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Abstract. We characterize the smooth toric varieties for which the Merkurjev spectral
sequence, connecting equivariant and ongirt&theory, degenerates. We find under which
conditions on the support of the fan t? terms of the spectral sequence are invariants by
subdivisions of the fan. Assuming these conditions, we describe explicitliz#terms, link-
ing them to the reduced homology of the fan.

Introduction. The aim of this work is to highlight some relationships between the equi-
variant K-theory of a smooth toric variety and the combinatorics of the associated fan.

We start from a specialization of a (much more general) result due to Merkurjev ([Mer]),
that gives a comparison between the equivariant and the ordinary K-theatys l& smooth
toric variety, there is a spectral sequence:

E5, =TorfT(K1(X).2) = Kp1q(X).

Our first problem (solved in Section 2) is to chaterize the class of smooth toric vari-
eties for which Merkurjev’s spectral sequence degeneratg$,ahat is, such thaElz,q =0
for all p # 0. It was known that this class includes all complete toric varieties, which cor-
respond to fans whose support is the whole sgRiceTheir K-theory can be immediately
expressed in terms of the equivariant K-thedky:(X) = KqT(X) Qrr Z.
Vezzosi and Vistoli ([VeVi, 8§6]) give two desiptions of the equivariant K-theory of a
smooth toric varietyX (A),
(1) as asubring of the produﬂaeArnaX K.(k) ® RT,, and
(2) by means of a presentation similar to the Stanley-Reisner algebra over the simplicial
complexS,, associated to the fan (The vertices ofS, correspond to the one-dimensional
cones of the fan, and the simplices correspond to the cones). Both descriptions have been
extremely useful.
Theorem 2.3 states that Merkurjev's spatisequence degenerates if and only if the
following conditions hold:
H1. H;j(ko,Z) =0forallo € A andi < dim(lk o), whereH is the reduced simpli-
cial homology, and Ik is thelink of o, that is, the set of the faces, disjoint from
o, of the faces ir§ 4 that contairo;
H2. H;j(Sx,Z) =0foralli <dim(Sy,).
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This is an easy consequence of a well-known theorem by Reisner: the vanishing of the
reduced homology (in all degrees but the top one) of a simplicial complex and of all of its links
is equivalent to saying that its Stanley-Reisner ring is Cohen-Macaulay. However, assuming
the (independent) Theorem 4.5, we can prove Theorem 2.3 without reference to Reisner’s
theorem.

Conditions H1 and H2 involve onlthe support |A| of A: they are independent of the
way it is subdivided into cones. Indeed, they depend only on the topolofyy|ofA natural
question is, whether it is possible to find a description of the tefﬁ)]salso depending only
on the topology ofA|. The answer (Section 3) is negative for all toric varieties whose fan
does not satisfy the local condition H1: thisastraightforward consequence of Proposition
3.4.

Therefore, in Section 4 wassume that Condition H1 holds, and moreover that all the
maximal cones ofA have the same dimension as the variety. In other words, (a geometric
realization of)S, is a submanifold (with boundary) of the sphefel ¢ R*. Under these
assumptions, we can find an explicit expression of the te‘fljbs where only the reduced
homology ofS, appears. In fact, we have (Theorem 4.5):

n
- Simp-1 ®
TorfT (K (X (). 2= P A " (5a4.2").
i:p—‘,—l

The terms Tof" (K, (X), Z), for ¢ > 0, can be obtained from those with= 0, applying
the Theorem of Universal Coefficients, since (by the Stanley-Reisner presenlé,;ﬁ()ﬁ) =
K (X) ®z Kq(k).

The proof of Theorem 4.5 is based on the idea (already used in [Bri], [BBFK] and
[BreLu]) to give A the topology induced by the face order, and consider suitable sheaves
of rings on it. In our case, the expressionigf (X) as a subalgebra ¢f]; RT,, suggests to
construct a sheafl, whose ring of global sections is{ (X). The termsElz,’0 in Merkurjev's
spectral sequence are the hypercohomology groups of the Koszul complextbis hyper-
cohomology is itself the limit of another spectral sequence, but, thanks to Condition H1, most
of its E1 terms vanish, and we can draw useful information from it.

1. Préiminarieson toric varietiesand K-theory.

1.1. Toric varieties. The most completeesdnces for toric varieties are Fulton’s and
Oda’s books, [Ful] and [Oda]. More information can be found in [KKMS], and in Danilov's
[Dan] and Brylinski's [Bry] papers. For a more detailed introduction, see also [GVT].

We recall here some terminology and properties. We fix a fieldet G,, be the mul-
tiplicative group ofk. For a positive integen, T = T" = (G,)" is then-dimensional
(algebraic) splitorusonk.

A toric variety is a normal algebraic variet¥ on k, with a dense embeddiriy — X,
such that the action df on itself by multiplication can be extended to an actiorf'ain X.
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Let N = Z" be a lattice, embedded Mr = R® N = R". A (rational covex polyhedral)
coneo is the positive hull of a finite set of vectors € N:

def
o =poqus, ..., vs} = {rivi+ -+ rgvs | r; >0}

Let M = Hom(N, Z). Thedual cone of the cones is6 = {u € Mr | {(u,v) >
0 foranyv € o}. A support hyperplane for o is the setfv € Nr | (u, v) = 0}, for some
u € ¢. Afacert of o is the intersection of and a support hyperplane; we write< o.

If o is a cone inVR, the semigrous, = ¢ N M is finitely generated ([Ful, Proposition
1]). Let A, = k[S,] the semigroup algebra af,. Theaffine toric variety associated to o is

(the affine algebraic varietyy,, dzefSpec(Ag).

DEFINITION 1. Afanof conesinNg = R" is a finite setA of cones inNg, with the
following properties:

(1) ifo e Aandr <o,thent € A,

(2) ifo1,02 € A, 01 Noyisacommon face af; andos.
The support of a fan A is the union of its conegA| = (J{o € A} C Nr. We set4; =
{oc € A |dimo = i}, while Anmaxis the set of thenaximal cones, that is, cones that are faces
of no other cones im.

Given a fanA, there is a toric varietyX (A) associated to it: it is obtained glueing
together the affine toric varieties corresponding to its cones. See [Ful, Ch. 1] for details. The
latticesN and M are, respectively, the groups of 1-parameter subgroups and the group of
characters of’ ([Oda, 1.2]). Conversely, every toric variety can be obtained from a fan, via
this construction (see [Bry]).

X (4) is smooth if and only if everyo € A is generated by a subset of some basis of the
lattice N [Ful, 2.1]: we say then that\ is regular. In particular, a regular fan ismplicial,
that is, every cone admits a number of generators equal to its dimension.

Let N andN’ be two latticesA a fan inNg andA’ in Ng, ¥ : N — N’ a homomor-
phism, andp = ¥ ® R: Nr — Ni. LetT andT’ be the tori with lattices of 1-parameter
subgroupsV andN’, respectively. Thery induces a homomorphisi — 7. If, moreover,
for eacho € A, ¢(0) C o' for somes’ € A’, theng induces aoric morphism, that is, a
morphism of algebraic varietigs(A) — X (A’), equivariant with respect to the actionsf
and7"’. Such a toric morphism is proper if and onlyif 1(|A’|) = |A| (see [Ful, 2.4]).X (A)
is completeif and only if |[A] = Nr = R".

1.2. Orbits and their closures ([Ful, 3.1]). There is a 1-1 correspondence between
orbits for the action of” and cones imA: for each cone of dimensiond the corresponding
orbit O, has dimension — d. Moreover:

T<0&0,CO;.

The closurg), of the orbit®, C X(A) is the finite union of smaller orbits, corresponding
to the cones in thetar Sto = {t € A | ¢ < t}. Moreover,O, is itself a toric variety
for the action of the torug’/T,. In fact, if N, = N N (o) is the lattice of 1-parameter
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subgroups of;,, let us consider the quotient lattid®o) = N/N,, and the real vector space
N(o)r = Nr/(Ns)Rr. The projectiont on N(o)Rr of a coner in Ny is also a cone, and the

set{t C N(o)r | T € Sto} is afaninN(o)r. The associated toric variety is isomorphic to
the orbit closure&), .

1.3. TheRT-algebraskT,. The stabilizer of the points i®, is a subtorug, C T,
whose lattice of 1-parameter subgroupsVis) (o) € N. Let M = T = Hom(T, Gin) be
the group of characters df, andRT = ZT = Z[M] the representation algebra Bf For
each coner, RT, = Z[M/o*], whereot = {m € M | (u,m) = 0 foranyu € o} is the
orthogonal subgroup iM to o (or to the subspace generateddiy If T < o, the inclusion
induces a homomorphistRT, — RT;. In particular, for eachr, the inclusionT, c T
induces a morphismT — RT,, S0 eachRT, is aRT-algebra.

We can easily get the projective dimensionR¥f, as aRT-module, indeed we can give
explicit free resolutions of eacRT, .

If o is a cone of dimensiod, o is a subgroup of rank — d in M. Letmy, ..., m,_q
be a basis o&+. Since the elementa; — 1,...,m,_4 — 1 € RT generate (as an ideal)
the kernel of the projectioRT — RT, (thatis,Z[M] — Z[M/o'1]), and they are a regular
sequence irRT, the associated Koszul complex ([Mat, §16]),

1) KoY =K.(mi—1,...,my_q—1)

is acyclic, andHo(K.) = RT;: itis a free resolution oRT,. So projdin,;(RT,) = n —
dim(c). Moreover, if we consideZ as aRT-module via the rank maR7T — Z, and we
tensork. with — @ g7 Z, the differentials vanish; so we have

n—d
i 1~ (,') . _
@) ToriRT(RT(,,Z)zHi(Z@K.)E:/\U =Z for 0<i<n-d,
0

fori >n—d.

1.4. Two results in the K-theory of toric varieties. An introduction to the K-functor in
algebraic geometry can be found in ([Man]). Quillen ([Qui]) defined higher K-theory groups,
as homotopy groups of the geometric realization of a category.

If X is a scheme with the action of an algebrgioup, equivariant coherent sheaves
can be defined, and the corresponding K-theory is called equivariant K-theory: the basic
definitions and theorems are in [Thom].

In equivariant K-theory computations are often easier than in ordinary K-theory, and
information about ordinary K-theory can be recovered from equivariant K-theory, for example
by means of spectral sequences.

In fact, a recent theorem by Vezzosi and Vistoli expresses the equivariant K-theory of
a smooth toric variety as a subalgebra of a product of representation rings of tori, while the
comparison of the equivariant and the ordinary K-theory is provided by a spectral sequence,
introduced by A. Merkurjev (from results of M. Levine).

From now on, given a smooth toric variek over the fieldk, with the action of an
algebraic torug’, we will denote byK,(X) the ordinary K-theory, and bKZ(X) the T-
equivariant K-theory. The latter has a natusalicture of graded ring, and each equivariant
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morphismf : X — Y induces a pullback™ : KT (Y) — KI(X). In particular,K} (X) is
a module over the representation riRg = KOT(Spedc), via the homomorphism induced by
the morphismX — Spedk ([Mer, Example 2.1]). Remember th&p(k) = Z.

THEOREM 1.1 ([VeVi, Theorem 6.2]). If X = X(A) is a smooth toric variety, and
o1, ..., o0r arethe maximal cones of A, thereisan injective homomorphism of RT-algebras

KI'(X) — EB K.(k) ® RT,, .
i=1
Anelement (¢;) € @;_4 K«(k) ® RT, isintheimage of this homomorphismif and only
if, for eachi # j, therestrictions of @; and a; to K (k) ® RT,,no; coincide.

As a consequencel’,OT(X) is afinite RT-module. The following theorem is a specializa-
tion to toric varieties of [Mer, Theorem 4.3].

THEOREM 1.2. Let X be a smooth toric variety, with the action of thetorus 7. There
is a homology spectral sequence

E3, =Tor fT(K](X).Z) = Kpyq(X),
such that the boundary homomor phisms
Z®grr Kg (X) > Kq(X)

areinduced by the functor that forgets the action of 7.
In particular, the ring homomorphismZ ®Q gr Kg(X) — Ko(X) isanisomorphism.

2. Conditionson thefan A for the RT -flatness (freeness) of Kg(X(A)). In [VeVi]
Vezzosi and Vistoli give, as a consequence ofrtdescription of the equivariant K-theory,
a sufficient condition for the Merkurjev spectral sequence to degenerdt& an that case
there is an isomorphisid ® g K (X) = K.(X). The condition is that the action of the big
torusadmits enough limits ([VeVi, Definition 5.8]).

This means that for alh € M \ Z (whereM is the lattice of 1-parameter subgroups
of T, andZ the locus of zeros of a polynomial in SyitM ")), and for every closed point
x € X, the morphisnG,, LT x (the second arrow send$o ¢x) extends to a morphism
Al - X. Itis clear that complete toric varieties belong to this class.

According to [VeVi, Proposition 6.7], a smooth toric variety A) admits enough limits
if and only if the set

(3) N U @+@)cnr
T€A o€eStr
has nonempty interior ([VeVi, Proposition 6.7]). This fact is very useful, as it allows to single
out many toric varieties whose K-theory has an explicit description.
Nonetheless, there are two main flaws in it. First, it provides only a sufficient, but not
a necessary condition: we will see below an example of a toric variety that does not have
enough limits, but such that the Merkurjev sequence degenerates. Second, it involves not only
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the face order of the cones in the fan, but the exact way in which the cones are set inside the
vector spacéVg. In particular, having enough limits is not a combinatorial invariant.

In this section we will give a necessary and sufficient condition, depending only on the
simplicial structure of the fan. This condition follows rather easily from the presentation of
KI(X) as a Stanley-Reisner ring (or “face ring”) of the simplicial compiexassociated to
A, and from a well-known criterion by Reisner, giving conditions on a simplicial complex in
order for its Reisner-Stanley ring to be Cohemddulay (but see Section 4.3 for an alternative
proof, avoiding Reisner’s Theorem).

We recall here some notions of combioits, which we use in Theorem 2.3.

By asimplicial complex over the finite set (ofertices) V = {v1, ..., vs} we mean the
pair (V, X), whereX' is a set of subsets of (thesimplices or faces), such that:

cel, tCo=>rt€elX;
{v}eX foranyveV.

Thedimension of a faceo is the number of vertices af minus one; the dimension & is
maxdimo | o € X}. A simplicial complex ispure if all its maximal faces have the same
dimension.

Let A be aregular fan iiR". We associate to it tr@mplicial complex S 4 in the following
way:

- thevertices of S, correspond to one-dimensional coneAgf

- thefaces correspond to cones in.
The dimension o4 is maXdimo | 0 € A} — 1. A geometric realization af 4 is |[A| N
"1 cR', whereS" 1={x e R"||x|=1}.

DEFINITION 2. Let R be a ring, andX a simplicial complex with verticed/ =
{v1,...,vs} and facesS C P(V). The Sanley-Reisner algebra on R relative to X is the
R-algebra

R[X1,..., X
R[E] _ [ 1 - S] ’
wherel C R[X1, ..., X,]is the ideal generated by all those monomigjs- - - X;, such that
{vig,....vi,} €S.

DEerFINITION 3 (see[BH], 5.3). LetV, X) be a simplicial complex of dimension—
1, and letV be given a total order. For eactdimensional face we writeo = [vy, ..., v;]
if o ={vo,...,vi}andvy < --- < v;.

Theaugmented chain complex of X is:

C(2):0—> Crog > Crg— - — Co—> C_1 — 0,

where we set

Ci= P Zo and 9o =) (-1,
j=0

o0eXx
dimo=i
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forallo € ¥, ando; = [vo,....0;,..., vl foro = [vo, ..., v;]. By definition, dimg =
-1.
For an abelian groug, thei-th reduced simplicial homology of X with values inG is:

H(X,G)=H,CX)®G), i=-1,....,n—1.

The dual (cochain) complex HartC(X), G) has differential®, defined agd¢) (o) = ¢ (9a)
for ¢ € Homz(C;, G), @ € C;+1. Thei-th group ofreduced simplicial cohomology of X with
valuesingG is:

H (¥,G) = H(Homz(C(%),G)), i=-1,....,n—1.
If o is a face of the simplicial compleX, thelink of o in X islkyo = lko = {7 €

Y|oNt=g,0Urt e X}. Itis easy to see that Jko is itself a simplicial complex over
thesetfv € V | v € T for somer € ko}.

PrRoOPOSITION 2.1 (Reisner’s Criterion). ([Reis, Theorem 3] Let (V, X) beasm-
plicial complex. Thering Z[ 2] is Cohen-Macaulay if and only if, for every smplex o € X,
we have

Hi(ko,Z) =0 for i <dim(ko),

and, moreover,
Hi(X,Z)=0 for i <dim(X).
The following proposition gives a presentation of the equivariant K-theory of smooth

toric varieties, in terms of generators and relations, similar to that given in [BDP] for the
equivariant cohomology.

PROPOSITION 2.2 ([VeVi], Proposition 6.4). There is an isomorphism of K. (k)-
algebras
K. ([ XE pea,
1
where X, are indeterminates, each corresponding to a one-dimensional cone of A, and [ is
theideal in K*(k)[X;'El] generated by all products ]_[peF(Xp — 1) with F a subset of A1 that
does not generates a cone of A.

KI'(Xp) =

b

Now we can state and prove the result we announced.

THEOREM 2.3. Let X = X(A) a smooth n-dimensional toric variety, associated to
thefan A. The following are equivalent:

Q) KOT(X) isaflat RT-module (or, equivalently, a projective RT-module, for KOT(X)
isafinite RT-module, or a free RT-module, since RT isa Laurent polynomial ring over Z);

(2) TorfT(k}(X),Z)=o0foralli > 0;

(3) ToriRT(KZ(X), Z) =0for all ¢ > Oandfor all i > 0;

(4) Thefollowing two conditions hold:

(i) Amax= 4, (= Sa ispure);
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(i) Hi(ko,Z) =0foranyi < dim(ko), o € Sx, and

Hi(S4,Z) =0 forany i <dim(Sy,).

ProOF. Let us write for shortk = KOT(X), and setAmax = {01, ...,0,}. We will
show(d) < (1) < (2) & (3).

(4) = (). Ifdim(oc) = n, RT, = RT, so Condition (i) and Theorem 1.1 imply
that K embeds into the produ®7”. The ringRT is a subring ofK via the diagonal map
(RT < RT",a + (a,...,a)),andK is a finitely generate®7-module. Note also that, if
M is a maximal ideal ik, andm = 91N RT, then dimMKgy) = dim(RTy,). In fact, if p is
a minimal prime ideal inK, contained irt)t, thenK /o < RT /g for some minimal prime
idealg in RT, such thagp C m.

We have verified the hypotheses of the following lemma.

LEMMA 2.4. Let R and S two noetherian rings, R regular, R C S, and S a finite
R-module. Moreover, suppose that for all ideals 9t maximal in S and m maximal in R, with
M N R =m, wehavedim Ry, = dim Sgy.

Then S isa projective R-moduleif and only if it is a Cohen-Macaulay ring.

PROOF (Lemma2.4) Letm C R be a maximal ideal. By the Auslander-Buchsbaum
formula ([BH, Theorem 1.3.3])$\, is a projectiveRr,,-module if and only if the depth of,,
as ak,-module equals the depth (and so the dimensio® &sregular) of the ringRy,.

Letd = dim Ry, and letx = x1, ..., x4 be a regular system of parameters f. Then
X is a regular sequence 8y,; this is equivalent to saying thatis a regular sequence 8y
for each maximal idedlt in S such thatli N R = m.

Suppose thaf is a projectiveR-module. Then the sequengés maximal for every such
M. By the assumption that disyy = dim Ry, we see that for each maximal ideal of S,
the length of a maximalgy-regular sequence equals dbigy, that is,S is Cohen-Macaulay.

Conversely, ifS is Cohen-Macaulay, then for every maximal idealc R, the depth of
Sm as aRyn-module equals the depth &f,,, that is,S is a projectiveR-module. |

It remains to prove thak is a Cohen-Macaulay ring. Proposition 2.2 gives a ring isomor-
phismk = Z[X*1]/I with X = X1, ..., X; indeterminates, anfl = (Tjer(X; = DIF ¢
Sa) C Z[X*.

On the other hand, the Stanley-Reisner ringggfis Z[Y]/J with Y = Y4, ..., Y;, and
J=([Tjcr YilF & Sa) C ZIY].

Consider the following ring homomorphism:
4) zZ[y15 z[X]
Yi—> X, —1.
Obviously,g is an isomorphism, and(J) = I N Z[X], SO¢ induces an isomorphism

1Y) . Z[X]
J T Inzxy’
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and it remains an isomorphism if we localize respectively at the multiplicative systgrms
{IT:(Yi + D*hren andy = {I]; X[ hren:

2lY] o 1 Z20X] ZIXFY

5 st = - =K.
©®) Ty I 1nZX] I

The ring on the left is a localization of the Stanley-Reisner #@f§, ], which is Cohen-
Macaulay by Proposition 2.1.

(1) = (4. If K is a projectiveRT-module, then by Lemma 2.4 is a Cohen-
Macaulay ring. TherZ[S4] is also Cohen-Macaulay: ieg¢d we need only check that the
localizations ofZ[S4] at maximal homogenous ideals are Cohen-Macaulay[8g] is a
graded ring). This proved) = (4.ii).

Now we show that all maximal cones have dimensioa dim(X).

Let us prove this by contradiction: suppose that, say,«dim n.

This implies that, if we denote by; : RT — RT,, the projections induced bg,;, C 7,
and setl; = kermr1, we have: hif; > 1.

Let,; be the projection®7,, — RTyno,. By Theorem 1.1,

.
K:{(xl,...,x,)el_[RTgi

i=1

() = n;’} (x;) for all i, j} .

If x1 is @ nonzero element i);_; kerz,, thenx = (x1,0,...,0) € K, and anix = I1, SO
ht(annx) > 1.

Let m be the kernel of the rank maRT — Z, A the localizationRTy,, andg an
associated prime ideal & as aRT-module such thaf; C g. Asgp C m, pA € Assy Kiny
too, and htp A) = ht(p).

Since, for a local noetherian rimyand a finitely generate’-moduleM, projdimz M >
ht(a) for any ideala associated o#/, we have:

1<ht(pA) <d d=GfprojdimA(Km) .

It follows that 0% Tor} (Km. Q) = A®gy TorX? (K, Z), so Tor! " (K, Z) # 0, contradicting
our assumption.

(1) = (2). Obvious.

(2) = (1). From now on, letB = Z[Y1,...,Y,] be the ring of polynomials im
indeterminates. Notice that the morphigndefined in (4), followed by the canonical arrow to
the localization at the multiplicative systeff[; Xf.‘}ke,\,, is a ring monomorphism that makes
RT a flat B-module. Remember that for eashe A, RT, = RT/I, for some ideall,
contained in the kernel T — Z. LetJ, = I, N B, andB, = B/J,. For anyr < o we
have a surjective map, — B; such thatRT, — RT; is obtained from it, by tensoring with
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— ®p RT. We define here th8-module

r
M:{(al,...,a,)el_[Bm

i=1

By, = a/\Bal-moj forall 7, ]} .

ThenK = M ®p RT, andK is flat overRT if and only if M is flat, or projective, oveB.
Assumption (2) implies that
(6) Tor’(M,Z)=0, i>0.
As B is a graded ring wittBg = Z, M is flat overB if and only if M, is flat overB,,, with
p € Nvarying among all primes, where we have defidgd= (p) + (Y1,...,Y,), B, = By,
ande = M[p =M Qp Bp.

By the local criterion of flatness (sdor example [Eis, Theorem 6.8])/, is flat over
B, if and only if Torfp (M,,Z/(p)) = 0. From (6) it follows that To?”(Mp, Zp) =0, as
Z1, = Zp), the localization o at p. From the short exact sequence

0— Z(p) _p) Z(p) - Z/(p) =0
it follows that Tmf"(Mp, Z/(p)) = 0 if and only if multiplication byp in Z, ®p, M, is
injective: and this is true, sinc¥, and alsaMf,, are torsion free.
(3) = (2). Obvious.
(2) = (3). Fixanintegey > 0. Proposition 2.2 implies that
K] (X) = K, (k) ®z Kg (X).
Let L, be the Koszul resolution (1) of thRT moduleZ: everyL; = /\i(RT)” is a free
RT-module. Then, by the definition of T8f (—, Z) as a derived functor of ®&r Z,
Tor[ " (Kg (X),Z) = Hp(Li« ®rr Kg (X)) ;
Tor" (K} (X),Z) = Hy(L« ®rr K (X))
= H,(L: ®rr (K§ (X) ®z K4(K))) .

SinceL , ®rr (K (X)®z K4(k)) = (L, ®r7 K (X)) ®2 K4 (k), we can apply the Universal
Coefficient Theorem (in homology, see for example [MacL, V.11, Theorem 11.1]): given a
homology complexL, of abelian groups with no elements of finite order, and an abelian
groupG, then for anyi > 0 there is a split short exact sequence:

0— Hi(Ly) ® G — Hi(Ly ®z G) — Torf (H;_1(L4), G) — 0.
In our case, for every > 0, there is a short exact sequenge£ K[ (X)):

0— Torf" (K., Z) ®z Ky(k) — TorX" (K[ (X).2) -

7
@) — Torf (TorX", (K, Z), K, (k)) — 0.
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To conclude, notice that, fop > 1, Torf" (Ko(X),Z) = 0, while Z ®r Ko(X) =
Torf" (Ko(X), Z) is torsion-free, so TgZ ® Ko(X),G) = 0 for any abelian group
G. O
ExamPLE (of a toric variety that satisfies the conditions of Theorem 2.3, but that does
not admit enough limits).
Let {e1, e, e3} a basis inN = Z3. For any triple(a1, az, az) € {0, 1}3, let oy, ay.05 b€
the cone generated By—1)“eq, (—1)%2es, (—1)%e3} (they are the “octants” dR3).
Let us consider now the fant such that the maximal cones are:

Amax = {0000, 0010, 0011, 0111} -

X (A) is a non-complete variety; it can be embedded as an fpemariant set oP! x P1 x P!
(more precisely, it can be obtained frd x P! x P! removing the closure of three one-
dimensional orbitsP! x {0} x {oo}, {o0} x P! x {0}, {oo} x {0} x PY).

Let p1 = podez} (= {rez | r € R, r > 0}, see Section 1.1) antp = pog—e1}.

Notice thatoggo is the only maximal cone that contaips as a face, whiler11; is the
only maximal cone containingp. So

U o + (p1) = ooooU 0010,
oeStpy

while

U o+ (p2) = oo11U onaa.
oeStpr
The intersection of these two sets is ffas —ez}, which has empty interior. A fortiori the set
(3) has empty interior, s& (A) does not admit enough limits.
On the other handA| N $2 is homeomorphic td(x, y) € R? | x2 + y2 < 1}, soitis
contractible, therefore the reduced homologyafand of every link is zero: the equivalent
conditions of Proposition 2.3 are thus satisfied.

3. K-theory and subdivisions of thefan. The combinatorial conditions equivalent
to the flatness ok (X (4)), given in Theorem 2.3, depend only on the topology of the
support of the fam, not on its subdivision into cones. HOT(X) is not flat, someE? term
outside the column of index zero in Merkurjev spectral sequence is honzero:

TorR"(K!'(X).2) #0 forsomegq, p > 0.

A natural question is: given the toric varie¥/(A), does there exist a description of these
groups TofT(KqT(X(A)), Z), involving only topological invariants gfA|? We will show in
Proposition 3.4 and in Corollary 3.5 that a necessary and sufficient condition for the existence
of such a description is the vanishing of the reduced homology of all links of the eog#e8
in A, in every dimension strictly less than the dimension af Ik

In the next section we will assume this condition dn and will be able to give the
expected description.
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3.1. Blow-ups along orbit closures. Let us begin by comparing two toric varieties
associated to fans with the same support. Agtand A be two fans inR"?, corresponding
to toric varietiesX1 = X(A1) andX» = X(A»). Assume thatA1] = |A2|. Let A’ be a
common subdivision of the two fans: that is, every conedgfor A; is union of cones of
A’. The identity ofR"” induces twoT -equivariant morphism&; : X(A’) — X;. They are
birational, as the two varieties have the same tdflisas a dense open subset, anoper (see
[Ful, 2.4]).

For birational and proper equivariant morpms between toric varieties the weak decom-
position theorem holds; it was proved independently by Morelli in [Mor] and by Wiodarczyk
in [Wio].

THEOREM 3.1. Every birational proper equivariant morphism between smooth toric
varieties¢ : X(A') — X (A) can be decomposed as follows:

X(A) = X1« Xo— -« Xk — X(AQ),

where X1, ..., Xy are smooth toric varieties, and every arrow is an equivariant morphism
obtained by composing blow-ups along 7 -invariant closed subvarieties.

We have reduced the problem to the studygf and its groups Tgf”, wheng is the
blow-up of an orbit closure.

Blowing up the orbit closure relative to the comeconsists of replacing, with a 7-
invariant divisor. This corresponds to the modification of the fan, calledtéinesubdivision.

Given two conew, T in NR, let us denote witls + t their Minkowski sum: o + 7 =
{x+y|xeo, yer} ltisaconeinNg.

DEFINITION 4. LetA beasimplicial faninVg, o € A, andp C o aone-dimensional
cone (ray) passing through the relative interiowofi.e., p is contained in no proper face of
o). Thestar subdivision of A, relative to the cone and to the ray, is the fan{c/p} - A,
obtained as the union of \ Sto and

(p+o' +v|o#c <o, velko}.

In other words, this subdivision does not change the cones not contaipling it divides
each cone containing into the cones generated jpyand every proper face.

Assume now that is regular. Thew is generated by vectors i, e1, .. ., e;, that can
be completed to a basis 8. Let p, the one-dimensional cone generated/by e1+- - -+e;.
Let{o} - A ={0/ps}- A.

PrRoOPOSITION 3.2 ([Oda], Prop. 1.25). The blow-up of the toric variety X (A) along
the orbit closure O, isthetoric variety associated to the fan obtained by the star subdivision
of A relativetoo and p,:

BI@GX(A) = X{g}a-

3.2. How the groups Td{’ (K] (X(4)),Z) change by subdivisions of.  Let us
see how the equivariant K-theory of the blow up depends on the K-theory of the variety, of
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the orbit closure and of the exceptional divisor. ltet= O, be the centre of the blow up,
andY’ = ¢~1(Y) the exceptional divisor. The situation can be pictured by the following
(cartesian) square:

Y/C_j> )'d

ool

YC—i>X

wherei and; are the embedding df andY’ respectively, angy = ¢y.. Y’ is the projective
bundle overY defined by the conormal she@fof Y in X: Y’ = P(C) (see [Har, Theorem
11.8.24]). The K T-theory of X’ is connected to that ok, ¥ andY’ by a split short exact
sequence oRT-modules:

0 KT () % kT(xX) x KT(v') L5 kT (x) - 0,

wherea and g are defined as follows. Let be the class irK*T(Y’) of the kernel of the
canonical surjection/*C — Oy/(1) = Op(c)(1), andi_; the operator 01K*T(Y’) defined
by: A_1F = Y .o o(=DF. If y € KI(Y), we definea(y) = (i,y, —¢*(y)A_1F). If
x € KI'(X) andy’ € KI'(Y'), thenB(x,y") = ¢*x — j.y' (The corresponding short exact
sequence for ordinary K-theory can be found in [Man, Theorem 15.2]; the equivariant version
can be obtained in a similar manner.).

The long exact sequence of the F8r—, Z) splits into short exact sequences, for any
i>0:

0— Tor*T(kI(v),2) — Tor®*T (kI (X),2) x TorfT (kI (v),2) —
— Tor®" (k' (x"),2) — 0.

REMARK 1. Inthe case of toric varieties, we can see that the exceptional divisor of a
blow up is a projective bundle, also by comparing the fawith the star subdivisiofc} - A,
or better by comparing the fans associate® @andY”’.
The orbit closure relative te is the toric variety associated to the project®tw of
St, o on the quotieniV(o)R, andY’ is the orbit closure associated g in {c} - A. Itis the
toric variety associated to the projectiGnp, of {o} - Sto on the quotient¥/, := Nr/(ps)
(see Section 1.2).
Let us recall the following definition ([Ewa, Chapter VI, Definition 6.3]).

(8)

DEFINITION 5. LetY =Y .-X"={c'+0" |0’ € X',0" € X"} afaninR" (join
of two fansX’” and X”') such that

(@) X' is contained in a vector subspadec R" with dim(U) < n,

(b) X" can be projected bijectively on a faxy contained in the orthogonal comple-
mentU+ of U.
Then we callX( aprojection fan of X perpendicular to X', and say tha& has a projection
fan (with respect t&&’, X”).
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Now denote withA,, the projection orV,, of the set of cones (iVR) {t + po | 0 # T <
o}, and withA » the projection, on the same space{of+ p, | 0 N7 = {0}, T + 0 € A}
We can easily see th&tp, = A, - Ak, and thatA, can be bijectively projected on the
orthogonal complement dfA,, |. ThereforeStp, has a projection fan: this is significant in
view of the following proposition ([Ewa, VI, Theorem 6.7]):

PrROPOSITION 3.3. Let X, ¥/, X" beregular fansinR" suchthat ¥ = ¥’- X", and let
X0 bethe projection fan of X perpendicular to X’. Then the projectionz : ¥ — Xp induces
amap of fans such that, for any og € X9, we havean isomorphismﬁ*l(xao) ZX (X)X Xg,
(where X,, isthe affine toric variety relative to oo, asa conein itslinear span (o), and the
lattice considered isnot N, but N N (o). See Section 1.1.).

This means exactly that (X) — X (X)) is a fibre bundle orX (Xg) with fibre X (X).
In the case of the blow up @, = X (Xo), ¥’ = Ay, andX (¥') = P'— L.

The following proposition and corollary contain the condition that we must assume, in
order to describe Tdf" (K (X), Z) in terms of topological invariants ¢f\|.

PROPOSITION 3.4. Let X = X (A) the smooth toric variety associated to thefan A in
NrR=R" 0 € Ajaconeof dimensiond > 2, A" ={o}- A, X' = X(A') (i.e,, X' istheblow
up of X along the closure of the orbit O, ). Then the following hold:

(i) if H;(k o, Z)#0for some j<n—d—1,then TorfT(KqT(X), Z) %Tor{?T(KqT(X’), Z)
for somei >0, ¢ > 0;

(i) conversely, ifTorl.RT(KqT(X), Z) 2 ToriRT(KqT(X’), Z) for somei, ¢ > 0, then for

some 7, witho < 7, wehave H;(Ik t, Z) # 0 for some j < n —dim(z) — 1.

PrROOF. (i) With the above remarks and notation in mind, we need only to recall the
relation between the K-theory df andY’. We know thatY’ is a projective bundle with
baseY and fiboreP?~1; T acts on the base and on each fibre, and the projeétion> Y
is T-equivariant. We apply [Thom, Theorem 3.1] and get a group isomorpmgmﬂ) =
K(Z(Y)GW, which is alsoRT-linear, sinceY’ — Y is the projectivization of & -linearized
vector bundle (the normal bundle ¥9. Hence the abelian group 'I,?%?(K(IT(Y/), Z) is thed-
fold direct power of Tof " (K[ (Y), Z). Assume thafl;(Ik o, Z) # 0 forsomej < n—d —1.
From Theorem 2.3 it follows that T8 (K (¥), Z) # 0 for some > 0 and for somg > 0.
From the exact sequence (8) we have

TorT (K ) (X'). Z) = Tor*" (K] (X).Z) @ Tor*" (K] (¥), Z)**
% Tor* (K] (X).2).
(i) By the exactsequence (8) we can say that, iffak | X"), 2) 2 Tor* (K [ (X), 2),
then Tof" (K] (¥), 2) # 0, and, by Theorem 2.3, this is true if and only if there exists some
T such that < 7, andflj(lk 7,2Z) # 0 for somej < n —dim(z) — 1. O

COROLLARY 3.5. Let Abearegular fanin R* and X = X (A) the associated smooth
toric variety. Then the following are equivalent:
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(a) for every subdivision A’ of A,
Torf" (k] (%), 2) = Tork" (k[ (X (4")). 2)

forany p > 0Oandg > 0,
(b) H;(ko,Z) =0foranyo € Sy andfor any j < dim(k o).

PrROOF. (a)=(b) follows immediately from Proposition 3.4.
(b)=(a) follows from Proposition 3.4, from Tloeem 3.1, and from the following re-
mark. O

REMARK 2. Let|Sa| be a geometric realization ofy, and letH,(|Sal, |Sa| \ x; Z)
be the relative reduced (singular) homology, foe |Sa|. Then Condition (b) of Corollary
3.5is equivalent to

H;(1S4l, 1S4\ x:Z) =0 forall i <dim(Sa), x €|Sa],

see, e.g., [Sta, Proposition 4.3]. Therefdnes tcondition depends only on the topology of
|Sal, and if it holds, it still holds when we perform a star subdivisidior, when possible, the
inverse operation (star reunion of cones).

REMARK 3. Ifwe assume, as we will do in Proposition 4.5, that all the maximal cones
of A have the same dimensianas the variety (i.e.S4 is pure of dimensiom — 1), then
|Sa| is @ homology manifold, i.e., for every € |Sa| either H,(|Sal,|Sal \ x) = 0 or
Hy(|Sal, [Sal\ x) = Z.

Indeed, suppose that, is pure: sincgS,| can be embedded in the sphese!, the
highest homology of the link of a vertex is eithi&or zero. More precisely, i is a vertex of
(some suitable subdivision oSy, then Ikv) is a pure(n—2)-dimensional simplicial complex,
embedded in a sphe#—2. There are two possibilities: eithelk(v)| = $"~2 or | Ik(v)| 2
$"=2_In the first caseéd,_>(Ik v) = Z; in the second case, 1kis a(n — 2)-dimensional pure
simplicial complex that can be embeddedRfi 2: so H,_>(kv) = 0, as there can be no
(n — 2)-cycles. We conclude by the isomorphigi_1(|Sal, [Sal \ v) = H,_>(Ik v), which
holds provided we consider a sufficiently fine subdivision$f|.

Moreover, the above conditions imply th&y (Ik o, Z) equals 0 oZ, for everys € ¥
(not only for the vertices) and = dim(lk o). Indeed, leb = ¢’ U v, forv € o a vertex.
Then kg o = Ikjk o v. SO we are back in the previous situation, as’lis a pure simplicial
complex, and it satisfies the homology conditions on the links, since, &k o/, Ik, T =
kx(t Uo).

4. Computing Tor X" (K I'(X), Z)—when invariant by subdivision of thefan. The
main result in this section is Theorem 4.5, where we will be able to express the groups
Tor®" (K { (X), Z) in terms of the reduced simplicial homology of the fan

The proof of that theorem relies on the following remark: the embeddirig?c(’rX(A))
in the product of representation rings of tori (Theorem 1.1) can be restated by saying that
KOT(X(A)) is the ring of global sections of a sheaf®T -algebras over the fan space
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We will first recall the definition and the nraproperties of such sheaves. Then we will
apply them to compute the groups f&r(KOT(X), Z) under the assumption that satisfies
Condition (16), i.e., the vanishing of the local homologySof. By means of homological
algebra machinery we will be able to find explicit formulas linking these groups to the reduced
homology ofS 4.

4.1. Cohomology of sheaves on fan spaces. Some of the following notation and ideas
have already been used in [Ale, Bac, BreLu, BBFK, Bri]. In [Bac] some aspects of sheaves
on partially ordered sets are studied, but the main focus is on geometric lattices. Bressler and
Lunts ([BreLu, 83]) study sheaves Bfalgebras on fan spaces, especially in the non rational
case. In [BBFK] Barthel et al. give conditions on the topology 4f, in order for the group
of global sections of a sheaf afito be free on the ring of polynomials. Brion ([Bri]) applies
the theory of sheaves on fan spaces to the study of the polytope algebra.

Our reference for definitions and general properties of sheaves on topological spaces is
[Har, 1.1 and 111.1-2].

4.1.1. Sheaveson partially ordered sets. Let (X, <) be a finite partially ordered set.
There is a topology oiX, induced by the order, such that the open sets aréntireasing
subsets, that is,

ACX, Aisopens (x e A, yeX, x<y=yecA).

Indeed, it is straightforward to verify that the intersection and the union of a family of increas-
ing subsets are increasing subsets. The continuous maps between two partially ordered sets,
with this topology, are the order-preserving maps.

For each element € X, define the following sets:

X. = {x € X | z < x} is the smallest open set containing the elemeatX,

X;={reX|z<x)=X;\{z},

X% = {x € X | x <z} is the closure ofz},

X={xeX|x<z}=X"\{z).
Let us consider now aresheaf of abelian groupsF on X. To every open set (increasing
subsetly C X an abelian grougF(U) is associated# (U) is called the set odections of F
onU; for every inclusion of open seté C U there is a group homomorphisng U -V,
called therestriction from U to V. We will adopt the usual shorthang = ,o‘l,j(s) foranys €
FU).

F is asheaf if the following glueing condition for sections holds:

given an open subsét C X, an open covering/ = | J; U;, and a family of

sections(s;), s; € F(U;) foranyi, that are compatible on the intersections,

that is, sijy,nu; = Sijvinu; for anyi, j; there exists a unique global section

s € F(U) such thaky, = s; for anyi.

Thestalk of 7 atx € X is by definitionF, = I(im]-"(U), with U varying in the sefU C

X | x € U, U open. Since this set contains, as a minimum, we have more simpf; =
F(Xy).
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REMARK 4. We can write in a more explicit form the sections of a shEadn the

open sel. Since
v=Jx.= | x..
xeU x€Unmin

whereUnmin is the set of the minimal elements &f we have
9 FU) = {(sx)xEUmin | sx € Fx, Sx‘)_(xm)_(y = Sy|)‘(xm)‘(y, X,y € Unin} .

Notice that, by the above formul#; is determined by the data of

(1) the stalksF, for everyx € X, and

(2) therestrictionsF, — F, for all pairsx < y.

Indeed, in order to assign a sheaf on the finite partially ordered sétis enough to
assign an abelian grou@, to every elemenk € X, and, to each paix < y, a group
homomorphismo,, : Gx — G, such that for any triple of elements< y < z in X the
equalityp,;pxy = px; holds. If, given these data, vaefine 7 by means of (9) for every open
U C X, we get a sheaf o, whose stalks are the groufis, }.

We recall that a sheaf is flabby if, for each pair of open sd/ C V, the restriction
F(V) — F(U) is surjective. Flabby sheaves are acyclic, i.e., they have zero cohomology
in positive degree, see [Har, Proposition 2.5]: we will exploit this property both to compute
the cohomology of the simple sheaves on fpaces (see below), and to connect the groups
TorRT (KT (X), Z) to the hypercohomology of suitable complexes of sheaves.

The following criterion for flabbiness is proved in [BreLu] in the case tkat a fan
space.

LEMMA 4.1. Let F a sheaf (of abelian groups) on the finite partially ordered set
(X, <). Thefollowing are equivalent:

(i) Fisflabby;

(i) foranyx e X, therestriction F, = F(X,) — F(X,) issurjective.

PrROOF. Clearly (i)=(ii). Conversely, to prove (igs(i), it is enough to show that, if
Condition (ii) holds, then, for any opelii and anyx ¢ U, we can extend every section on
U to a section orV = U U X,. Any open subset/ C V can be obtained by successive
extensions of this kind.

Notice that# (V) can be identified with the subset 8fU) x F, of all pairs that have
the same restriction t&/ N X,: the lemma is proven if we show that, for eache X, and
V C X, therestrictionF(X,) — F (V) is surjective. We proceed by induction on cork
where we define theo-rank of x, cork(x), as the maximum among the length of chains
X =x0 < -+ < x,, Wherex; € X foranyi.

If cork(x) = 1, the elements ok, have co-rank zero, so they are all open pointXof
thereforeZ (Xx) = [[,cy, Fy, and foreveryy C X, F(V) = [],cy F-

Assume now that cokl) > 1, andV ;Cé X fye Xo \V,F(VUX,) = {(s,5) €
FV) x Fy | sjvnx, = s\'vmxy}- Given a section € F(V), in order to extend it td&/ U X,
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we need only to find some& € F(X,) such that‘fvnxy = sjvnx,, and we can do that by
inductive hypothesis, as cdm) < cork(x). O

4.1.2. Sheavesonfanspaces. Letus now specialize to the case of fan spaces, that is,
when (X, <) is the set of cones of a regular fahin R". We introduce an order<” on A,
defined in the following way:

0,T€A; 0 <t 1=<0 (risafaceob).

Notice that< inverts the face order, so the topology anrelative to this order depends only
on the combinatorial structure af.
Given a cone € A, the sets defined in the previous sections become:

A, = & is the subfan generated by the caere

Ay = Ay \ {0} =& \ 0 = do is the boundary o ;
A° ={t € A|o < 1t} =Sto is thestar of o in A;
A% = A%\ {0} = Sto \ 0.

The open sets for this topology are the subfanstofThe cone containing only the point
0 € R" is the unique maximal element, therefore the maximuma ofThe set{0} is open,
and dense imA, which is thus irreducible, as a tdpgical space. The maximal cones are
the minimal elements with respect to the order. Notice that this topology corresponds to the
Zariski topology onX (A) whose closed sets are tlieinvariant subsets af (A).
For an abelian groug, let G be the constant presheaf with valuesin|n fact, G is a
sheaf, since all nonempty opensdrare connected. Moreoveg, is flabby, as all restrictions
to nonempty opens are the identity Gf Also the sheaves, obtained by restrictiigo the
stars of cones (which are closed in the fan spatare flabby (and so acyclic).

Let us define a class of sheaves, whose cohomology can be easily computed in terms of
the simplicial cohomology of certain subsets/f

DEFINITION 6. If G is an abelian group, and € A, the smple sheafG (o) with
support inoc and values irG is defined in the following way on the stalks:

Glo), = G if t=0,
7= 0 if t#o0;

and all restrictions are zero.

REMARK 5. We recall that the projection of &ton the quotieniV (o)R is a fan, which
we denote wittSto (see Section 1.2). It can be identified with a subspact: db every cone
of Sto we associate its preimage (through the projectiomin Notice that the corresponding
simplicial complexSg;-is just the link Ik, o

The following two facts are crucial. (A less direct proof can be found in [Bac].)

PROPOSITION 4.2 (see [Bac], Lemma 3.1).Let G bean abelian group, and o € A.
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(i) Theglobal sections of the simple sheaf G (o) are

0 G if o isamaximal cone,
I'(A,G(o)) = H (A,G(0)) = .
0 otherwise.
(i) Ifi>1,then
(10) H'(A,G(0)) = H (S5, G) = H' Y(kk 0, G),
where H* is the reduced simplicial cohomology.

PROOF. The first part of the proposition is straightforward, in view of the formula (9)
describing the sections of sheaves 4An the global sections ofi (o) are the families of
sections on maximal cones, compatible with the intersections.igfnot maximal, all these
sections are zero. If it is maximal, the only nonzero sections are th@séin, = G.

Let us prove (ii). As we pointed out in Remark 5, we can consider the star as
the closed image of a fan spaBés through a continuous majg, : Sto < A (o in A
corresponds to 0 i6t(c')). The sheafs (o) on A can be obtained by pushing forward via
the sheafG (0) onSto: G(o) = (j5)+G(0). SOH! (A, G(0)) = H(Sto, G(0)). We must
thus prove the follwing:

givenafana, H' (A, G(0)) = H (54, G) fori > 0.

Let G the constant sheaf an with values inG. The simple sheaf; (0) is a subsheaf of.
The quotient sheaf = G/G(0) has stalks equal to those 6feverywhere, except at 0, and,
for any pair of cones < o, the restrictionf, — F; is either zero or the identity. In other
terms, ifig : {0} = A, andjp : A\ O are the (open and closed resp.) embedding8jcdnd
of its complement, thed = (jo)*(GM\o). The short exact sequence

0— G0 = (io)yém -G—>G—0
induces the long exact sequence in cohomology:
0— H%A,G(0) - H%A,G) — H%A, G)
(11 s 1 G
— H>(A,G(0) - H*(A,G) =0,
and, sinc& is acyclic,
0— HXA,G) S H(A,GO) >0 fori=>2.

SinceA \ Ois closed inA, H'=1(A, G) = H71(A\ 0, Gja\0) = H'"1(A\ 0, j§G), so we
can conclude by applying the following lemma. O

LEMMA 4.3 (see [Bac], Theorem 2.1).Given a fan A and an abelian group G,
H'(A\O,G) = H (S, G) for i >1,

where now we consider G as the constant sheaf with valuesin G, on A \ 0 (we should write
Jo (G)).
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PROOF. LetA; = {p1,..., pm} be the set of one-dimensional cones, &hthe set of
all the stars of the cones in;: S = {C; = St(p;) | j = 1,...,m}. S is a closed covering
of A\ 0. The restriction ofG to any intersection of elements # is a flabby sheaf: we
can thus consider a generalized Mayer-Vist@equence, that will allow us to compute the
cohomology ofG.

Let Giy..i, = Glcfoﬂ»»ﬂci,,- The sheaves appearing in the following complex are all

acyclic, except (possiblyg:

m
0—)@—)@(},—) @ Gi0i1_> @ Gioi1i2_>"‘

(12) i=1 1<ig<ii<m 1<ig<ii<ipz<m

— &+ Gigoins = B Gigin — 0.

1<ip<--<ip_1<m 1<ig<--<ip<m

Differentials are defined as follows:

(13) d((alo...ik)io...ik) = (b.jo...jk+1)j0...jk+1a

where (indexes marked with are omitted):

k+1
(14) bjo...jis1 = Z(_l)hdjo...ﬁl...ij'

h=0
The above notation meanszife G, 5 . . (U), thena is the image of: via the restriction
mapG j, j...j1 (V) = Glojira (U)-

The complex (12) is exact (and so an acyclic resolution of the skpaFo show this, fix
a cones, say of dimensiod — 1, and consider the complex of the stalks relative tdNotice
that(Giy..i,)o = G if o € Cj;N---NC;,, and 0 otherwise, so this localization is the Koszul
complexG ® K£*(1,..., 1):

iI,a

2 d
O—>G—>Gd—>/\Gd—>~~—>/\Gd—>0,

which is exact.
Forany(p+1)-uple of indexesy, . . ., i,, the intersection of the stars of one-dimensional

cones{p;, } is either the empty set, or the star of the cong ;, generated by, ..., pi,:
Stojy..i, if 0j.i, €A,

Cl-0 Nn---NC; = 10--tp . ig...ip
» /%) it Oig.iy € A.

Therefore, the complex of the global sections of resolution (12) is
0— @ HStp). Giswo)) = @D HOSH0). Gso)) > -+
peAq ogeAy
= P HSH0). G sie)) > P Hlo). Gsie)) — 0.

o€, 1 oEA,

(15)
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SinceH%(St(0), G| ste)) = G for anyo, we can simplify as follows:

0— @G(U)—)«“—) @G(g)—)o.

ogeAq geA,

It is clear that, if we define differentialss in (14), this is the cochain complex 8f with
values inG, except in degree-1, so its cohomology coincides with the reduced simplicial
cohomology ofS 4 with values inG, in degree> 1. O

We define now a sheaf @gtT-algebras on a fan space which will play an important
role in the following.

DEFINITION 7. We denote with4 the sheaf ofR7T-algebras om\ with stalks:
A, =RT,, o€A,

whereRT, = Z7, is the ring of representations of the torfls The restrictions4d, — A;
are the map®7, — RT, induced by the inclusions — o.

REMARK 6. Theorem 1.1, which gives an embedding of the equivariant K-theory of
X into a product of algebras of representations of tori, can be restated in a short (and useful)
way, by means of the sheaf we have just defined:

I, A =A%) =K (X(2)
for any subfan¥ C A.
LEMMA 4.4. Thesheaf A isflabby.

PrROOF. (A similar construction is used in the proof of [Bri, 3.2 Proposition].) Let
us apply Lemma 4.1: it is enough to show that, for any cene A, the restriction to the
boundaryA, — A(do) is surjective. Assume that is maximal of dimensiom (we can
always reduce to this case). Asis regular, it is generated by a basis, ..., u,} of the
lattice N c R". Let{v1, ..., v,} be the dual basis i .

Let o be a face ofo (possiblytp, = o), andr; < 12 a proper face. Sayr; =
podus,...,u;) andr, = podus,...,u,), with [ < r. The free abelian gromM/rlL is
a direct summand o#//75: indeed,M/z;" can be identified with the subgroup of /5
generated by (the classes of), ..., v;. This direct decomposition yields two maps, an in-
jection M/t — M/t5; and a surjection/ty — M/ti; these two maps induce maps
of the corresponding group algebrag? : Z[M/t{"] = RT, < RT,, = Z[M/t;], and
ngy + RTy, — RTy,. This latter is the projection seen aboveuift RT:,, we writea,, for
n:2(a). Since, for two faces, p of o, the compositiond//t+ — M/(x N p)* < M/p*
andM/t+ — M/o+ — M/p* coincide, the same holds for the corresponding maps of
group algebras: sp; " o %, = 7 0 .

Now, an element ofA(do) is represented by a compatible fami(y,);<, with
a; € RT; such tha’ramrl = ay, forty < 12 < 0. Leta € RT be the element =

3 (=1yrmdimTtlor (g ). Thena), = a, for everyp < o.



224 S. BAGGIO
This follows from the equalityy; (a:))|, = q);mp (ar|znp), @and from the fact that

do(=pramttt =1, while, forp’' Zp, Y (-pr It =0. O
pP=<T pNT=p’

4.2. TorfT (K} (X (4)), Z) and the reduced homology &f.

THEOREM 4.5. Let X (A) be the smooth toric variety associated to the fan A in R".
Assume that the maximal cones of A are all of maximal dimension: Amax = A,. Moreover
assume that

(16) Hi(ko,2) =0 forall o € Sy, i <dim(ko).

Then, for any p > 0,

n n
17 TorfT (kI (X (), 2= @ A" (54,2,
i=p+1

PROOF.  For convenience we split the proof in five steps.

Sep 1. LetK* be the complex of sheaves B -algebras om, obtained by tensoring
with — ®gr A the Koszul resolution of (as aRT-module: see (1) in Section 1.3, setting
o =0).

The terms of this complex are:

ICiz/\_’A" for —n<i<0

and zero foi < —n andi > 0.

Notice that, for 0< p < n, the(— p)-th cohomology group of the compléx*(A) of the
global sections ok* is precisely Tof” (K[ (X), Z), sincek*(A) is obtained by tensoring a
projective resolution o with KOT (X). On the other hand, the sheavé&sare acyclic, as they
are finite direct products o4, which is flabby (Lemma 4.4). Hence for ahy 0, H (K*(A))
is isomorphic to thé-th group of hypercohomologyl’ (X*). So we have:

Torf"(Kg (X),Z) =H™P(K*), p=0.

Step 2. We will approximateH*(KC*) by means of a spectral sequence, relative to a
suitable filtration of the compleX™* associated to the filtration of the fan spatdy dimen-
sion of the cones. (This method is similar to that used in [Bac, §4], where a spectral sequence
approximates the cohomology of a sheaf.)

LetA; = {o € A | dim(o) = i}, codimo) = n —dim(o), and let{ P'}; be the filtration
of A with P! the (closed) union of all cones of codimensien — 1:

P=:PlcA,=P°CAUA,_1=P3C-..
e C AU UAL=A\O=: P c A= p"t?,
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Notice that
Pt P* = {6 € A | codimo) =5 — 1},
A\ P’ ={o € A|codimo) >s—1}.

Given a sheaf of abelian grougson A, denote withF; the sheaf obtained by restrictitfg
to A\ P* and then by extending it by zero . In other words, ifj; : A\ P* — A, then
Fs = ji(F a\ps). The stalks off; are
F, ifcodimio) >s—1,
(]:s)cr = )
0  otherwise.

For anys there is an inclusion of sheavé§.1 < F. The support of the quotient sheaf
Fs/Fsr1 is contained inPs+1 \ P*, which is a discrete topological space: so we have the
following decomposition as a direct sum of simple sheaves:

(18) Fs/Fsy1= @ Fs(o).

0EA,_s+1

If, instead of a sheaf, we considecamplex of sheavedC, we can define in a similar way

the complexe&’, which give a filtration oftC, and the quotient complexés /X1, which

can be written as a direct sums of complexes of simple sheaves. We can reconstruct the
hypercohomology of the comple from that of its restrictions to the se®®*1 \ P*, by

means of the following proposition, analogous to [Bac, Thm 4.1].

PROPOSITION 4.6. Thereisa cohomology spectral sequence:
(19) EY? =HPT(A, K,y /Kpi1) = H'(AK).

The differentials at level E1 are the connecting homomor phisms of the long exact sequence
relative to the short exact sequences

0— Kpi1/Kpi2 = Kp/Kpi2 = Kp/Kpi1 — 0.
PrROOF. This is a quite standard result. Consider, for eyerthe short exact sequence
0—-Kpr1—> K, = K,/Kpy1— 0.
Let IC,, = K,/K,+1. The hypercohomology long exact sequence is
i — d . . . — d .
= HTYK ) S HI (K1) — HI(KC)) — HI(Kp) = HI(Kpg1) — -+

We setA” = H(K,) and EP = Hi(K,), change indexesy = i — p, and then set
A = @AP1, E = EPI. We obtain an exact couple

A—A

PN

E
whose corresponding spectral sequence is the above one. a
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Sep 3. Let us modify Condition (16) in order to simplify the spectral sequence just
introduced. If Iko is the link ofo in the simplicial complexS 4, we know that
(20) Hi(ko,Z) =0, oe€A\O, i<dmlko).
If d = dim(lk o), all we can say is:
- Z iflk o = $9 (i.e.,o is “inside” A),
Hij(lko,2) = ]
0 otherwise.

(See Remark 3 on page 217.)
Applying the Universal Coefficient Theorem, we replace homology with cohomology:
Hi(ko) = H;(ko) forall o, i.
By (18) the termEf" of the spectral sequence (19) can be written:
HPH (A, Kp/Kpr1) =HPM (A, @B Kie)

0€A_pt1
= P HMAK0).
0E€EA—pt1

Sep 4. Every summand in the last direct sum is the hypercohomology group of a com-
plex of simple sheaves on, with the same suppott. Let us study the behaviour of such
complexes.

Let G* be a complex (in cohomology) of abelian groups such @iat 0 fori > 0. For
anyo € A there is a complex of simple sheau@3(o) supported irns. Let us compute its
hypercohomology.

Consider the well-known spectral sequence:

EY = H'(A, H/(G*(0))) = H'T/ (A, G*(0)),

where/ denotes thg-th cohomology sheaf of a complex of sheaves. Hgl¢G* (o)) =
(H/(G*))(0), so by Lemma 4.2, if > 0,

H'(A, H/(G*(0))) = H ko, H/ (G*)).
If o # 0, Condition (16) omA implies the vanishing of all cqumnEé*, except possibly for
i =0andi =n —dim(o).
There are two cases:
(1) dim(o) = n: only cqumnEg* is nonzero, and
H/(A, G*(0)) = EX = EY) = H(A, HY (G*)(0)) = H(G¥)

forj <0;
(2) dim(o) < n: then the terms in the 0-th column are

Ey = HY(A, H(G*)(0)) =0,
while those in the other non vanishing column, of index dim(A) = d + 1, are
ESTH = HTYA, HT(G*)(0)) .
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Now specialize t&G* (o) = K (0): by formulae (2) in 1.3, the two cases can be rewritten:
(1) dim(o) =n:

Hi(A, K*(0) = EY = EY = HI(K*) = TorRT(RT,,, 2)
2 o J

soH/ (A, K*(e)) = Z for j =0, and 0 forj < 0;
(2) dim(o) < n: in the 0-th column we still have, for any

Ey) = H%(A, HI (K})(0)) =0,

while if the column index it — dim(o) = d + 1, we have

ES™H = YA, HI(K))(0)) = HYY(A, TorkT (RT,., 2)(0)) .
The last term vanishes fgr> n — dim(o) = d + 1. we conclude that

H/(A, Kk (o)) =0

for j < 0. Forj > 0 we can only say that (by Proposition 4.2):

H/(A, K: (o)) = HY (Ko, Tor® T (RT,, 2)) = Hi(ko, A77ob).

Sep 5. Inshort: forj < 0, the only contribution tél/ (A, C*) comes from theén+1)-

th column of the spectral sequence (19), relative to the restriction of the coikipiexhe
0-dimensional cone.

1 2 e n n+1 n+2
-1 * % * k
-2 k k ES
-3 * k
—n e * *
—n—1 - ES
—n—2 . TorfT (k' 2)
—n—3 . TorkT (k. 2)
Torf" (k! 2)
—2n—1 o TOI‘,fT(Kg, Z)

TABLE 1. Non-vanishingEs terms of the spectral sequendd? =

HPH(A, KCp/K p 1) = TorR T (K (X, 2).
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So, consider the cage = 0. The complexC;(0), which is supported at the origin, has
zero differentials. Indeed, the differentials df ared ® idz, whered are the differentials of
a Koszul complex relative to elements that belong to the annihilatérasfR 7-module.
Thereforel(;(0) is a direct sum of the complexég;;, each one having at most a nonzero
component:

0
K50) = €D K50,

where we define, forn <m <0,

K@) if m=i,
n() = L@ Tm=1
0 if m#£i.

Hypercohomology commutes with direct sums, and the hypercohomology of a complex with
a unigue non-vanishing she&f in degreei coincides (up to a shifting of the indexes by
with the cohomology ofF. So we have

H(A, K§(0) = H'™'(A, K}, (0)) for [ > i.

g

Sincek,' (0) = Torf7(2,2) = Z"”, we conclude thafor p > 0,
Tors" (K3 (X).2) =P H' " (A. K" (0)
i=p
"o )
(21) =P A (2. 2").
i=p+1
Hence the theorem is proved. m]

The following proposition is complementary to Theorem 4.5, as it gives more informa-
tion on the grou ®xzr K (X).

PROPOSITION 4.7. Theabelian group Tor®” (K[ (X), Z) = Z®rr K (X) istorsion
free, and itsrank isless than or equal to the number of conesin A.

PROOF. By Proposition 4.6Z Qrr Kg(X) admits a filtration--- C F, C Fp41 C
.-+, such that the quotient,11/F, is the termE%;~" of the spectral sequence (19). So
Z @gr KJ (X) is torsion free ifEL; ™" is such for every. The chain of equalities at the end
of Step 3, in the proof of Proposition 4.5, for= — p, yields

EP P =HY%A.Ky/Kpi) = @ H%A.K;(0)).
0EA—pt1
By the last equality in Step 4 of the same proof, setting 0 andd = p — 2, we have, for
l<p=<n+l,
EY™"= P H"*(ko,2) c ZFmrit,

0EAL_pt1
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The inclusion follows from the fact thati ?—2(Ik o, Z) equals 0 oZ. (See Remark 3 on
page 217, and use the Universal Coefficient Theorem to pass from homology to cohomology.)
Finally, recall thate]? = O for everyk > 1,if p+¢ < Oandp < n + 1, so there are
inclusionse/ " c E""", andEL ™" c E}7P. This implies thatZ @rr K{ (X) is a free

abelian group, and its rank is Y03 tk(EX™") < YT #4, 41 = #A. O

4.2.1. Computing Torl’fT(Kg(X), Z) for ¢ > 0. All the other columns of Merkur-
jev’s spectral sequence can be found starting from (17).
By (7) in the proof of Theorem 2.3, we obtain

TorXT (K} (X),Z) =TorXT (K§ (X), Z) ®z K4 (k)

22
(22) & To (Tork7, (K (X), 2, Ky (b))

Notice that, forp = 1, the second summand on the right vanishes/ &g KOT(X) is
torsion free, by Proposition 4.7. Therefore all the termg{*i'"qlKoT(X), Z) appearing in (22)
can be replaced by the expression we gave in (17): we obtain expressions fEf,qanym
of Merkurjev's spectral sequence, involving only the reduced cohomology @nd the K-
theory of the fielck.

4.3. An alternative proof of Theorem 2.3. Theorem 4.5 allows us to prove Theorem
2.3 without making reference to Reisner’s Theorem (Proposition 2.1). One implicgtjos,
(1) (here we assum@) < (2) < (3)), follows immediately from Theorem 4.5. The opposite
one is not straightforward, but it can be easily seen after a couple of lemmas on Stanley-
Reisner rings.

LEMMA 4.8. Let ¥ be a simplicial complex on the vertices {v1,...,v}, 0 =
[v1, ..., v] aface of o. Then we have an isomorphism of localizations of Stanley-Reisner
rings:

Z[X](x,) = Z[Sto]x,) »
where X, isthe image of the monomial X1 --- X;.

PROOF. Let the vertices of the star &tbe {v1,...,v.} ( < r < t). By defini-
tion, Z[X] = Z[Xy,---, X,1/Is, wherely = (Xi---Xi, | [ig, ..., v, ] € X), while
Z[Sto] = Z[X1, ..., X,1/1,, Wherel, = (Xi;--- X | [vig, ..., v ] & Sto). After we
localize to the multiplicative systeX’. | n > 0}, all monomialsX;, - -- X;, € Z[X] such
that[v;,. ..., v, ] ¢ Sto vanish: so the inclusio#Z[X4, ..., X,] — Z[X1, ..., X;] can be
lifted to a well defined ring homomorphis&iSto]x,) — Z[X](x,) that is easily seen to be
injective and surjective. O

LEMMA 4.9. With the same notation as above,

Z[Sto]
(Xls"'vxl‘) ’
PrROOF Z[lko] =Z[X;+1, ..., Xr)/lke, With Ik = I N Z[ X141, ..., X/]. O

Z[lko] =
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The two following propositions can replace the reference to Reisner’s Theorem in the
proof of Theorem 2.3.

Remember that the closure of the ot8it can be considered a toric variety for the action
of the quotient torug, = T/T,, and the simplicial complex associated to its fan is fsee
Section 1.2).

PROPOSITION 4.10. Let X = X(A) be a smooth toric variety associated to the fan
A, pure of dimension dim(X), and Y = O, the closure of the orbit associated to the cone o
Then

K{° (Y)isnot RT,-flat = K& (X) isnot RT-flat .

PROOF. SinceK,’ (Y) is not RT,-flat, by Lemma 2.4 (in the proof af4) = (1) of
Theorem 2.3¥[lk o] is not a Cohen-Macaulay ring. By Lemma 445Sto ] is not Cohen-
Macaulay either, foiX,; is a regular element. The localization ma{Sto] — Z[Sto]x,)
is flat, soZ[Sto](x,) cannot be Cohen-Macaulay ([BH, Theorem 2.1.7]). By Lemma 4.8 we
conclude thaZ[S 4] is not Cohen-Macaulay, SEOT(X) is notRT -flat. O

PROPOSITION 4.11. Let X = X(A) be a smooth toric variety associated to the fan
A, pure of dimension dim(X), and suppose that, for some z € S, and somei < dim(lk 7),
H;(k 7) # 0. Then there is some orbit closure Y = O, such that K (Y) is not R, -flat.

PROOF. If (a) Y satisfies the hypothesis (16) of Theorem 4.5, that is, if fopadl Ik
we haveI:I,-(Ikp(Ik 7)) = O for anyi < dimlk,(k 7), then we can apply Theorem 4500,
viewed as a toric variety whose simplicial complex ig Jkand conclude witlr = 7. In fact
the formula (17) implies that T@P(KOTT(Y)) # 0.

If, onthe contrary, (b) there is@such thaﬁi(lkp(lk 7)) # Oforsome < dimlk,(k 1),
then we cannot apply Theorem 4.5, but we can reason by induction, repciit O, and
T with p. Since dimD; < dimX, after a finite number of steps Assumption (a) must be
satisfied. We can conclude, by noting that ik o € A, O, is also aT,, orbit, and its closure
in O, is the same as its closure ka O
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