i η) ∧ σ i .
The next lemma is easy.

LEMMA 4.6. Let η = {ηi0···iq } ∈ Č
q

F (U;KF ⊗Q(F)∗) and (a, b) = ({ai}, {bij }) ∈
E1(Q(F)). Define then an element 〈η |(a, b)〉 of Aq,q+1(U) ⊕ Aq+1,q(U) ⊂ A2q+1(U) by
setting 〈η |(a, b)〉i0···iq ,i0···iq+1 = 〈ηi0···iq | aiq 〉 ⊕ (−1)q〈ηi0···iq | biq iq+1〉. Then 〈 · | · 〉 induces a
well-defined pairing

〈 · | · 〉 : Ȟ q

F (M;KF ⊗Q(F)∗)× H1(M;ΘF ) → H 2q+1(M; C) .

PROPOSITION 4.7. If µ ∈ H 1(M; −KF ), then DµBq(F) is equal to 〈L(F)|µ〉.
PROOF. In this proof, the index ik is denoted by k. Since DµBq(F) is independent of

the choice of connections and representatives, we may choose ωi = dz1
i ∧ · · · ∧ dz

q
i and

assume that θi = 0. Then βij = −d log Jij . Let {σi} ∈ K1 be a representative of µ, and σ =
{σ i} a representative of µ as an element of H 1(M;ΘF ), where e i = (∂/∂z1

i , . . . , ∂/∂z
q
i ).

We may assume that σk = σ 1
k∧dz2

k∧· · ·∧dzqk+· · ·+dz1
k∧· · ·∧dzq−1

k ∧σqk by Lemma 2.12.
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We set

∆k = det




∂k log J01
...

∂k log Jq−1,q


 .

Then ((d log J )k∪θ ′∪(d log J )q−k)0···q = (−1)q(q+1)/2dωk(σk)∆k, since c1∪· · ·∪ck =
(−1)k(k−1)/2c1 ∧ · · · ∧ ck if each ci is a (1, 1)-cochain. Let ρ(k) be the (q, q)-cochain given
by ρ(k)0···q = (−1)q(q−1)/2〈d log J01 ∧ · · · ∧ d log Jq−1,q | σ k〉, where 0 ≤ k ≤ q means
the k-th index of 0, . . . , q . Then ρ(k) = (−1)q(q−1)/2〈ωk| σ k〉∆k = (−1)q(q−1)/2ωk(σk)∆k .
Hence (D′′ρ(k))0···q = (−1)q(q+1)/2dωk(σk)∆k − 〈(d log J )q | σ k〉. On the other hand, we
can show that (D′ρ(k))0···q+1 = ((d log J )k ∪ g ∪ (d log J )q−k)0···q+1 by direct calculations.
ThusDµBq(F) is cohomologous to −(2π√−1)q+1〈(d log J )q | σ 〉. �

We will need the explicit form of coboundaries in proving Proposition 5.10. The cocycle
L is calculated as follows.

LEMMA 4.8. LetΛ be the foliated Čech 1-cochain valued inQ∗(F) defined byΛij =
Λγij . Then

Li0···iq = q + 1

(2π
√−1)q+1(q − 1)!

∑
τ∈Sq+1

(sgn τ )((d log J )q−1 ∪Λ)iτ(0)···iτ (q) .

PROOF. We denote the indices i0, . . . , iq by 0, . . . , q . If we set (
∧
d log J )n···m;q =

d log Jnq ∧ d log Jn+1,q ∧ · · · ∧ d log Jmq , then d log J01 ∧ d log J12 ∧ · · · ∧ d log Jq−1,q =
(
∧
d log J )0···q−1;q . Since ∂(j)hdzi = d∂ih⊗ dzi − hDγ−1

ji dDγji ⊗ dzi ,

∂(k)(
∧q

d log J )0···q

=
q−1∑
l=0

(
∧
d log J )0···l−1;q ∧ d∂q log Jlq ∧ (∧ d log J )l+1···q−1;q ⊗ dzq

−
q−1∑
l=0

(
∧
d log J )0···l−1;q ∧ (∂q log JlqDγ

−1
kq dDγkq) ∧ (

∧
d log J )l+1···q−1;q ⊗ dzq .

On the other hand, the following equation holds by Lemma 3.2, namely,

−
∑

0≤l≤q−1
l �=k

(
∧
d log J )0···l−1;q ∧ 〈d log Jlq‖Σkq 〉 ∧ (∧ d log J )l+1···q−1;q(4.8.a)

− (q + 1)2 (
∧
d log J )0···k−1;q ∧Λkq ∧ (∧ d log J )k+1···q−1;q

+ q (
∧
d log J )0···k−1;q ∧ 〈d log Jkq‖Σkq〉 ∧ (∧ d log J )k+1···q−1;q
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= (q + 1)(
∧
d log J )0···k−1;q ∧ d∂q log Jkq ∧ (∧ d log J )k+1···q−1;q ⊗ dzq

−
q−1∑
l=0

(
∧
d log J )0···l−1;q ∧ (∂q log JlqDγ

−1
kq dDγkq) ∧ (

∧
d log J )l+1···q−1;q ⊗ dzq ,

where Σij = Σγij . As we have (q + 1)(Λij −Λik + Λjk) = 〈d log Jkj‖Σij 〉, the left hand
side of (4.8.a) is equal to

− (q + 1)
q−1∑
l=0

(
∧
d log J )0···l−1;q ∧ (Λql −Λkl +Λkq) ∧ (∧ d log J )l+1···q−1;q

+ (q + 1)2 (
∧
d log J )0···k−1;q ∧Λqk ∧ (∧ d log J )k+1···q−1;q

= − (q + 1)
q−1∑
l=0

(−1)q−l−1(
∧
d log J )0···l−1,l+1···q−1;q ∧ (Λql −Λkl)

+ (q + 1)(
∧
d log J )0···k−1,q−1,k+1···q−2;k ∧Λkq

+ (q + 1)2 (−1)q−k−1(
∧
d log J )0···k−1;q ∧ (∧ d log J )k+1···q−1;q ∧Λqk .

Noticing that (
∧
d log J )0···l−1,l+1···q−1;q = −(∧ d log J )0···k−1,q,k+1,···l−1,l+1···q−1;k if k �=

l and taking the sum of the above equality with respect to k, we obtain

∂̂(
∧q

d log J )0···q

= (q + 1)
q∑
k=0

(−1)q−k−1(
∧
d log J )0···k−1,k+1···q−1;q ∧Λqk

− (q + 1)
q−1∑
l=0

∑
k �=l
(−1)q−l−1(

∧
d log J )0···k−1,q,k+1···l−1,l+1···q−1;k ∧Λkl

+ (q + 1)
q−1∑
k=0

(
∧
d log J )0···k−1,q−1,k+1,···q−2;k ∧Λkq ,

from which the lemma follows. �

DEFINITION 4.9. Given µ ∈ H 1(M; −KF ) and σ ∈ I 1
(0,1)(M;Q(F)) a representa-

tive of µ as an element of H 1(M;ΘF ), we define a Čech-de Rham (1, 2)-cochain L(µ) by
setting L(µ)ij = 〈

Λij | σj
〉
.

A generalization of the Maszczyk formula [19] for arbitrary transversally holomorphic
foliations now follows from Proposition 4.7 and Lemma 4.8.

THEOREM 4.10. If µ ∈ H 1(M; −KF ), thenDµBq(F) is represented by the Čech-de
Rham (q, q + 1)-cocycle, whose value on Ui0···iq is given by

(q + 1)

(2π
√−1)q+1(q − 1)!

∑
τ∈Sq+1

(sgn τ )((d log J )q−1 ∪ L(µ))iτ(0)···iτ (q) .
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If q = 1, then the infinitesimal derivative of the Bott class is represented by the Čech-de Rham
(1, 2)-cocycle

1

4π2

(
γ ′′′

γ ′ − 3

2

(
γ ′′

γ ′
2))

dz ∧ σ ,
where σ is a representative of µ.

Note that 〈L(F)|µ〉 is well-defined for any µ ∈ H1(M; −KF ). Hence we can extend
Definitions 2.7 and 2.16 as follows.

DEFINITION 4.11. Let µ ∈ H1(M; −KF ). The infinitesimal derivative of the Bott
class with respect to µ is defined to be 〈L(F)|µ〉.

DEFINITION 4.12. The Bott class of a transversally holomorphic foliation F is said
to be infinitesimally rigid if 〈L(F)|µ〉 = 0 for any µ ∈ H1(M;ΘF ).

DEFINITION 4.13. A transversally holomorphic foliation F is said to be transversally
complex projective on U if F admits a structure of a (PSL(q + 1; C),CPq)-foliation on U
whose underlying transversal holomorphic structure coincides with the original one. If U =
M , then F is said to be transversally complex projective. A transversal complex projective
structure is also called a transversal projective structure for short. If a transversal complex
projective structure P is given on an open subset U , then a foliation atlas is said to be adapted
to P if the atlas gives the structure P on U .

By Lemma 4.8, L(F) is the obstruction for F to admit a transversal projective structure
if q = 1. If q > 1, it remains true that L(F) vanishes if F admits a transversal projec-
tive structure. However, it will be an obstruction for existence of certain reduced structures
because Λ is a kind of the curvature tensor of the Schwarzian derivativeΣ .

It is well-known that if a foliation admits a first-order transversal geometric structure
such as Hermitian metrics or complex affine structures, then the imaginary part of the Bott
class vanishes. There is an infinitesimal version of this fact involving complex projective
structures, which are of second order.

THEOREM 4.14. The Bott class of transversally projective foliations is infinitesimally
rigid.

Indeed, the Bott class is infinitesimally rigid if L(F) = 0. Note that there are transver-
sally projective foliations with non-trivial Bott classes (Example 7.2, see also [5]). On the
other hand, it is classical that the Bott class admits continuous deformations ([8], see also
Example 7.1). Note also that the imaginary part of Theorem 4.14 follows from [6].

REMARK 4.15. There is an obvious analogue of above constructions for the
Godbillon-Vey class of real foliations, and the infinitesimal derivative of the Godbillon-Vey
class is represented in terms of the Schwarzians. The codimension-one case is exactly the
Maszczyk formula [19]. Theorem 4.14 for real foliations and the Godbillon-Vey class is
highly non-trivial, because it is well-known that the Godbillon-Vey class admits continuous
deformations (cf. [16]).
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In contrast to real foliations, the Godbillon-Vey class of transversally holomorphic foli-
ations is known to be infinitesimally rigid [5]. The proof of Theorem 4.10 is independent of
results in [5] and we have another proof the rigidity as follows.

COROLLARY 4.16. The Godbillon-Vey class of transversally holomorphic foliations
is rigid under both actual and infinitesimal deformations, where infinitesimal deformations
and actual deformations mean elements of H 1(M; −KF ) and smooth deformations as in
Definition 1.9, respectively.

PROOF. We give a proof of the rigidity under infinitesimal deformations, from
which the rigidity under actual deformations easily follows. Let c1(F) be the first Chern
class of Q(F) and GV2q(F) the Godbillon-Vey class of F . It is known that GV2q(F) =
cξq(F)c1(F)q , where c is a non-zero real constant [1, Theorem A]. We denote byDµGV2q(F)
the infinitesimal derivative of GV2q(F)with respect to µ (see [15]), whereµ∈H 1(M;−KF ).
Since c1(F) is rigid under deformations, we have DµGV2q(F) = c(Dµξq)c1(F)q =
c
√−1(DµBq(F) − DµBq(F))c1(F)q by Theorem 2.19. By Theorem 4.10, DµBq(F)

is represented by a Čech-de Rham (q, q + 1)-cocycle whose value on Ui0···iq belongs to
I(q)(Ui0···iq ) (see Notation 1.3). On the other hand, it is well-known that c1(F) is represented
by an element of I(1)(M) (cf. [8]). It follows thatDµBq(F)c1(F)q is trivial as a cohomology
class. Since c1(F) is a real class, DµBq(F)c1(F)q is also trivial. �

5. Localization.

DEFINITION 5.1. Let U = {Ui}i∈I be an open covering of M and ω = {ωi0,...,ip }
a Čech-de Rham (r, s)-cochain. Set Iω = {i ∈ I ; there exists (i1, . . . , ir ) ∈ I r such that
ωi,i1,...,ir �= 0} and define the support of ω by suppω = ⋃

i∈Iω Ui . If suppω is relatively
compact, then ω is said to be of compact support.

Let ω be a globally defined differential form and denote by s(ω) the support of ω in the
usual sense. If V is an open set containing s(ω), then, taking refinements of coverings, we
may assume that s(ω) ⊂ suppω ⊂ V .

The localization ofDµBq(F) is defined by means of Γ -vector fields. The notions of Γ -
vector fields and basicX-connections below are originally due to Heitsch [16]. The following
definitions are slight modifications of those in [16].

DEFINITION 5.2 ([3]). A vector field X defined on an open set OX of M is said to be
a Γ -vector field for F if [E,X] ⊂ E on OX. Set ZX = {X ∈ E} ∪ (M \OX). Then F and
X form a transversally holomorphic foliation FX on the open set M \ ZX. If X is a Γ -vector
field on OX, then X induces a foliated section of Q(F) on OX, which is denoted by XQ.

Note that ZX is saturated by leaves of F if OX is saturated. Given a Γ -vector field X,
we denote byUX an open neighborhood (which is not necessarily saturated) of ZX and by VX
an open neighborhood of M \ UX. We will choose UX arbitrarily small.



410 T. ASUKE

DEFINITION 5.3. Let X be a Γ -vector field for F on OX, and let UX and VX be as
above. A Bott connection ∇X = {∇X

i } of −KF is said to be a basic X-connection for F
supported off VX if (∇X

i )Xs = LXs provided Ui ⊂ UX, where LX denotes the Lie derivative
with respect to X.

Note that basic X-connections depend only on XQ.
One can always obtain a globally well-defined basic X-connection from a family of

local basic X-connections by using a partition of unity. Thus obtained connection is a basic
X-connection for F supported off VX in the sense of Heitsch. Once an isomorphismQ(F) ∼=
CXQ ⊕Q(FX) is fixed, a basic X-connection induces a Bott connection for FX on VX.

Let W be an open subset of M . We denote by H 1
c (W ;ΘF |W) the cohomology of ele-

ments of Iq(q−1,q)(W ; −KF ) with compact support. Elements of H 1
c (W ;ΘF |W) can be re-

garded as infinitesimal deformations of F whose support is compact and is contained in W .

DEFINITION 5.4. Let X be a Γ -vector field for F on OX, and let UX and VX

be as above. Let W be an open subset of M and µ ∈ H 1
c (W ;ΘF |W). Then, denote by

resDµBq(F ,X) an element ofH 2q+1
c (UX∩W ; C) represented byDσBq(∇X, (∇X)′), where

∇X is a basic X-connection supported off VX, and (∇X)′ is the infinitesimal derivative of ∇X

with respect to σ .

It is clear that resDµBq(F ,X) depends on XQ but not on X itself, so that the residue is
also denoted by resDµBq(F ,XQ).

THEOREM 5.5. resDµBq(F ,X) is well-defined. Let ι : UX ∩ W → M be the

inclusion and ι∗ : H 2q+1
c (UX ∩ W ; C) → H 2q+1(M; C) the natural mapping. Then

ι∗ resDµBq(F ,X) = DµBq(F). Moreover, if ZX is decomposed into connected components
Z1, . . . , Zr , then the residue is naturally decomposed into elements ofH 2q+1(Ui ∩W ; C) as
well, where Ui , i = 1, . . . , r , are mutually disjoint open neighborhoods of Zi .

PROOF. By the assumption, µ is represented by a cocycle compactly supported inW . It
follows from (2.11.a) and (2.11.b) that the support of the infinitesimal derivative of any Bott
connection is compact and contained in W , when taken the wedge product with elements of
I(q)(M). On the other hand, if basic X-connections are used in calculation, cochains such as
(dθ + β)q vanish on VX thanks to the Bott vanishing for FX. It follows that the supports of
the coboundaries constructed in Claims 3 and 4 in the proof of Theorem 2.14 are compact and
contained in UX ∩W . The last claim also follows from similar arguments. �

Let X0 be a Γ -vector field for F0 on OX0 , and let UX0 and VX0 be as above. If there is
a trivialization eVX0

of −KF |VX0
, then the residue of the Bott class is defined as an element

of H 2q+1
c (UX0 ; C/Z) [3]. When residues are considered, a version of Theorem 2.18 holds

under some additional conditions.

THEOREM 5.6. Let {(Fs, Xs, es)} be a smooth family of triples with the following
properties:

(1) {Fs} is a smooth family of transversally holomorphic foliations.
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(2) {Xs} is a smooth family such that each Xs is a Γ -vector field for Fs and that ZXs
is independent of s. We denote ZXs by ZX.

(3) There are open neighborhoodsUX ofZX and VX ofM\UX such that {es} restricted
to VX is a smooth family of trivializations of −KFs |VX .
Assume that e0 is foliated and that LXe0 = 0, where LX denotes the Lie derivative with re-
spect to X. Let µ ∈ H 1(M; −KF ) be the infinitesimal deformation induced by {Fs}. Then

resDµBq(F ,X) = ∂

∂s
resBq(Fs, Xs, es)

∣∣∣∣
s=0

.

PROOF. Under the assumptions, we can repeat the proof of Theorem 2.18 in a com-
pactly supported manner. Indeed, since there is a trivialization of −KF on VX, the cocycle
Θ in Proposition 1.10 is zero on VX. Moreover, since e0 is foliated with respect to FX, the
cochains u1 and v1 belong to I(1)(FX). Hence the cochains ρk are equal to zero on VX.

Therefore, the equality in the statement holds in H 2q+1
c (M; C). �

REMARK 5.7. It is natural to choose XQ as e0 if q = 1. Theorem 5.6 fails if the
assumption on e0 is dropped as shown in Example 7.3, although the left hand side is inde-
pendent of e0. The assumption is needed in order that Proposition 1.10 works in a compactly
supported manner.

Localization using L is given as follows. Let H1
c (W ;ΘF |W) be the cohomology of K∗

(Definition 2.9) with compact support.

THEOREM 5.8. Let F be a transversally holomorphic foliation of M . Suppose that F
admits on an open set V of M , possibly V = ∅, a transversal complex projective structure P .
Let U be an open neighborhood of M \ V . Finally, let µ ∈ H1

c (W ;ΘF |W), where W is an
open subset of M , and let σ be a representative of µ. Then 〈L | σ 〉 represents an element of
H

2q+1
c (U ∩W ; C), which is independent of the choice of representatives, where the foliation

atlas is always chosen to be adapted to P on V .

PROOF. By the choice of the foliation atlas, the support of L is contained in U . Hence
the support of 〈L | σ 〉 is contained in U ∩ W . If we choose another foliation atlas adapted
to P and obtain L′, then L and L′ are cohomologous as cocycles supported on U . It is not
difficult to show that 〈L | σ 〉 and 〈L | σ ′〉 represent the same cohomology class if σ and σ ′ are
representatives of µ. �

DEFINITION 5.9. An element of H 2q+1
c (U ∩ W ; C) obtained in Theorem 5.8 is de-

noted by res〈L(F ,P)|µ〉.
PROPOSITION 5.10. Let W be an open subset of M and let µ ∈ H 1

c (W ; −KF |W).
Then resDµBq(F ,X) = res〈L(F ,P) |µ〉 ∈ H

2q+1
c (W ; C) holds for any Γ -vector field X

and any transversal projective structure P .

This follows from the fact that the support of the coboundaries constructed in Proposi-
tion 4.7 are compact.
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6. Relation to the Fatou-Julia decomposition. If the complex codimension is equal
to one, the localization in terms of the (classical) Schwarzian L(F) and the Fatou-Julia de-
composition in the sense of Ghys, Gomez-Mont and Saludes [13] are related as follows. Let
BF be the sheaf of germs of locally L∞-foliated sections ofQ(F)∗⊗Q(F), whereQ(F) de-
notes the complex conjugate of Q(F). Then H 0(M;BF ) is the space of locally L∞-foliated
sections of Q(F)∗ ⊗ Q(F). The space H 0(M;BF ) is a Banach space with the essential
supremum norm, and there is a natural mapping δ : H 0(M;BF ) → H 1(M;ΘF ). The image
of δ consists of infinitesimal deformations preserving FR, where FR denotes the underlying
real foliation.

LEMMA 6.1. Let M be a closed manifold and let σ ∈ H 0(M;BF ). Set µ = δ(σ ).
Then 〈L | σ 〉 is well-defined as an integrable 3-form. It is equal to 〈L(F)|µ〉 as an element of
HomC(H

dimM−3(M; C),C) ∼= H 3(M; C).

PROOF. After extending σ as a section of E∗ ⊗ Q(F) by requiring σ |TF = 0, we
approximate it by differential forms of class C∞. The lemma follows by the Lebesgue con-
vergence theorem. �

More detailed information on H 0(M;BF ) was obtained in [13]. Let F be the Fatou
set and J the Julia set. The Julia set is measurably decomposed into the recurrent compo-
nent J0 and the ergodic components J1, . . . , Jr . There is a corresponding decomposition
H 0(M;BF ) = ⊕r

k=0H
0(Jk;BF ) ⊕ H 0(F ;BF ). It is almost by definition that the map-

ping δ restricted to
⊕r

k=1H
0(Jk;BF ) is injective [13, p. 307]. Moreover, δ|J0 is equal to

zero and the image of δ|Jk is one-dimensional for k �= 0. Recalling that H 0(M;BF) is a
Banach space, choose a basis σk of unit length of H 0(Jk;BF ) for each k > 0. By choos-
ing a section, we fix an isomorphism ϕ : H 1(M;ΘF ) ∼= H 0(J ;BF ) ⊕ HI ⊕ HO , where
H 0(J ;BF ) ⊕ HI = Image δ and HO

∼= coker δ. Elements of HI correspond to infinites-
imal deformations preserving FR, which cannot be induced by infinitesimal deformations
supported on J , and elements of HO correspond to infinitesimal deformations which do not
preserve FR .

We normalize the volume of M to be 1 and denote by |Jk| the volume of Jk . Note that
|Jk| > 0 for k > 0. We propose the following

DEFINITION 6.2. The infinitesimal derivative of the Bott class with respect to the er-
godic component Jk , k > 0, is the element of H 3(M; C) determined by |Jk| 〈L | σk〉 and
denoted by ∂JkB1(F).

It is easy to see that ∂JkB1(F) is independent of the choice of σk .

PROPOSITION 6.3. Let µ ∈ H 1(M;ΘF ) and let µ = µJ + µI + µO be the decom-
position given by the isomorphism ϕ. Decompose further µJ as

∑r
k=1 ak(|Jk| σk). Then there

is a decomposition of 〈L(F)|µ〉 in H 3(M; C) as

〈L(F)|µ〉 =
r∑
k=1

ak∂JkB1(F)+ 〈L(F)|µI 〉 + 〈L(F)|µO〉 .
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It follows from the classification of the Fatou components [13] that each Fatou compo-
nent admits transversal projective structures.

DEFINITION 6.4. Let U be a neighborhood of the Julia set J . Fix a transversal pro-
jective structure P on the Fatou sets. Given µ ∈ H 1(M;ΘF ) and a smooth representative σ
of µ, we denote by res〈L(F ,P)|µ〉 an element of H 3

c (U ; C) represented by 〈L | σ 〉.
The class res〈L(F ,P)|µ〉 is independent of the choice of a foliation atlas adapted to P

as well as the representative σ . If J can be decomposed into connected components, then the
residue admits a natural decomposition.

REMARK 6.5. The Julia set affects 〈L(F)|µI 〉 so that it need not vanish. In addition,
the image of res〈L(F ,P)|µ〉 in H 3(M; C) and

∑r
k=1 ak∂JkB1(F) are distinct in general.

See Example 7.1.

Let X be a Γ -vector field on OX. If {Oi} is a foliation atlas for OX, then there are
projections πi : Oi → C which give the transversal holomorphic structure. The (1, 0)-part
Xi of πi∗X|Oi is well-defined and holomorphic, since X is a Γ -vector field. By integrating
2 ReXi , we can find a refinement {Vi} of {Oi} such that the transversal direction of transition
functions is the restriction of translations in C and that Xi = ∂/∂zi on Vi , where zi denotes
the transversal coordinates on Vi . Hence a projective structure is determined, and is denoted
by PX. It is clear that PX depends only on XQ. Note that the flat connection with respect to
the local trivializations {Xi} of Q(F) is a unique basic X-connection.

DEFINITION 6.6. The transversal projective structure PX as above is called the
transversal projective structure associated with X.

There are foliated trivializations of Q(F) on the most of the Fatou components. Indeed,
wandering Fatou components are locally trivial fibrations over finite Riemann surfaces, and
each restriction of F to semi-wandering and dense components is a G-Lie foliation [13]. Let
F ′ be the union of wandering Fatou components of which the base spaces are closed surfaces
of genus g �= 1, and let U be an arbitrarily small neighborhood of J ∪ F ′. There always
exists a foliated trivialization XQ of Q(F) on a neighborhoodO of M \ U , and an element
resDµB1(F ,XQ) of H 3

c (U ; C).

PROPOSITION 6.7. Let X be any lift ofXQ to a Γ -vector field. Then resDµB1(F ,X)
= res〈L(F ,PXQ)|µ〉 ∈ H 3

c (UX; C).

This corresponds to the following fact, where a version of residues res∗
W B1(F , e) is

defined by using transversal invariant Hermitian metric and trivialization of Q(F) ([3, Defi-
nition 5.1]).

PROPOSITION 6.8 (cf. [3, Corollary 5.4]). Let F ′, W and X be as above. Then there
is a well-defined element resB1(F ,X, e) of H 3

c (W ; C), where e = {ei} is a family of local
trivializations ofQ(F) such that ei = X if Ui ⊂ M \ (J ∪ F ′). Moreover, resB1(F ,X, e) =
res∗

W B1(F , e).
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PROOF. Since there is a foliated trivialization ofQ(F) (= −KF ) on F0 \ F ′, the argu-
ments in [3] remain valid even if F0 is replaced with F ′. �

7. Examples.

EXAMPLE 7.1. Let X = λ0z
0(∂/∂z0) + λ1z

1(∂/∂z1) be a holomorphic vector field
on C2, where (z0, z1) are the natural coordinates. Assume that λ0λ1 �= 0 and that λ = λ0/λ1

is not a negative real number. Then X induces a transversally holomorphic foliation Fλ of
S3. The family {Fλ} is a smooth family of transversally holomorphic foliations, and B1(Fλ)
is the natural image of (λ + λ−1)[S3], where [S3] is the generator of H 3(S3; Z) [8]. Let
Y be the Γ -vector field for Fλ induced by νz1(∂/∂z1). Then ZY consists of two circles C0

and C1. Let µ ∈ H 1(M;Fα) be the infinitesimal deformation induced by the family {Fλ}.
Let Ui be a tubular neighborhood of Ci and identify H 3

c (Ui; C) with H 1(Ci; C) by integra-
tion along the fiber. The residue resDµB1(Fα, Y ) is naturally decomposed into the sum of
resCi DµB1(Fα, Y ) ∈ H 1(Ci; C) for i = 0, 1. By Theorem 5.6, resC0 DµB1(Fα, Y ) = [C0]
and resC1 DµB1(Fα, Y ) = −α−2[C1]. Let PY be the projective structure on a neighborhood
of S3\(U0∪U1) associated with Y . Then res〈L(Fα,PY )|µ〉 is the sum of resi〈L(Fα,PY )|µ〉
∈ H 1(Ci; C) for i = 0, 1. We have resi〈L(Fα,PY )|µ〉 = resCi DµB1(Fα, Y ) by Proposi-
tion 6.7.

If α = 1, then F1 is the Hopf fibration and is transversally projective. Hence L(F1) = 0
and B1(F1) is infinitesimally rigid. However, resi〈L(F1,PY )|µ〉 can be non-trivial because
PY might not be extended to the whole S3. On the other hand, the Julia set is empty so that
the localization given in Section 6 is trivial. If α �= 1, then L(Fα) is non-trivial. Indeed,
B1(Fα) is not infinitesimally rigid and Fα cannot admit any transversal projective structures.
The Julia set is equal to C0 ∪ C1 and is of Lebesgue measure zero so that ∂JB1(Fα) = 0. It
follows that 〈L(F)|µ′

F 〉 + 〈L(F)|µO〉 �= 0. An example of non-trivial µO is given in [4].
There are similar foliations on S2q+1 obtained from the vector field

∑q

i=0 λiz
i(∂/∂zi)

on Cq+1. If the convex hull of λ0, . . . , λq does not contain the origin, a foliation Fλ of S2q+1

is induced and

Bq(Fλ) = (λ0 + · · · + λq)
q

λ0 · · · λq [S2q+1] .
It follows from Theorem 2.18 that most of foliations such as Fλ do not admit any transversal
projective structures.

EXAMPLE 7.2. Let H = {(aij )0≤i,j≤q ; ai0 = 0 if i > 0} be the subgroup of G =
SL(q+1; C) and Γ a discrete subgroup ofG such thatM = Γ \G/U(q) is a closed manifold,
where U(q) is considered as a subgroup of SL(q + 1; C) by the mapping A ∈ U(q) �→
(detA)−1 ⊕ A ∈ SL(q + 1; C). The cosets {gH }g∈G induce a transversally holomorphic
foliation F of M . The Bott class of F is non-trivial ([5]) and is infinitesimally rigid because
F is transversally projective.

EXAMPLE 7.3 ([17]). Let Yλ = ∑q
j=1 λj z

j (∂/∂zj ) be a holomorphic vector field on

Cq , and let Fλ be the foliation of S1 × Cq induced by the vector field ∂/∂t + Yλ, where S1
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is identified with R/Z, and (z1, . . . , zq) and t denote the standard coordinates of Cq and R,
respectively. Suppose that δj , j = 1, . . . , q , are non-zero complex numbers. Then Yδ is a
Γ -vector field for any λ. Let e = (∂/∂z1) ∧ · · · ∧ (∂/∂zq) be a trivialization of −KFλ . Then

Bq(Fλ, Yδ, e) = 1

2π
√−1

(λ1 + · · · + λq)
(δ1 + · · · + δq)

q

δ1 · · · δq [S1] ,

where [S1] denotes the natural generator ofH 1(S1; Z). Hence the residueDµBq(Fλ, Yδ) can
vary if Γ -vector fields are deformed even if Fλ is fixed. On the other hand, e is foliated with
respect to FYδ if λ1 + · · · + λq = δ1 + · · · + δq = 0. The derivative of Bq(Fλ, Yδ, e) is trivial
in this case.
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