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OF LOG HOMOGENEOUS VARIETIES
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Abstract. We consider a complete nonsingular complex algebraic variety having a
normal crossing divisor such that the associated logarithmic tangent bundle is generated by its
global sections. We obtain an optimal vanishing theorem for logarithmic Dolbeault cohomol-
ogy of nef line bundles in that setting. This implies a vanishing theorem for ordinary Dolbeault
cohomology which generalizes results of Broer for flag varieties, and of Mavlyutov for toric
varieties.

Introduction. The main motivation for this work comes from the well-developed the-
ory of complete intersections in algebraic tori (C∗)n and in their equivariant compactifica-
tions, toric varieties. In particular, the Hodge numbers of these complete intersections were
determined by Danilov and Khovanskii, and their Hodge structure, by Batyrev, Cox and oth-
ers (see [11, 2, 26]). This is made possible by the special features of toric geometry; two
key ingredients are the triviality of the logarithmic tangent bundle TX(− logD), where X is
a complete nonsingular toric variety with boundary D, and the Bott-Danilov-Steenbrink van-
ishing theorem for Dolbeault cohomology: Hi(X,L⊗Ω

j
X) = 0 for any ample line bundle L

on X and any i ≥ 1, j ≥ 0.
A natural problem is to generalise this theory to complete intersections in algebraic ho-

mogeneous spaces and their equivariant compactifications. As a first observation, the pre-
ceding two results also hold for abelian varieties and, more generally, for the “semi-abelic”
varieties of [1], that is, equivariant compactifications of semi-abelian varieties. In fact, for a
complete nonsingular variety X and a divisor D with normal crossings on X, the triviality of
the logarithmic tangent bundle is equivalent to X being semi-abelic with boundary D, by a
result of Winkelmann (see [32]). Moreover, it is easy to see that semi-abelic varieties satisfy
Bott vanishing.

The next case to consider after these “log parallelisable varieties” should be that of flag
varieties. Here counter-examples to Bott vanishing exist for grassmannians and quadrics, as
shown by work of Snow (see [29]). For example, any smooth quadric hypersurfaceX in P 2m

satisfies Hm−1(X,Ωm
X(1)) �= 0.

On the other hand, a vanishing theorem due to Broer asserts thatHi(X,L⊗Ωj
X) = 0 for

any nef line bundle L on a flag variety X, and all i > j (see [8], and [9] for a generalisation
to homogeneous vector bundles); in this setting, a line bundle is nef (numerically effective) if
and only if it is effective, or generated by its global sections. Moreover, the same vanishing
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theorem holds for any nef line bundle on a complete simplicial toric variety, in view of a
recent result of Mavlyutov (see [27, Thm. 2.4]).

In this article, we obtain generalisations of Broer’s vanishing theorem to any “log homo-
geneous” variety, that is, to a complete nonsingular variety X having a divisor with normal
crossings D such that TX(− logD) is generated by its global sections. Then X contains only
finitely many orbits of the connected automorphism group Aut0(X,D), and these are the strata
defined byD. The class of log homogeneous varieties, introduced and studied in [7], contains
of course the log parallelisable varieties, and also the “wonderful (symmetric) varieties” of
De Concini-Procesi and Luna (see [12, 25]). Log homogeneous varieties are closely related
to spherical varieties; in particular, every spherical homogeneous space has a log homoge-
neous equivariant compactification (see [4]).

Our final result (Theorem 3.18) asserts thatHi(X,L⊗Ωj
X) = 0 for any nef (resp. ample)

line bundle L on a log homogeneous varietyX, and for any i > j + q+ r (resp. i > j). Here
q denotes the irregularity of X, i.e., the dimension of the Albanese variety, and r its rank, i.e.,
the codimension of any closed stratum (these are all isomorphic). Thus, q+ r = 0 if and only
if X is a flag variety; then our final result gives back Broer’s vanishing theorem.

We deduce our result from the vanishing of the logarithmic Dolbeault cohomology
groups Hi(X,L−1 ⊗ Ω

j
X(logD)) for L nef and i < j − c, where c ≤ q + r is an ex-

plicit function of (X,D,L); see Theorem 3.16 for a complete (and optimal) statement. In
particular, Hi(X,Ω

j

X(logD)) = 0 for all i < j − q − r; this also holds for all i > j + q

by a general result on varieties with finitely many orbits (Theorem 1.6). In view of a loga-
rithmic version of the Lefschetz theorem due to Norimatsu (see [28]), this gives information
on the mixed Hodge structure of complete intersections: specifically, for any ample hyper-
surfaces Y1, . . . , Ym ⊂ X such that D + Y1 + · · · + Ym has normal crossings, the complete
intersection Y := Y1 ∩ · · · ∩ Ym satisfies Hi(Y,Ω

j
Y (logD)) = 0 unless i + j ≥ dim(Y ) or

−q ≤ j − i ≤ q + r .
Since the proof of our results is somewhat indirect, we first present it in the setting of

flag varieties, and then sketch how to adapt it to log homogeneous varieties. For a flag variety
X = G/P , the tangent bundle TX is the quotient of the trivial bundle X× g (where g denotes
the Lie algebra of G) by the sub-bundle RX of isotropy Lie subalgebras. Via a homological
argument of “Koszul duality” (Lemma 3.1), Broer’s vanishing theorem is equivalent to the
assertion that Hi(RX, p

∗L) = 0 for all i ≥ 1, where p : RX → X denotes the structure map.
But one checks that the canonical bundle of the nonsingular variety RX is trivial, and the
projection f : RX → g is proper, surjective and generically finite. So the desired vanishing
follows from the Grauert-Riemenschneider theorem.

For an arbitrary log homogeneous varietyX with boundaryD, we consider the connected
algebraic groupG := Aut0(X,D), with Lie algebra g := H 0(X, TX(− logD)). We may still
define the “bundle of isotropy Lie subalgebras” RX as the kernel of the (surjective) evaluation
map from the trivial bundleX×g to TX(− logD), and the resulting map f : RX → g. IfG is
linear, we show that the connected components of the general fibres of f are toric varieties of
dimension ≤ r (Theorem 2.2 and Corollary 2.6, the main geometric ingredients of the proof).
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Moreover, any nef line bundle L on X is generated by its global sections. By a generalisation
of the Grauert-Riemenschneider theorem due to Kollár (see [16, Cor. 6.11]), it follows that
Hi(RX, p

∗L ⊗ ωRX) = 0 for any i > r . Via homological duality arguments again, this is

equivalent to the vanishing of Hi(X,L−1 ⊗ Ω
j

X(logD)) for any such L, and all i < j − r

(Corollary 3.10). In turn, this easily yields our main result, under the assumption that G is
linear.

The case of an arbitrary algebraic group G may be reduced to the preceding setting, in
view of some remarkable properties of the Albanese morphism of X: this is a homogeneous
fibration, which induces a splitting of the logarithmic tangent bundle (Lemma 1.4), and a
decomposition of the ample cone (Lemma 3.14).

Homological arguments of “Koszul duality” already appear in the work of Broer men-
tioned above, and also in work of Weyman (see [31, Chap. 5]). The latter considers the more
general setting of a sub-bundle of a trivial bundle, but mostly assumes that the resulting pro-
jection is birational, which very seldom holds in our setting.

The geometry of the morphism f : RX → g bears a close analogy with that of the
moment map φ : Ω1

X → g∗, studied in depth by Knop for a variety X equipped with an
action of a connected reductive group G. In particular, Knop considered the compactified
moment map Φ : Ω1

X(logD) → g∗, and he showed that the connected components of the
general fibres ofΦ are toric varieties, if X is log homogeneous underG (see [23, p. 265]). By
applying another result of Kollár, he also showed thatHi(Ω1

X(logD),OΩ1
X(logD)) = 0 for all

i ≥ 1 (see [23, Thm. 4.1]).
However, vanishing results for Hi(Ω1

X(logD), q∗L), where L is a nef line bundle on
X, and q : Ω1

X(logD) → X denotes the structure map, are only known under restrictive
assumptions on X (see [4]). Also, generalising Knop’s vanishing theorem to all log homoge-
neous varieties (under possibly non-reductive groups) is an open question.

Our construction coincides with that of Knop in the case whereX is aG×G-equivariant
compactification of a connected reductive group G: then one may identify RX with
Ω1
X(logD), and f with the compactified moment map (see Example 2.5). As applications,

we obtain very simple descriptions of the algebra of differential operators on X which pre-
serve D, and of the bi-graded algebra H •(X,Ω•

X(logD)) (see Example 3.7). The structure
of the latter algebra also follows from Deligne’s description of the mixed Hodge structure on
the cohomology of G (see [14, Thm. 9.1.5]), while the former seems to be new. In that set-
ting, one may also obtain more precise information on the numerical invariants of (possibly
non-ample) hypersurfaces in G and X; this will be developed elsewhere.

NOTATION. Throughout this article, we consider algebraic schemes, varieties, and
morphisms over the field C of complex numbers. We follow the conventions of the book
[20]; in particular, a variety is an integral separated scheme of finite type over C. By a point,
we always mean a closed point; a general point of a variety is a point of some non-empty
Zariski open subset.
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We shall consider pairs (X,D), where X is a complete nonsingular variety of dimension
n, andD is a simple normal crossing divisor onX, i.e.,D is an effective, reduced divisor with
nonsingular irreducible components D1, . . . ,Dl which intersect transversally. We then set

X0 := X \ Supp(D) ,

the open part of X.
An algebraic group G is a group scheme of finite type over C; then each connected

component of G is a nonsingular variety. We denote by G0 ⊂ G the neutral component, i.e.,
the connected component through the identity element e, and by g the Lie algebra of G.

We say that a pair (X,D) is a G-pair, if X is equipped with a faithful action of the
algebraic groupG that preserves D.

1. Logarithmic Dolbeault cohomology of varieties with finitely many orbits.
1.1. Differential forms with logarithmic poles. We begin by recalling some basic re-

sults on differential forms with logarithmic poles, referring to [16, Chap. 2] for details.
Given a pair (X,D) as above and an integer j ≥ 0, let Ωj

X(logD) denote the sheaf of
differential forms of degree j with logarithmic poles alongD, consisting of rational j -forms ω
on X such that ω and dω have at worst simple poles alongD1, . . . ,Dl . The sheafΩj

X(logD)
is locally free and satisfies

Ω
j
X(logD) = ∧jΩ1

X(logD) , Ωn
X(logD) = ωX(D) ,(1)

whereωX := Ωn
X denotes the canonical sheaf. As a consequence, the dual sheaf ofΩj

X(logD)
is given by

Ω
j
X(logD)∨ = Ω

n−j
X (logD)⊗ ω−1

X (−D) .(2)

Moreover,

Ω1
X(logD)∨ =: TX(− logD)

is the logarithmic tangent sheaf, i.e., the subsheaf of the tangent sheaf TX consisting of deriva-
tions that preserve the ideal sheaf of D.

If (X,D) is a G-pair for some algebraic group G, then the logarithmic (co)tangent
sheaves are G-linearised, and we have a morphism of linearised sheaves

opX,D : OX ⊗C g → TX(− logD) ,(3)

the action map.
Each divisor Dk := D − Dk induces a simple normal crossing divisor on Dk , that we

denote by Dk |Dk or just by Dk for simplicity. Moreover, taking the residue along Dk yields
an exact sequence

0 → Ω
j
X(logDk) → Ω

j
X(logD) → Ω

j−1
Dk

(logDk) → 0(4)
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that provides an inductive way to relate differential forms with logarithmic poles to ordinary
differential forms. Also, note the exact sequence

0 → Ω1
X → Ω1

X(logD) →
l⊕

k=1

ODk → 0 .(5)

Given an invertible sheaf L on X, we shall consider the logarithmic Dolbeault cohomol-
ogy groups, Hi(X,L ⊗Ω

j

X(logD)). Note the isomorphism

Hi(X,L ⊗Ω
j
X(logD))∗ ∼= Hn−i (X,L−1(−D)⊗Ω

n−j
X (logD)) ,(6)

a consequence of Serre duality and (2).
Also, recall a vanishing result of Norimatsu (see [28]): if L is ample, then Hi(X,L−1 ⊗

Ω
j
X(logD)) = 0 for all i+j < n. WhenD = 0, this is the classical Kodaira-Akizuki-Nakano

vanishing theorem, and the case of an arbitrary D follows by induction on the number of
irreducible components of D in view of the exact sequence (4); see [16, Cor. 6.4] for details.

This vanishing result implies a logarithmic version of the Lefschetz theorem, also due
to Norimatsu (see [28]). Let Y1, . . . , Ym be ample hypersurfaces in X such that the divisor
D + Y1 + · · · + Ym has simple normal crossings; in particular, Y := Y1 ∩ · · · ∩ Ym is a
nonsingular complete intersection, equipped with a simple normal crossing divisorD|Y . Then
the pull-back map

Hi(X,Ω
j
X(logD)) → Hi(Y,Ω

j
Y (logD))

is an isomorphism if i + j < n−m, and is injective if i + j = n−m.
By Hodge theory (see [13, Sec. 3.2]), it follows that the pull-back map in cohomology,

Hk(X0,C) → Hk(Y0,C) ,

is an isomorphism for k < n−m, and is injective for k = n−m.
1.2. Varieties with finitely many orbits: the linear case. In this subsection, we con-

sider a G-pair (X,D), where G is a connected algebraic group; we assume that X contains
only finitely manyG-orbits and that G is linear or, equivalently, affine.

We shall obtain a vanishing theorem for the groupsHi(X,Ω
j
X(logD)). In the case where

D = 0, we have the following result, which is well-known if G is reductive:

LEMMA 1.1. (i) With the assumptions of this subsection,X admits a cellular decom-
position (in the sense of [19, Ex. 1.9.1]).

(ii) There are natural isomorphisms

Ai(X) ∼= Hi(X,Ωi
X)

for all i, where Ai(X) denotes the Chow group of rational equivalence classes of cycles of
codimension i, with complex coefficients. Moreover,

Hi(X,Ω
j
X) = 0 (i �= j) .

PROOF. By [19, Ex. 19.1.11] and Hodge theory, it suffices to show (i). We shall deduce
that assertion from the Białynicki-Birula decomposition (see [3]).
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We may choose a maximal torus T ⊂ G and a one-parameter subgroup λ : Gm → T

such that the fixed point subscheme Xλ equals XT . Also, recall that XT is nonsingular. For
any component Xi of XT , let

X+
i := {x ∈ X ; lim

t→0
λ(t)x ∈ Xi}

and

ri : X+
i → Xi , x 
→ lim

t→0
λ(t)x .

ThenX is the disjoint union of theX+
i , whereXi runs over the components ofXT ; moreover,

each X+
i is a locally closed nonsingular subvariety of X, and each retraction ri is a locally

trivial fibration into affine spaces.
Next, consider the centraliser GT ⊂ G. Since GT is connected and the quotient GT /T

admits no non-trivial subtorus, it follows that

GT ∼= T × U,

where U is a unipotent group. Clearly, U acts on XT .
We claim that XT contains only finitely many orbits of U or, equivalently, of GT . To

check this, it suffices to show that ZT contains only finitely many GT -orbits, for anyG-orbit
Z. Given a point x ∈ ZT , the differential at e of the orbit map G → Z, g 
→ g · x yields a
surjective map g → TxZ (where g denotes the Lie algebra of G), and hence a surjective map
gT → (TxZ)

T = Tx(Z
T ). It follows that the orbit GT · x is open in ZT , which implies our

claim.
Note that U preserves each component Xi , and ri is U -equivariant. Thus, given an orbit

Z = U · x in Xi , the preimage r−1
i (Z) is isomorphic to the homogeneous bundle U ×Ux F

over Z ∼= U/Ux , where Ux denotes the isotropy group of x in U , and F the fibre of ri at x (so
that F is preserved by Ux and isomorphic to an affine space). Since U is unipotent, it contains
a closed subvariety V , isomorphic to an affine space, such that the multiplication of the group
U induces an isomorphism V × Ux ∼= U . Then r−1

i (Z) ∼= V × F is an affine space, which
yields the desired cellular decomposition. �

From that result and inductive arguments, we shall deduce:

THEOREM 1.2. With the assumptions of this subsection, there are natural isomor-
phisms

Ai(X0) ∼= Hi(X,Ωi
X(logD))(7)

for all i. Moreover,

Hi(X,Ω
j
X(logD)) = 0 (i > j) .(8)

PROOF. We may assume that D �= 0 in view of Lemma 1.1. We first prove the van-
ishing assertion (8), by induction on the number of irreducible components of D and the
dimension of X. Write D = D1 + D1, where D1 is irreducible. Then (4) yields an exact
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sequence

Hi(X,Ω
j

X(logD1)) → Hi(X,Ω
j

X(logD)) → Hi(D1,Ω
j−1
D1

(logD1))

which implies our assertion.
Next, we construct the isomorphism (7). If D is irreducible, then the exact sequence

0 → Ωi
X → Ωi

X(logD) → Ωi−1
D → 0 (a special case of (4)) yields a diagram

Ai−1(D) −−→ Ai(X) −−→ Ai(X \D) −−→ 0�
�

Hi−1(D,Ωi−1
D ) −−→ Hi(X,Ωi

X) −−→ Hi(X,Ωi
X(logD)) −−→ 0 ,

where the top row is a standard exact sequence of Chow groups (see [19, Prop. 1.8]), the
bottom row is exact since Hi(D,Ωi−1

D ) = 0, the vertical arrows are isomorphisms, and the
square commutes by functoriality of the cycle map (see [19, Sec. 19.1]). This yields the
desired isomorphism.

In the general case, we argue again by induction on the number of irreducible compo-
nents of D and the dimension of X. The exact sequences

Hi−1(Dk,Ω
i−1
Dk
) → Hi(X,Ωi

X) → Hi(X,Ωi
X(logDk)) → 0

for k = 1, . . . , l and the natural maps

Hi(X,Ωi
X(logDk)) → Hi(X,Ωi

X(logD))

yield a complex

l⊕
k=1

Hi−1(Dk,Ω
i−1
Dk
) → Hi(X,Ωi

X) → Hi(X,Ωi
X(logD)) → 0 .(9)

We claim that this complex is exact. Consider indeed the commutative diagram

Hi−1(D1,Ω
i−1
D1
) −−→ Hi(X,Ωi

X) −−→ Hi(X,Ωi
X(logD1)) −−→ 0� � �

Hi−1(D1,Ω
i−1
D1
(logD1)) −−→ Hi(X,Ωi

X(logD1)) −−→ Hi(X,Ωi
X(logD)) −−→ 0 .

Then the rows are exact, by the vanishing of Hi(D1,Ω
i−1
D1
(logD1)) and the preceding argu-

ment. Moreover, the left and middle vertical maps are surjective by the induction assumption;
thus, so is the right vertical map. This implies our claim.

That claim implies in turn the isomorphism (7), by comparing (9) with the complex

l⊕
k=1

Ai−1(Dk) → Ai(X) → Ai(X0) → 0

which is exact in view of the standard exact sequence

Ai−1(Supp(D)) → Ai(X) → Ai(X0) → 0
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and the surjectivity of the natural map
l⊕

k=1

Ai−1(Dk) → Ai−1(Supp(D)) . �

REMARK 1.3. One can show that X0 is a linear variety, as defined by Totaro in [30].
By Theorem 3 of that article, it follows that the Chow group of X0 is isomorphic to the
smallest subspace of Borel-Moore homology (with complex coefficients) with respect to the
weight filtration. In turn, this yields another proof of Theorem 1.2, admittedly less direct than
the proof presented here.

1.3. Varieties with finitely many orbits: the general case. We still consider a G-pair
(X,D), where G is a connected algebraic group and X contains only finitely manyG-orbits,
but we no longer assume that G is linear.

We shall obtain a generalisation of Theorem 1.2 to that setting; for this, we recall (after
[7, Prop. 2.4.1]) a reduction to the linear case, via the Albanese morphism

α : X → A(10)

(the universal morphism to an abelian variety).
By Chevalley’s structure theorem, G admits a largest connected affine subgroup Gaff;

this subgroup is normal in G, and the quotient G/Gaff is an abelian variety. Moreover, X is
equivariantly isomorphic to the total space of a homogeneous bundleG×I Y , where I ⊂ G is
a closed subgroup with neutral componentGaff, and Y ⊂ X is a closed nonsingular subvariety,
preserved by I ; both I and Y are unique.

As a consequence, I is a normal affine subgroup ofG, and the quotientG/I is an abelian
variety equipped with an isogeny G/Gaff → G/I . Moreover, I acts on Y with finitely many
orbits, and D induces a simple normal crossing divisor E on Y , preserved by I . Finally, the
Albanese morphism (10) may be identified to the homogeneous fibration G ×I Y → G/I

with fibre Y .
Also, note a splitting property of the logarithmic (co)tangent sheaf:

LEMMA 1.4. With the preceding notations, there is an isomorphism of G-linearised
sheaves

Ω1
X(logD) ∼= Ω1

X/A(logD)⊕ (OX ⊗C a∗) ,(11)

where Ω1
X/A(logD) ⊗ OY

∼= Ω1
Y (logE), and a denotes the Lie algebra of A (so that G acts

trivially on a).
Moreover, the composite map OX ⊗C a∗ → Ω1

X(logD) → OX ⊗C g∗ (where the map
on the right is the transpose of the action map (3)) is induced from the map a∗ → g∗, the
transpose of the quotient map g → g/gaff = a.

PROOF. By [7, Prop. 2.4.1], the Albanese fibration yields an exact sequence of G-
linearised sheaves

0 → TX/A(− logD) → TX(− logD) → α∗TA → 0 ,(12)



DOLBEAULT COHOMOLOGY OF LOG HOMOGENEOUS VARIETIES 373

where TX/A(− logD) ⊗ OY
∼= TY (− logE). Also, note that α∗TA ∼= OX ⊗ a. Since G acts

on A, and α is equivariant, the composite map

OX ⊗C g
opX,D−−−→ TX(− logD) −−→ OX ⊗C a

is induced from the quotient map g → a.
Choose a subspace ã ⊂ g such that the composite map ã → g → a is an isomorphism.

Then the composite map

OX ⊗C ã → OX ⊗C g → TX(− logD) → OX ⊗C a

is an isomorphism as well; thus, the exact sequence (12) is split. Taking duals yields our
assertions. �

REMARK 1.5. With the notation of the preceding proof, we may further assume that
ã is contained in the centre of g. Indeed, if C(G) denotes the centre of the group G, then the
natural map C(G) → A is surjective, as follows e.g. from [7, Lem. 1.1.1].

This yields a decomposition of the logarithmic tangent sheaf into a direct sum of the
integrable subsheaves TX/A(− logD) and OX ⊗C ã, and an analogous splitting of the tangent
sheaf.

We now come to the main result of this section:

THEOREM 1.6. With the notation and assumptions of this subsection,

Hi(X,Ω
j

X(logD)) = 0 (i > j + q(X)) ,(13)

where q(X) := dim(A) denotes the irregularity of X. Moreover, there is an isomorphism

Hj+q(X)(X,Ωj
X(logD)) ∼= Aj(Y0)

I(14)

(the subspace of I -invariants in Aj(Y0)), and I acts on Aj(Y0) via the finite quotient I/Gaff.

PROOF. Lemma 1.4 yields decompositions

Ω
j
X(logD) ∼=

j⊕
k=0

Ωk
X/A(logD)⊗C ∧j−ka∗(15)

and isomorphisms

Ωk
X/A(logD)⊗ OY

∼= Ωk
Y (logE) .

Since Hi(Y,Ωk
Y (logE)) = 0 for i > k by (8), this yields in turn

Riα∗Ωk
X/A(logD) = 0 (i > k) .(16)

Together with (15), it follows that

Riα∗Ωj
X(logD) = 0 (i > j) .(17)

This implies the vanishing (13) in view of the Leray spectral sequence

Hp(A,Rqα∗Ωj
X(logD)) ⇒ Hp+q(X,Ωj

X(logD))
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which also yields isomorphisms

Hq(X)+j (X,Ωj
X(logD)) ∼= Hq(X)(A,Rjα∗Ωj

X(logD)) .

Moreover, Rjα∗Ωj
X(logD) = Rjα∗Ωj

X/A(logD) is the G-linearised sheaf on A = G/I

associated with the I -module Hj(Y,Ω
j

Y (logE)), i.e., with Aj(Y0) in view of (7). By Serre
duality, it follows that

Hq(X)(A,Rjα∗Ωj

X(logD)) ∼= H 0(A,F)∗ ,

where F denotes the G-linearised sheaf on G/I associated with the dual I -module Aj(Y0)
∗.

Since the connected linear algebraic group Gaff acts trivially on the Chow group Aj(Y0), we
have

H 0(A,F) = H 0(G/I,F) ∼= (O(G)⊗C A
j(Y0)

∗)I

∼= (O(G)Gaff ⊗C A
j(Y0)

∗)I/Gaff ∼= (Aj (Y0)
∗)I/Gaff .

This yields the isomorphism (14). �

REMARK 1.7. (i) Let Y1, . . . , Ym ⊂ X be ample hypersurfaces such that the divisor
D + Y1 + · · · + Ym has simple normal crossings, and consider the complete intersection
Y := Y1 ∩· · ·∩Ym. Combining Theorem 1.6 with the logarithmic Lefschetz theorem recalled
in Subsection 1.1, we see that

Hi(Y,Ω
j

Y (logD)) = 0 (i + j < n−m and i > j + q(X)) .

If G is linear, i.e., q(X) = 0, then also

Hi(Y,Ωi
Y (logD)) ∼= Ai(X0) (i < (n−m)/2) .

Moreover, if i = (n − m)/2, then Ai(X0) ↪→ Hi(Y,Ωi
Y (logD)). In particular, Ai(X0) ↪→

Ai(Y0) for all i ≤ (n−m)/2.
If, in addition, X0 is affine, then Hi(Y,Ω

j
Y (logD)) = 0 whenever i+ j > n−m. Thus,

the only “unknown” groups Hi(Y,Ω
j
Y (logD)) are those where i + j = n −m. To compute

their dimension, it suffices to determine the Euler characteristic χ(Y,Ωj
Y (logD)), which is

expressed in topological terms via the Riemann-Roch theorem.
Since the topological Euler characteristic of Y0 satisfies an adjunction formula due to

Norimatsu and Kiritchenko (see [28, 22]), this yields a determination of the Betti numbers of
Y0, as already observed in [11] for toric varieties.

(ii) TakingD = 0 in Theorem 1.6 and using Serre duality yields the vanishing

Hi(X,Ω
j
X) = 0 (|i − j | > q(X))(18)

for a complete nonsingular variety X on which an algebraic group G acts with finitely many
orbits.

This is closely related to a result of Carrell and Lieberman (see [10, Thm. 1]):

Hi(M,Ω
j
M) = 0 (|i − j | > dimZ(V )) ,(19)
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where M is a compact Kähler manifold admitting a global vector field V with non-empty
scheme of zeros Z(V ).

In fact, (19) implies (18) when X is projective and the maximal connected affine sub-
group Gaff ⊂ G is reductive. Consider indeed a general one-parameter subgroup λ : Gm →
Gaff and the associated vector field V ∈ gaff. Then Z(V ) = Xλ = XT , where T denotes the
unique maximal torus ofGaff containing the image of λ. It follows thatZ(V )meets eachGaff-
orbit along a finite set, non-empty if the orbit is closed; as a consequence, dimZ(V ) = q(X).
However, it is not clear whether (18) may be deduced from (19) when (say)Gaff is unipotent.

2. Geometry of log homogeneous varieties.
2.1. Basic properties. Let (X,D) be a G-pair, where G is a connected algebraic

group. Following [7], we say that X is log homogeneous under G with boundary D, or that
(X,D) is G-homogeneous, if the action map (3) is surjective.

Under that assumption, the open partX0 is a uniqueG-orbit. Moreover, by [7, Cor. 3.2.2],
theG-orbit closures inX are exactly the non-empty partial intersections of boundary divisors,

Dk1,...,km := Dk1 ∩ · · · ∩Dkm ,
and each Dk1,...,km is log homogeneous under G with boundary being the restriction of the
divisor

Dk1,...,km :=
∑

k �=k1,...,km

Dk .

In particular, X contains only finitely many G-orbits, and these coincide with the orbits of
the connected automorphism group Aut0(X,D). Moreover, the closed orbits are exactly the
minimal non-empty partial intersections. By [7, Thm. 3.3.3], these closed orbits are all iso-
morphic. We call their common codimension the rank of X, and denote it by rk(X). Note
that

rk(Dk1,...,km) = rk(X)−m .(20)

Log homogeneity is preserved by equivariant blowing up, in the following sense. Let
X′ be a complete nonsingular G-variety equipped with a G-equivariant birational morphism
u : X′ → X. Denote byD′ the reduced inverse image ofD. Then (X′,D′) is a homogeneous
G-pair, by [7, Prop. 2.3.2]. We now show that logarithmic Dolbeault cohomology is also
preserved:

LEMMA 2.1. With the preceding notation and assumptions, there are isomorphisms

u∗Ωj
X(logD) ∼= Ω

j

X′(logD′) .(21)

Moreover, any invertible sheaf L on X satisfies

Hi(X′, u∗L ⊗Ω
j

X′(logD′)) ∼= Hi(X,L ⊗Ω
j
X(logD))(22)

for all i and j .
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PROOF. The natural morphism

du : TX′(− logD′) → u∗TX(− logD)

is clearly surjective, and hence is an isomorphism since its source and target are locally free
sheaves of the same rank. This implies (21) and, in turn, the isomorphism (22) by using the
projection formula and the equalities u∗OX′ = OX, Riu∗OX′ = 0 for all i ≥ 1. �

2.2. The bundle of isotropy Lie subalgebras. We still consider a pair (X,D), homo-
geneous under a connected algebraic group G. The action map (3) yields an exact sequence

0 → RX → OX ⊗C g → TX(− logD) → 0 ,(23)

where RX is locally free; equivalently, we have an exact sequence

0 → Ω1
X(logD) → OX ⊗C g∗ → R∨

X → 0 .(24)

We denote by RX the vector bundle over X associated with the locally free sheaf RX.
Specifically, the structure map

p : RX → X

satisfies

p∗ORX =
⊕
j≥0

SjR∨
X ,(25)

where Sj denotes the j -th symmetric power over OX.
By [7, Prop. 2.1.2], the fibre RX,x at an arbitrary point x is an ideal of the isotropy Lie

subalgebra gx : the kernel g(x) of the representation of gx in the normal space to the orbitG ·x
at x. In particular, RX,x = gx if x ∈ X0. We may thus call RX the bundle of isotropy Lie
subalgebras.

We may view RX as a closed G-stable subvariety of X × g, and denote by

f : RX → g

the second projection. Then f is proper, G-equivariant, and its fibres may be identified to
closed subschemes of X via the first projection p.

Since X is complete, the vector bundle RX is trivial if and only if f is constant, i.e., g(x)
is independent of x ∈ X. By [7, Thm. 2.5.1], this is also equivalent to X being a semi-abelic
variety.

Returning to an arbitrary homogeneousG-pair (X,D), choose a base point x0 ∈ X0 and
denote by

H := Gx0

its isotropy group, with Lie algebra

h := gx0 .

This identifies X0 to the homogeneous space G/H , and the pull-back RX0 to the homo-
geneous vector bundle G ×H h associated with the adjoint representation of the (possibly
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non-connected) algebraic group H . The restriction

f0 : RX0 → g

is identified to the “collapsing” morphism

G×H h → g , (g, ξ)H 
→ g · ξ(26)

where the dot denotes the adjoint action. In particular,

f (RX) = G · h(27)

and for any ξ ∈ h, the fibre of f0 at the point (1, ξ)H ∈ RX,x0 is identified to the fixed point
subscheme (G/H)ξ .

2.3. The general fixed point subschemes. We keep the notation and assumptions of
Subsection 2.2, and assume in addition that the algebraic groupG is linear.

THEOREM 2.2. With the preceding assumptions, the connected components of the
general fibres of f over its image G · h are toric varieties under subtori of G, of dimension
rk(G)− rk(H).

PROOF. It suffices to consider fibres at points (1, ξ)H , where ξ is a general point of
h. Let ξ = s + n be the Jordan decomposition, that is, s ∈ h is semi-simple, n ∈ h is
nilpotent, and [s, n] = 0. Then rk(G) = rk(Gs), where Gs denotes the centralizer of s in G;
likewise, rk(H) = rk(H s). Also, note that n ∈ hs (the Lie algebra of Hs). Moreover, since
ξ is general, we may assume that s is a general point of the Lie algebra of a maximal torus
TH ⊂ H . ThenGs = GTH acts on the fixed point subscheme Xs = XTH through the quotient
groupGTH /TH ; moreover, (H 0)TH /TH is unipotent. Together with Lemma 2.3, this yields a
reduction to the case where rk(H) = 0; equivalently, H 0 is unipotent.

Under that assumption, we claim thatH 0 is a maximal unipotent subgroup ofG. Indeed,
the varietyG/H is spherical under any Levi subgroup L ofG, by [7, Thm. 3.2.1]. Therefore,
we have dim(G/H) ≤ dim(BL), where BL denotes a Borel subgroup of L. But dim(BL) =
dim(G/U), where U ⊂ G is a maximal unipotent subgroup. Thus, dim(H) ≥ dim(U) which
implies our claim.

By that claim, the normalizer of H is a Borel subgroup of G, that we denote by B.
Moreover, for any maximal torus T ⊂ B, the intersection T ∩ H is finite, and B/H ∼=
T/(T ∩H). Since B normalizes h, the morphism f0 : G×H h → g factors as the natural map

u : G×H h → G×B h

followed by the collapsing morphism

v : G×B h → g .

Also, v is birational onto its image, the cone of nilpotent elements in g (this is well-known in
the case whereG is reductive, and the general case follows by using a Levi decomposition of
G). On the other hand, the fibre of u at any point (1, ξ)H is B/H , where both are identified
to subvarieties ofG/H . This identifies the general fibres of f0 to quotients of maximal tori of
G by finite subgroups. �
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LEMMA 2.3. Let s be a semi-simple element of h with centralizer Gs and fixed point
subscheme Xs , and let Y denote the connected component of Xs through the base point x0.
Then:

(i) Y is a log homogeneous variety underGs with boundaryD|Y . Moreover, the fixed
point subscheme RsX is a vector bundle over Xs , and its pull-back to Y is RY .

(ii) For any nilpotent element n ∈ hs , the fibres of f : RX → g and of fY : RY → gs

at s + n ∈ hs coincide in a neighborhood of the point (1, s + n)H .

PROOF. (i) Since s is semi-simple, Xs is nonsingular and Tx(Xs) = (TxX)
s for any

x ∈ Xs . Moreover, Tx((G · x)s) = (Tx(G · x))s = gs · x. As a consequence, Gs · x is a
component of (G · x)s . It follows readily that D induces a divisor with normal crossings on
Xs . Moreover, the exact sequence

0 → g(x) → g → TxX(− logD) → 0

(see [7, (2.1.4)]) yields an exact sequence

0 → gs(x) → gs → TxX
s(− logD) → 0 .

This implies both assertions.
(ii) It suffices to show that both fibres have the same tangent space at the point (1, ξ)H ,

where ξ := s + n. For this, consider the map

Φ : G× h → g , (g, ξ) 
→ g · ξ ,
invariant under the action of H via h · (g, ξ) = (gh−1, h · ξ) and which induces the map f0

on the quotient G×H h. The differential of Φ at (1, ξ) may be identified to the map

ϕ : g × h → g , (u, v) 
→ [u, ξ ] + v

and the differential of the orbit map

H → G× h , h 
→ (h−1, h · ξ)
is identified with the map

ψ : h → g × h , w 
→ (−w, [w, ξ ]) .
Thus, the tangent space at (1, ξ)H of the fibre of f through that point is the homology space
Ker(ϕ)/Im(ψ).

Next, consider the decomposition g = ⊕
λ∈C gλ into eigenspaces of s, where g0 = gs ,

and the induced decomposition h = ⊕
λ∈C hλ. For (u, v) ∈ Ker(ϕ), this yields with obvious

notation:

vλ − (λ+ ad(n))uλ = 0 for all λ .

If λ is not zero, then λ+ ad(n) is an automorphism of g preserving h, and hence (uλ, vλ) is in
Im(ψ). Thus,

Ker(ϕ)/Im(ψ) = Ker(ϕs)/Im(ψs)

with obvious notation again; this yields the desired equality of tangent spaces. �
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REMARK 2.4. Given an arbitrary closed subgroup H of a connected linear algebraic
group G, and a semi-simple element s ∈ h, the orbit Gs · x0 ∼= Gs/Hs is open in the fixed
point subscheme (G/H)s . If G and H are reductive, then any general point s ∈ h is semi-
simple, and (H s)0 is a maximal torus ofH , contained in the centre of the connected reductive
group Gs . If, in addition, the homogeneous space G/H is spherical, then Gs/Hs is also
spherical, as follows e.g. from Lemma 2.3. This implies that Gs is a torus, and yields a very
simple proof of Theorem 2.2 in that special case.

EXAMPLE 2.5. Any connected reductive groupGmay be viewed as the homogeneous
space (G×G)/diag(G) for the action of G×G by left and right multiplication. This homo-
geneous space is spherical, and hence admits a log homogeneous equivariant compactification
X.

We claim that

RX
∼= Ω1

X(logD)(28)

as G × G-linearised sheaves; in other words, RX is equivariantly isomorphic to the total
space of the logarithmic cotangent bundle. To see this, choose a non-degenerate G-invariant
quadratic form q on g; then the quadratic form (q,−q) on g×g is non-degenerate andG×G-
invariant. Moreover, the fibre of RX at the identity element, g(e) = diag(g), is a Lagrangian
subspace of g×g. It follows thatRX is a Lagrangian sub-bundle of the trivial bundleX×g×g

equipped with the quadratic form (q,−q). Thus, the quotient bundle (X × g × g)/RX is
isomorphic to the dual of RX. This implies our claim in view of the exact sequence (23).

In fact, via the isomorphism g×g ∼= g∗×g∗ defined by (q,−q), the map f : RX → g×g

is identified to the compactified moment map of the logarithmic cotangent bundle, considered
in [23]. Also, note that RX0

∼= G× g over X0 ∼= G, and the restriction f0 : RX0 → g × g is
identified with the map

G× g → g × g , (g, ξ) 
→ (ξ, g · ξ) .
Thus, if ξ ∈ g is regular and semi-simple, then the fibre of f0 at (g, ξ) is isomorphic to the
maximal torus Gg ·ξ . As a consequence, the general fibres of f are exactly the closures in X
of maximal tori of G.

Another natural map associates with any x ∈ X the Lagrangian subalgebra g(x) ⊂ g ×
g. In fact, this yields a morphism from X onto an irreducible component of the variety of
Lagrangian subalgebras, isomorphic to the wonderful compactification of the adjoint semi-
simple group G/C(G) (see [15, Sec. 2]).

Returning to the general setting, we denote by r(X) the dimension of the general fibres
of f ; this is also the codimension of G · h in g, since dimRX = dim g.

COROLLARY 2.6. With the preceding notation and assumptions, we have the inequal-
ity r(X) ≤ rk(X).

PROOF. We argue by induction on the rank of X. If rk(X) = 0 then X ∼= G/H , where
H is a parabolic subgroup of G; thus, rk(H) = rk(G). For an arbitrary rank r , consider a
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boundary divisorD1 and its open orbitG · x1 ∼= G/H1. Since rk(D1) = rk(X)− 1, it suffices
to show that

rk(H1) ≤ rk(H)+ 1 .(29)

Choose a maximal torus T1 ⊂ H1 and consider its action on the normal space toD1 at x1. This
one-dimensional representation defines a non-trivial character χ of H1 (see [7, Prop. 2.1.2])
and hence of T1. Let S := Ker(χ |T1)

0. Then S has fixed points in G/H , as follows from
the existence of an étale linearisation of the action of T1 at x1 (that is, a T1-stable affine open
subset X1 ⊂ X containing x1, and a T1-equivariant étale morphism X1 → Tx1X that maps x1

to 0). Thus, dim(S) ≤ rk(H), which yields (29). �

3. Vanishing theorems.
3.1. The linear case. We still consider a homogeneous pair (X,D) under a connected

linear algebraic group G.
Since X contains only finitely many orbits of G, Theorem 1.2 yields the vanishing

of Hi(X,Ω
j
X(logD)) for all i > j . From that vanishing theorem for exterior powers of

Ω1
X(logD), we shall deduce a vanishing theorem for symmetric powers of R∨

X, via the fol-
lowing homological trick (a generalisation of [9, Prop. 1]):

LEMMA 3.1. Let Z be a variety, and

0 → E → OZ ⊗C V → F → 0(30)

an exact sequence of locally free sheaves, where V is a finite-dimensional complex vector
space. Then the following assertions are equivalent for an invertible sheaf L on Z and an
integer m:

(i) Hi(Z,L ⊗ SjF) = 0 for all i > m and all j .
(ii) Hi(Z,L ⊗ ∧jE) = 0 for all i > j +m.

PROOF. Taking the Koszul complex associated with (30) and tensoring with L yields
an exact sequence

0 → L ⊗ ∧jE → L ⊗ ∧j−1E ⊗C V → · · · → L ⊗ ∧j−kE ⊗C S
kV → · · ·

· · · → L ⊗ E ⊗C S
j−1V → L ⊗ SjV → L ⊗ SjF → 0 .

We break this long exact sequence into short exact sequences:

0 → L ⊗ ∧jE → L ⊗ ∧j−1E ⊗C V → F1 → 0 ,

0 → F1 → L ⊗ ∧j−2E ⊗C S
2V → F2 → 0 , . . .

0 → Fk−1 → L ⊗ ∧j−kE ⊗C S
kV → Fk → 0 , . . .

0 → Fj−2 → L ⊗ E ⊗C S
j−1V → Fj−1 → 0 ,

0 → Fj−1 → L ⊗ SjV → L ⊗ SjF → 0 .

If (i) holds, then Hi(Z,L ⊗C S
jV ) = 0 for all i > m, and hence Hi(Z,Fj−1) = 0 for all

i > m+ 1. We now prove (ii) by induction on j . If j = 1, then Fj−1 = L ⊗ E which yields
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the assertion. For an arbitrary j , the induction assumption implies thatHi(Z,L⊗∧j−kE ⊗C

SkV ) = 0 for all j ≥ k ≥ 0 and i > j−k+m. By a decreasing induction on k, it follows that
Hi(Z,Fk) = 0 for all i > j−k+m. In particular,Hi(Z,F1) = 0 = Hi(Z,L⊗∧j−1E⊗CV )

for all i > j +m− 1, which implies the desired vanishing.
The converse implication is obtained by reversing these arguments. �

We apply Lemma 3.1 to the exact sequence (24) and to L = OX. Then the assertion (ii)
holds for m = 0; this yields:

THEOREM 3.2. With the assumptions of this subsection, we have

Hi(X, SjR∨
X) = 0 (i ≥ 1, j ≥ 0) .(31)

We now derive several geometric consequences of this vanishing theorem. We shall need
the following observation:

LEMMA 3.3. The canonical sheaf of the nonsingular variety RX equals p∗OX(−D).
PROOF. For any locally free sheaf E of rank r on X, the associated vector bundle E

satisfies

ωE = p∗(∧rE∨ ⊗ ωX) .

Here, the rank of RX equals dim(G)− n. Moreover,

∧dim(G)−nR∨
X

∼= ∧nTX(− logD) ∼= ω−1
X (−D) ,

as follows from (24) and (1). �

PROPOSITION 3.4. Denote by

RX
g−−→ IX

h−−→ g

the Stein factorisation of the proper morphism f . Then IX is an affine variety with rational
singularities, and its canonical sheaf satisfies

ωIX
∼= Rr(X)g∗(p∗OX(−D)) .

PROOF. Since the morphism h is finite, IX is affine; it is also normal, since RX is
nonsingular and the natural map OIX → g∗ORX is an isomorphism.

We claim that Rig∗ORX = 0 for each i ≥ 1. For this, it suffices to show the vanishing
of h∗(Rig∗ORX) = Rif∗ORX . Since the image of f is affine, it suffices in turn to show that
Hi(RX,ORX ) = 0. But this follows from (31), since

Hi(RX,ORX) = Hi(X, p∗ORX) =
⊕
j≥0

Hi(X, SjR∨
X) .

We now deduce the rationality of singularities of IX from a result of Kollár (see [24,
Thm. 7.1]): let π : Y → Z be a morphism of projective varieties, where Y is nonsingular. If
π∗OY = OZ and Riπ∗OY = 0 for all i ≥ 1, then Z has rational singularities.

To reduce to that setting, we compactify the morphism g as follows. Consider the vector
bundle RX ⊕OX over X, where OX denotes the trivial line bundle. This yields a subvariety
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of X × (g ⊕ C), and hence a proper morphism

φ : RX ⊕OX → g ⊕ C .

By the preceding argument,

Riφ∗ORX⊕OX = 0 (i ≥ 1) .(32)

Moreover, the set-theoretic fibre of φ at the origin of g ⊕C is the zero section. Thus, φ yields
a morphism between projectivisations

f̄ : P (RX ⊕OX) → P (g ⊕ C)

which extends f : RX → g. Furthermore, (32) easily implies that

Rif̄∗OP (RX⊕OX) = 0 (i ≥ 1) .

It follows that the Stein factorisation of f̄ ,

ḡ : P (RX ⊕OX) → ĪX

extends g and satisfies the same vanishing properties.
If the variety X is projective, then so is P (RX ⊕ OX); thus, Kollár’s result may be

applied to ḡ and hence to g . For an arbitrary (complete nonsingular) variety X, there exists a
nonsingular projective variety X′ together with a birational morphism

u : X′ → X .

Then the pull-back to X′ of the projective bundle P (RX ⊕ OX) is a projective variety Y
equipped with a birational morphism

v : Y → P (RX ⊕OX) .

Since P (RX ⊕ OX) is nonsingular, we have v∗OY = OP (RX⊕OX) and Riv∗OY = 0 for all
i ≥ 1. Thus, Kollár’s result applies to the composite morphism ḡ ◦ v.

This completes the proof of the rationality of singularities of IX . The formula for its
canonical sheaf follows from [21, Theorem 5] in view of Lemma 3.3. �

Next, we determine the algebra

H •(X,Ω•
X(logD)) :=

⊕
i,j

H i(X,Ω
j

X(logD))

in terms of the coordinate ring of the affine variety IX,

C[IX] = H 0(RX,ORX) =
⊕
j

H 0(X, SjR∨
X) ,(33)

which is viewed as a graded module over the algebra C[g] (the symmetric algebra of g∗) via
the natural map g∗ → H 0(X,R∨

X). For this, consider the Koszul complex associated with the
exact sequence (24):

· · · → S•R∨
X ⊗C ∧2g∗ → S•R∨

X ⊗C g∗ → S•R∨
X .
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This complex of graded sheaves decomposes as a direct sum of complexes

OX ⊗C ∧jg∗ → R∨
X ⊗C ∧j−1g∗ → · · · → Sj−1R∨

X ⊗C g∗ → SjR∨
X ,

with homology sheaves Ωj
X(logD) in degree −j , and 0 in all other degrees (where SjR∨

X is
of degree 0). Moreover, each sheaf Sj−kR∨

X ⊗C ∧kg∗ is acyclic by Theorem 3.2. This yields:

PROPOSITION 3.5. With the assumptions of this subsection, each group
Hi(Ω

j

X(logD)) is the i-th homology group of the complex

∧jg∗ → H 0(X,R∨
X)⊗ ∧j−1g∗ → · · · → H 0(X, Sj−1R∨

X)⊗ g∗ → H 0(X, SjR∨
X) .

Moreover, we have isomorphisms

Hi(X,Ω
j
X(logD)) ∼= Torj,C[g]

j−i (C,C[IX]) ,(34)

where C is the quotient of C[g] by its maximal graded ideal, and the exponent j denotes the
subspace of degree j . These isomorphisms are compatible with the multiplicative structures
of H •(X,Ω•

X(logD)) and of Tor•,C[g]• (C,C[IX]).
In turn, this will imply a description of the graded subalgebra H 0(X,Ω•

X(logD)). To
state it, consider the group X (G) of multiplicative characters of G, and its subgroup X (G)H
of characters which restrict trivially to H . Then X (G)H is a free abelian group of finite rank,
and every f ∈ X (G)H may be regarded as an invertible regular function on X0 = G/H ; this
yields an isomorphism

X (G)H ∼= O(X0)
×/C× .

Also, O(X0)
×/C× may be identified to a subgroup of H 0(X,Ω1

X(logD)) via the map f 
→
d log(f ) := df/f .

COROLLARY 3.6. With the preceding notation, H 0(X,Ω•
X(logD)) is a free exterior

algebra on df1/f1, . . . , dfr/fr , where f1, . . . , fr is any basis of the abelian group X (G)H .

PROOF. Denote byK the kernel of the map g∗ → H 0(X,R∨
X). Then ∧jK is the kernel

of the induced map ∧jg∗ → H 0(X,R∨
X)⊗ ∧j−1g∗. By Proposition 3.5, it follows that

H 0(X,Ω•
X(logD)) ∼= ∧•K

as graded algebras. In particular, H 0(X,Ω1
X(logD)) ∼= K .

On the other hand, the exact sequence (5) yields an exact sequence

0 → H 0(X,Ω1
X(logD)) → Cl → H 1(X,Ω1

X) → H 1(Ω1
X(logD)) → 0

in view of Theorem 1.2. Moreover, the map Cl → H 1(Ω1
X)may be identified with the natural

map
⊕l

k=1A
0(Dk) → A1(X) as in the proof of that theorem. The kernel of the latter map is

the complexification of the abelian group {div(f ), f ∈ O(X0)
×}, and each div(f ) is mapped

to df/f under the preceding identification. �

EXAMPLE 3.7. Consider a G ×G-equivariant compactification X of a connected re-
ductive group G, as in Example 2.5. Then the image of f : RX → g × g is the closure of the
set {(ξ, g · ξ) ; ξ ∈ g, g ∈ G}, the graph of the adjoint action of G on g.
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We claim that

IX = f (RX) = g ×g//G g .(35)

Indeed, f (RX) is a variety of dimension 2 dim(G)−rk(G), contained in g×g//Gg. Moreover,
since the quotient morphism π : g → g//G is flat and its scheme-theoretic fibres are varieties
of dimension dim(G)− rk(G), the same holds for the first projection p1 : g ×g//G g → g. It
follows that g ×g//G g is a variety of dimension 2 dim(G)− rk(G), which implies the second
equality in (35). To prove the first equality, it suffices to show that g ×g//G g is normal,
since RX is smooth and the general fibres of f are connected. But g ×g//G g is a complete
intersection in the affine space g × g, defined by the equations

P1(x) = P1(y), . . . , Pr (x) = Pr(y)

where P1, . . . , Pr are homogeneous generators of the graded polynomial ring C[g]G, and r =
rk(G). In particular, g×g//G g is Cohen-Macaulay. Moreover, the differentials of P1, . . . , Pr

are linearly independent at any regular element of g, and these form an open subset with
complement of codimension 3. It follows that g ×g//G g is regular in codimension 1, and
hence normal by Serre’s criterion.

Together with (28) and (33), the equalities (35) imply that

H 0(X, S•TX(− logD)) ∼= S•(g)⊗S•(g)G S
•(g) .

Moreover, Theorem 3.2 yields the vanishing of Hi(X, S•TX(− logD)) for all i ≥ 1, which
is also a special case of [23, Thm. 4.1]. Combining both results and arguing as in [loc. cit.],
we obtain an isomorphism

H 0(X,UX) ∼= U(g)⊗Z(g) U(g) ,

where UX denotes the sheaf of differential operators on X generated by OX and g × g (the
“completely regular” differential operators of [23]), and U(g) stands for the enveloping alge-
bra of g, with centre Z(g).

On the other hand, (34) yields isomorphisms

Hi(X,Ω
j
X(logD)) ∼= Torj,C[g]⊗C[g]

j−i (C,C[g] ⊗C[g]G C[g]) .
Since the algebra C[g] ⊗C[g]G C[g] is the quotient of the polynomial algebra C[g × g] by the
ideal generated by the regular sequence (P1(x) − P1(y), . . . , Pr (x) − Pr(y)), this yields in
turn

Hi(X,Ω
j

X(logD)) ∼= Torj,C[g]G
j−i (C,C) .

As a consequence, the bi-graded algebra H •(X,Ω•
X(logD)) is a free exterior algebra on

generators of bi-degrees (d1 − 1, d1), . . . , (dr − 1, dr), where d1, . . . , dr denote the degrees
of P1, . . . , Pr .

REMARK 3.8. More generally, consider a log homogeneous variety X under a con-
nected reductive groupG, and assume thatH is connected and reductive as well. Then the in-
variant rings C[g]G and C[h]H are graded polynomial rings, and C[h]H is a finite module over
C[g]G via the restriction map. Moreover, the quotient morphism h → h//H := Spec C[h]H
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yields a morphism G ×H h → h//H , the quotient of the affine variety G ×H h by the ac-
tion of G. One may check that the latter morphism extends to RX, and that the product map
RX → g × h//H factors through an isomorphism

IX ∼= g ×g//G h//H .

In other words,

C[IX] ∼= C[g] ⊗C[g]G C[h]H .
Together with the isomorphism (34) and the freeness of the C[g]G-module C[g], it follows
that

Hi(X,Ω
j
X(logD)) ∼= Torj,C[g]G

j−i (C,C[h]H) .
Also, note that C[g]G (resp. C[h]H ) is the cohomology ring of the classifying spaceBG (resp.
BH ) with complex coefficients. This yields a description of the algebra H •(X,Ω•

X(logD))
in topological terms, which can be extended to any homogeneous space—not necessarily
having a log homogeneous compactification—in view of a result of Franz and Weber (see
[17, Thm. 1.6]).

3.2. The linear case (continued). We still consider a homogeneous G-pair (X,D),
where G is a connected linear algebraic group. Let L denote an invertible sheaf on X, and
assume that L is nef; since X is a spherical variety under a Levi subgroup of G, this is
equivalent to L being generated by its global sections (see e.g. [6, Lem. 3.1]).

Recall from Subsection 2.2 that any component F of a general fibre of f : RX → G · h

may be identified to a toric subvariety ofX. We denote by κf (L) the Kodaira-Iitaka dimension
of the pull-back L|F . Since L is globally generated, κf (L) is the dimension of the image of
the natural map ϕ : F → P (H 0(F,L)∗). Note that κf (L) ≤ dim(F ) = r(X), and equality
holds e.g. if L is big.

THEOREM 3.9. With the notation and assumptions of this subsection,

Hi(X,L(−D)⊗ SjR∨
X) = 0 (i �= r(X)− κf (L), j ≥ 0) .

PROOF. Since RX is nonsingular, f is proper and the invertible sheaf p∗L is f -semi-
ample, it follows that the sheaf Rif∗(p∗L ⊗ ωRX) is torsion-free on the image of f , for any
i ≥ 0 (see [16, Cor. 6.12]). But

Hi(F,L ⊗ ωRX) = Hi(F,L ⊗ ωF )

vanishes for all i �= r(X) − κf (L), by a result of Fujino (see [18, Cor. 1.7]). Thus, the same
vanishing holds for Rif∗(p∗L⊗ωRX), i.e., for Rif∗(p∗L(−D)) in view of Lemma 3.3. This
implies our statement, by arguing as in the beginning of the proof of Proposition 3.4. �

In view of Lemma 3.1, Theorem 3.9 yields the vanishing of the groupsHi(X,L(−D)⊗
Ω
j
X(logD)) for all i > j + r(X)− κf (L). By Serre duality (6), this implies the following:

COROLLARY 3.10. With the notation and assumptions of this subsection,

Hi(X,L−1 ⊗Ω
j
X(logD)) = 0 (i < j − r(X)+ κf (L)) .
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In particular, this vanishing holds for all i < j if L is big.

REMARK 3.11. (i) Assume that Hk(F,L−1) �= 0 for some k ≥ 0 and some nef
invertible sheaf L on X. Then k = κf (L), and

Hr(X)−k(X,L(−D)⊗ SjR∨
X) �= 0

for some j ≥ 0, by the proof of Theorem 3.9. Equivalently,

Hi(X,L−1 ⊗Ω
j
X(logD)) �= 0

for some i = j − r(X)+ k.
The preceding assumption is fulfilled if L = OX and k = 0. Thus, Theorem 3.9 and

Corollary 3.10 are optimal for the trivial invertible sheaf.
The non-vanishing ofHr(X)(X, (SjR∨

X)(−D)) for some j also follows from Proposition
3.4 (since IX is affine, the space of global sections of ωIX is non-zero).

Likewise, Theorem 3.9 and Corollary 3.10 are optimal for big invertible sheaves, since
H 0(F,L(−D)) �= 0 for sufficiently big L; equivalently, Hr(X)(F,L−1) �= 0.

(ii) If L is big, then we also have a refinement of Norimatsu’s vanishing theorem men-
tioned in Subsection 1.1; namely,

Hi(X,L−1 ⊗Ω
j

X(logD)) = 0 (i + j < n) ,

as follows from [16, Cor. 6.7].

3.3. The case where the open orbit is proper over an affine. We consider again a ho-
mogeneousG-pair (X,D), whereG is a connected linear algebraic group, and a nef invertible
sheaf L on X. We assume in addition that the open orbit X0 is proper over an affine; this
holds e.g. ifH is reductive (and henceX0 is affine), or if X is a flag variety. We now obtain a
stronger vanishing theorem than Theorem 3.2:

THEOREM 3.12. With the assumptions of this subsection,

Hi(X,L ⊗ SjR∨
X) = 0 (i ≥ 1) .

Equivalently,

Hi(X,L ⊗Ω
j
X(logD)) = 0 (i > j) .

PROOF. By Lemma 2.1, we may replace X with X′ and L with L′ := u∗L, where X′
is a complete nonsingularG-variety and u : X′ → X is a G-equivariant birational morphism.
We claim that we may choose X′ so that D′ (the reduced inverse image of D) is the support
of an effective base-point-free divisor.

By assumption, we have a proper morphism ϕ : X0 → Y0, where Y0 is an affine va-
riety. We may assume in addition that ϕ∗OX0 = OY0 . Then ϕ is a surjective G-equivariant
morphism with connected fibres, and hence a fibration in flag varieties. The affine G-variety
Y0 admits a closed G-equivariant immersion into some G-module V . Consider the associ-
ated rational map X− → P (V ⊕ C), and its graph X′. Then X′ is a complete G-variety,
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and the projection u : X′ → X is an isomorphism above X0. Moreover, the comple-
ment X′ \ u−1(X0) = Supp(u−1(D)) is the set-theoretic preimage of the hyperplane sec-
tion P (V ⊕ 0) under the projection X′ → P (V ⊕ C). Now replace X′ with an equivariant
desingularisation to obtain the desired setting.

Thus, we may assume that there exists a base-point-free divisor
∑l
k=1 ak Dk , where the

ak are positive integers. Choose an integer N > a1, . . . , al . We now apply [16, Cor. 6.12]
to the morphism f : RX → G · h, the invertible sheaf M := p∗L(D), and the divisor
E := p∗(

∑l
k=1(N − ak)Dk). Then E has normal crossings, and the invertible sheaf

MN(−E) = p∗LN
( l∑
k=1

ak Dk

)

is f -semi-ample, so that the assumptions of [loc. cit.] are satisfied. Hence each sheaf
Rif∗(p∗M ⊗ ωRX) is torsion-free on the image of f . By Lemma 3.3, this means that
Rif∗(p∗L) is torsion-free. But Hi(F,L) = 0 for any i ≥ 1 and any component F of a
general fibre of f , in view of Theorem 2.2. Thus, Rif∗(p∗L) = 0 for all i ≥ 1. This implies
our statements by the arguments of the preceding subsection. �

REMARK 3.13. The preceding argument also yields a simpler proof of [4, Thm. 3.2],
the main result of that paper. It asserts thatHi(X,L⊗ SjTX(− logD)) = 0 for all i ≥ 1 and
j ≥ 0, where (X,D) is a homogeneous pair under a connected reductive group G, the open
orbit X0 is proper over an affine, and L is a nef invertible sheaf on X. Here the morphism
f : RX → g is replaced with the compactified moment map of [23].

3.4. The general case. We now consider a G-pair (X,D), where G is a connected
algebraic group, not necessarily linear.

We shall obtain a generalisation of Corollary 3.10 to this setting. Note that the arguments
of Subsection 3.2 need to be substantially modified, since the assumption of semi-ampleness
in Kollár’s result is not satisfied (e.g., for algebraically trivial invertible sheaves on abelian
varieties). Thus, we begin with a closer study of the Albanese fibration.

With the notation of Subsection 1.3, we identifyX toG×I Y , and the Albanese morphism
(10) to the natural map G ×I Y → G/I . Let E := D|Y , then (Y,E) is a homogeneous pair
underGaff = I 0, and I preserves eachGaff-orbit in Y (see [7, Thm. 3.2.1]). As a consequence,
rk(X) = rk(Y ). Also, recall that Y is a spherical variety under any Levi subgroup of Gaff.

We denote by C(G) the centre of G, so that

G = C(G)0Gaff

(see e.g. [7, Lem. 1.1.1]). Thus, C(G)0 acts transitively on A, and I = (I ∩ C(G)0)Gaff.
Also, C(G)0 is a semi-abelian variety by [7, Prop. 3.4.2]. Moreover, the isotropy subgroup
Gx is affine for any x ∈ X (see e.g. [7, Lem. 1.2.1]); as a consequence, g(x) ⊂ gx ⊂ gaff. It
follows that

RX ∼= G×I RY and G · h = Gaff · h ⊂ gaff .
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Moreover, denoting by X(ξ) (resp. Y (ξ)) the fibre at ξ ∈ gaff of the map f (resp. fY : RY →
gaff), we see that Y (ξ) is preserved by I , and

X(ξ) = G×I Y (ξ) .

In particular, the connected components of the general fibres of f are semi-abelic varieties of
dimension q(X)+ r(Y ). In view of Corollary 2.6, this yields

r(X) = q(X)+ r(Y ) ≤ q(X)+ rk(X) .(36)

Next, we describe the invertible sheaves on X. For this, choose a Borel subgroup B ⊂
Gaff. Then

G1 := C(G)0B

is a maximal connected solvable subgroup of G, and (G1)aff = B.

LEMMA 3.14. (i) Any invertible sheaf L on X admits a decomposition

L = (α∗M)(∆) ,(37)

where M is an invertible sheaf on A, and ∆ is a G1-stable divisor on X. Moreover, M
(resp. ∆|Y ) is uniquely determined by L up to algebraic (resp. rational) equivalence.

(ii) L is nef (resp. ample) if and only if both M and∆|Y are nef (resp. ample).

PROOF. (i) Note that B has an open orbit Y1 in Y , and hence G1 has an open orbit X1

in X; the map
α1 := α|X1 : X1 → A

is a G1-equivariant fibration with fiber Y1.
We claim that the pull-back map α∗

1 : Pic(A) → Pic(X1) is surjective. To see this,
identify X1 to the homogeneous space G1/H1; then A = X/B = G1/H1B and hence α1 is
the composite morphism

G1/H1
αU−−→ G1/H1U

αT−−→ G1/H1B ,

where U denotes the unipotent part of B, and T denotes the torus B/U . Note that G1/U is
a semi-abelian variety with maximal torus T . Thus, the quotient G1/H1U is a semi-abelian
variety as well, and αT is the quotient map by its maximal torus. It follows that

α∗
T : Pic(A) → Pic(G1/H1U)

is surjective. On the other hand, since U is unipotent, αU may be factored into quotients by
free actions of the additive group, and hence

α∗
U : Pic(G1/H1U) → Pic(G1/H1)

is an isomorphism.
By the claim, there exists an invertible sheaf M on A such that L|X1

∼= α∗
1M. Then

L ∼= (α∗M)(∆) for some divisor∆ supported in X \X1. In particular,∆ is preserved byG1.
This proves the existence of the decomposition (37).

For the uniqueness properties, we may assume that L is trivial. Then α∗(M) =
OX(−∆), and hence g∗α∗(M) ∼= α∗(M) for any g ∈ G1. It follows that a∗(M) ∼= M
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for any a ∈ A; thus, M is algebraically trivial. Moreover, OY (∆|Y ) = L ⊗ OY is trivial as
well.

(ii) Recall that any effective 1-cycle on X is rationally equivalent to an effective 1-
cycle preserved by B (see e.g. [6, Sec. 1.3]). Thus, L is nef if and only if L · C ≥ 0 for any
irreducible curve C ⊂ X, preserved by B.

If B acts non-trivially on C, then C is rational and hence contained in a fibre of α. Thus,
L · C = ∆ · C. Since ∆ is preserved by the group B1 which permutes transitively the fibres
of α, we may assume that C ⊂ Y ; then L · C = ∆|Y · C.

On the other hand, if B acts trivially on C, then the orbit G · x is closed in X for any
x ∈ C. Since X contains only finitely many G-orbits, it follows that C ⊂ G · x for any
such x. By [7, Thm. 3.3.3], there is a G-equivariant isomorphism G · x ∼= A × (Gaff · x).
This identifies the fixed point subscheme (G · x)B to A × {x}, and hence C to a curve in
A × {x}; in particular, α restricts to an isomorphism C ∼= α(C). Since A × {x} is an orbit
of G1, the restriction ∆|A×{x} is algebraically trivial by the argument of (ii). It follows that
L · C = (α∗M) · C = M · α(C).

Thus, L is nef iff so are M and ∆|Y . This implies the corresponding statement for
ampleness, in view of Kleiman’s criterion: L is ample iff for any invertible sheaf L′ on X,
there exists a positive integer n = n(L′) such that Ln ⊗ L′ is nef. �

REMARK 3.15. (i) Lemma 3.14 implies readily a decomposition of the Néron-Severi
group:

NS(X) ∼= NS(A)× NS(Y ) .

Also, NS(A) is a free abelian group; moreover, NS(Y ) is also free and isomorphic to Pic(Y ),
since Y admits a cellular decomposition (Lemma 1.1). It follows that NS(X) is a free abelian
group as well; in other words, algebraic and numerical equivalence coincide for invertible
sheaves on X. Moreover, the cone of numerical equivalence classes of nef invertible sheaves
decomposes accordingly:

Nef(X) ∼= Nef(A)× Nef(Y ) .

The nef cones of abelian varieties are well understood (see e.g. [5]). Those of spherical
varieties (like Y ) are studied in [6]; in particular, these cones are polyhedral.

(ii) If X is a semi-abelic variety, then Gaff is a torus T , and Y is a toric variety under
that torus. Thus, G1 = G, and G1-stable divisors on X correspond bijectively to T -stable
divisors on Y . In that case, Lemma 3.14 gives back a description of the ample invertible
sheaves on semi-abelic varieties, due to Alexeev (see [1, Sec. 5.2]).

Consider a nef invertible sheaf L on X, and its decomposition (37); then L|Y ∼=
OY (∆|Y ). Let

K(M) := {a ∈ A ; a∗M ∼= M} ;
this is a closed subgroup ofA. Since L determines M up to multiplication by an algebraically
trivial invertible sheaf, we see that K(M) depends only on L; we shall denote that group by
K(L). We now are in a position to state:
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THEOREM 3.16. With the preceding notation and assumptions,

Hi(X,L−1 ⊗Ω
j
X(logD)) = 0 (i < j − r(Y )+ κf (L|Y )− dimK(L)) .

In particular, this vanishing holds for all i < j if L is ample.

PROOF. By (6), it suffices to show that Hi(X,L(−D) ⊗Ω
j
X(logD)) = 0 for all i >

j + r(Y )− κf (L|Y )+ dimK(L). In view of the decomposition (15), this reduces to showing
that

Hi(X,L(−D)⊗Ω
j
X/A(logD)) = 0(38)

for all such i and j . Consider the Leray spectral sequence

E
p,q

2 := Hp(A,Rqα∗(L(−D)⊗Ω
j
X/A(logD))) ⇒ Hp+q(X,L(−D)⊗Ω

j
X/A(logD)) .

By the projection formula,

Rqα∗(L(−D)⊗Ω
j

X/A(logD)) ∼= M ⊗ Rqα∗(Ωj

X/A(logD)(−∆−D)) .

Note that the sheaf Rqα∗(Ωj
X/A(logD)(−∆ − D)) is locally free and G1-linearised. Hence

this sheaf has a filtration with subquotients being algebraically trivial invertible sheaves. Since
M is nef, it follows that Ep,q2 = 0 for any p > dimK(L) = dimK(M), by a classical
vanishing theorem for abelian varieties (see [5, Lem. 3.3.1, Thm. 3.4.5]). On the other hand,
since ∆|Y is nef, Corollary 3.10 yields that Hq(Y,Ω

j
Y (logE)(−∆|Y − E)) = 0 for any

q > i + r(Y )− κf (L|Y ), and hence Ep,q2 = 0 for all such q . This implies (38). �

Taking for L the trivial invertible sheaf and combining Theorems 1.6 and 3.16 with the
equality (36), we obtain:

COROLLARY 3.17. With the notation and assumptions of this subsection,

Hi(X,Ω
j
X(logD)) = 0 unless − q(X) ≤ j − i ≤ r(X) .

Another consequence of Theorem 3.16 is a vanishing result for ordinary Dolbeault co-
homology:

THEOREM 3.18. Let L be an invertible sheaf on a log homogeneous variety X of
irregularity q and rank r .

If L is nef (resp. ample), thenHi(X,L−1 ⊗Ωj

X(logD′)) = 0 for any effective subdivisor
D′ of D, and for all i < j − q − r (resp. i < j).

In particular, Hi(X,L ⊗Ω
j
X) = 0 for all i > j + q + r if L is nef, and for all i > j if

L is ample.

PROOF. If D′ = D, then the first assertion is a consequence of Theorem 3.16 and
Lemma 3.14. Indeed, if L is nef, then r(Y ) − κf (L|Y ) ≤ rk(Y ) = r by Corollary 2.6, and
dimK(L) ≤ q . If L is ample, then we have the equalities r(Y )− κf (L|Y ) = 0 = dimK(L).

The case of an arbitrary divisor D′ follows by decreasing induction on the number of
irreducible components of D′ and the dimension of X, using (4).

Taking D′ = 0 yields the second assertion, by Serre duality. �
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