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Abstract. We characterize the smooth toric varieties for which the Merkurjev spectral
sequence, connecting equivariant and ordinary K-theory, degenerates. We find under which
conditions on the support of the fan theE2 terms of the spectral sequence are invariants by
subdivisions of the fan. Assuming these conditions, we describe explicitly theE2 terms, link-
ing them to the reduced homology of the fan.

Introduction. The aim of this work is to highlight some relationships between the equi-
variant K-theory of a smooth toric variety and the combinatorics of the associated fan.

We start from a specialization of a (much more general) result due to Merkurjev ([Mer]),
that gives a comparison between the equivariant and the ordinary K-theory. IfX is a smooth
toric variety, there is a spectral sequence:

E2
pq = TorRTp (KT

q (X),Z)⇒ Kp+q (X) .

Our first problem (solved in Section 2) is to characterize the class of smooth toric vari-
eties for which Merkurjev’s spectral sequence degenerates atE2, that is, such thatE2

pq = 0
for all p �= 0. It was known that this class includes all complete toric varieties, which cor-
respond to fans whose support is the whole spaceRn. Their K-theory can be immediately
expressed in terms of the equivariant K-theory:Kq(X) = KT

q (X)⊗RT Z.
Vezzosi and Vistoli ([VeVi, §6]) give two descriptions of the equivariant K-theory of a

smooth toric varietyX(∆),
(1) as a subring of the product

∏
σ∈∆max

K∗(k)⊗ RTσ , and
(2) by means of a presentation similar to the Stanley-Reisner algebra over the simplicial

complexS∆, associated to the fan∆ (The vertices ofS∆ correspond to the one-dimensional
cones of the fan, and the simplices correspond to the cones). Both descriptions have been
extremely useful.

Theorem 2.3 states that Merkurjev’s spectral sequence degenerates if and only if the
following conditions hold:

H1. H̃i(lk σ,Z) = 0 for all σ ∈ ∆ andi < dim(lk σ), whereH̃ is the reduced simpli-
cial homology, and lkσ is thelink of σ , that is, the set of the faces, disjoint from
σ , of the faces inS∆ that containσ ;

H2. H̃i(S∆,Z) = 0 for all i < dim(S∆).
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This is an easy consequence of a well-known theorem by Reisner: the vanishing of the
reduced homology (in all degrees but the top one) of a simplicial complex and of all of its links
is equivalent to saying that its Stanley-Reisner ring is Cohen-Macaulay. However, assuming
the (independent) Theorem 4.5, we can prove Theorem 2.3 without reference to Reisner’s
theorem.

Conditions H1 and H2 involve onlythe support |∆| of ∆: they are independent of the
way it is subdivided into cones. Indeed, they depend only on the topology of|∆|. A natural
question is, whether it is possible to find a description of the termsE2

pq also depending only
on the topology of|∆|. The answer (Section 3) is negative for all toric varieties whose fan
does not satisfy the local condition H1: this isa straightforward consequence of Proposition
3.4.

Therefore, in Section 4 weassume that Condition H1 holds, and moreover that all the
maximal cones of∆ have the same dimension as the variety. In other words, (a geometric
realization of)S∆ is a submanifold (with boundary) of the sphereSn−1 ⊂ Rn. Under these
assumptions, we can find an explicit expression of the termsE2

pq , where only the reduced
homology ofS∆ appears. In fact, we have (Theorem 4.5):

TorRTp (KT
0 (X(∆)),Z) ∼=

n⊕
i=p+1

H̃
i−p−1(

S∆,Z
(ni ))

.

The terms TorRTp (KT
q (X),Z), for q > 0, can be obtained from those withq = 0, applying

the Theorem of Universal Coefficients, since (by the Stanley-Reisner presentation)KT
q (X) =

KT
0 (X)⊗Z Kq(k).

The proof of Theorem 4.5 is based on the idea (already used in [Bri], [BBFK] and
[BreLu]) to give∆ the topology induced by the face order, and consider suitable sheaves
of rings on it. In our case, the expression ofKT

0 (X) as a subalgebra of
∏
i RTσi suggests to

construct a sheafA, whose ring of global sections isKT
0 (X). The termsE2

p,0 in Merkurjev’s
spectral sequence are the hypercohomology groups of the Koszul complex ofA. This hyper-
cohomology is itself the limit of another spectral sequence, but, thanks to Condition H1, most
of itsE1 terms vanish, and we can draw useful information from it.

1. Preliminaries on toric varieties and K-theory.
1.1. Toric varieties. The most complete references for toric varieties are Fulton’s and

Oda’s books, [Ful] and [Oda]. More information can be found in [KKMS], and in Danilov’s
[Dan] and Brylinski’s [Bry] papers. For a more detailed introduction, see also [GVT].

We recall here some terminology and properties. We fix a fieldk. Let Gm be the mul-
tiplicative group ofk. For a positive integern, T = T n = (Gm)n is the n-dimensional
(algebraic) splittorus onk.

A toric variety is a normal algebraic varietyX on k, with a dense embeddingT ↪→ X,
such that the action ofT on itself by multiplication can be extended to an action ofT onX.
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LetN ∼= Zn be a lattice, embedded inNR = R⊗N ∼= Rn. A (rational covex polyhedral)
cone σ is the positive hull of a finite set of vectorsvi ∈ N :

σ = pos{v1, . . . , vs} def= {r1v1 + · · · + rsvs | ri ≥ 0} .
Let M = Hom(N,Z). The dual cone of the coneσ is σ̌ = {u ∈ MR | 〈u, v〉 ≥

0 for anyv ∈ σ }. A support hyperplane for σ is the set{v ∈ NR | 〈u, v〉 = 0}, for some
u ∈ σ̌ . A face τ of σ is the intersection ofσ and a support hyperplane; we writeτ ≺ σ .

If σ is a cone inNR, the semigroupSσ = σ̌ ∩M is finitely generated ([Ful, Proposition
1]). LetAσ = k[Sσ ] the semigroup algebra ofAσ . Theaffine toric variety associated to σ is

(the affine algebraic variety)Xσ
def= Spec(Aσ ).

DEFINITION 1. A fan of cones inNR ∼= Rn is a finite set∆ of cones inNR, with the
following properties:

(1) if σ ∈ ∆ andτ ≺ σ , thenτ ∈ ∆,
(2) if σ1, σ2 ∈ ∆, σ1 ∩ σ2 is a common face ofσ1 andσ2.

The support of a fan∆ is the union of its cones,|∆| = ⋃{σ ∈ ∆} ⊂ NR. We set∆i =
{σ ∈ ∆ | dimσ = i}, while∆max is the set of themaximal cones, that is, cones that are faces
of no other cones in∆.

Given a fan∆, there is a toric varietyX(∆) associated to it: it is obtained glueing
together the affine toric varieties corresponding to its cones. See [Ful, Ch. 1] for details. The
latticesN andM are, respectively, the groups of 1-parameter subgroups and the group of
characters ofT ([Oda, 1.2]). Conversely, every toric variety can be obtained from a fan, via
this construction (see [Bry]).

X(∆) is smooth if and only if everyσ ∈ ∆ is generated by a subset of some basis of the
latticeN [Ful, 2.1]: we say then that∆ is regular. In particular, a regular fan issimplicial,
that is, every cone admits a number of generators equal to its dimension.

Let N andN ′ be two lattices,∆ a fan inNR and∆′ in N ′R, ψ : N → N ′ a homomor-
phism, andϕ = ψ ⊗ R : NR → N ′R. Let T andT ′ be the tori with lattices of 1-parameter
subgroupsN andN ′, respectively. Thenψ induces a homomorphismT → T ′. If, moreover,
for eachσ ∈ ∆, ϕ(σ) ⊂ σ ′ for someσ ′ ∈ ∆′, thenϕ induces atoric morphism, that is, a
morphism of algebraic varietiesX(∆)→ X(∆′), equivariant with respect to the actions ofT
andT ′. Such a toric morphism is proper if and only ifϕ−1(|∆′|) = |∆| (see [Ful, 2.4]).X(∆)
is complete if and only if |∆| = NR ∼= Rn.

1.2. Orbits and their closures ([Ful, 3.1]). There is a 1-1 correspondence between
orbits for the action ofT and cones in∆: for each coneσ of dimensiond the corresponding
orbit Oσ has dimensionn− d. Moreover:

τ ≺ σ ⇔ Oσ ⊂ Ōτ .

The closureŌσ of the orbitOσ ⊂ X(∆) is the finite union of smaller orbits, corresponding
to the cones in thestar Stσ = {τ ∈ ∆ | σ ≺ τ }. Moreover,Ōσ is itself a toric variety
for the action of the torusT/Tσ . In fact, if Nσ = N ∩ 〈σ 〉 is the lattice of 1-parameter
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subgroups ofTσ , let us consider the quotient latticeN(σ) = N/Nσ , and the real vector space
N(σ)R = NR/(Nσ )R. The projectionτ̄ onN(σ)R of a coneτ in NR is also a cone, and the
set{τ̄ ⊂ N(σ)R | τ ∈ Stσ } is a fan inN(σ)R. The associated toric variety is isomorphic to
the orbit closureŌσ .

1.3. TheRT -algebrasRTσ . The stabilizer of the points inOσ is a subtorusTσ ⊂ T ,
whose lattice of 1-parameter subgroups isN ∩ 〈σ 〉 ⊆ N . LetM = T̂ = Hom(T ,Gm) be
the group of characters ofT , andRT = ZT̂ = Z[M] the representation algebra ofT . For
each coneσ , RTσ = Z[M/σ⊥], whereσ⊥ = {m ∈ M | 〈u,m〉 = 0 for anyu ∈ σ } is the
orthogonal subgroup inM to σ (or to the subspace generated byσ ). If τ ≺ σ , the inclusion
induces a homomorphismRTσ → RTτ . In particular, for eachσ , the inclusionTσ ⊂ T

induces a morphismRT → RTσ , so eachRTσ is aRT -algebra.
We can easily get the projective dimension ofRTσ as aRT -module, indeed we can give

explicit free resolutions of eachRTσ .
If σ is a cone of dimensiond, σ⊥ is a subgroup of rankn− d in M. Letm1, . . . ,mn−d

be a basis ofσ⊥. Since the elementsm1 − 1, . . . ,mn−d − 1 ∈ RT generate (as an ideal)
the kernel of the projectionRT → RTσ (that is,Z[M] → Z[M/σ⊥]), and they are a regular
sequence inRT , the associated Koszul complex ([Mat, §16]),

K.(σ⊥) = K.(m1− 1, . . . ,mn−d − 1)(1)

is acyclic, andH0(K.) = RTσ : it is a free resolution ofRTσ . So projdimRT (RTσ ) = n −
dim(σ ). Moreover, if we considerZ as aRT -module via the rank mapRT → Z, and we
tensorK. with −⊗RT Z, the differentials vanish; so we have

TorRTi (RTσ ,Z) = Hi(Z⊗K.) ∼=
{∧i

σ⊥ ∼= Z
(
n−d
i ) for 0≤ i ≤ n− d ,

0 for i > n− d .
(2)

1.4. Two results in the K-theory of toric varieties. An introduction to the K-functor in
algebraic geometry can be found in ([Man]). Quillen ([Qui]) defined higher K-theory groups,
as homotopy groups of the geometric realization of a category.

If X is a scheme with the action of an algebraicgroup, equivariant coherent sheaves
can be defined, and the corresponding K-theory is called equivariant K-theory: the basic
definitions and theorems are in [Thom].

In equivariant K-theory computations are often easier than in ordinary K-theory, and
information about ordinary K-theory can be recovered from equivariant K-theory, for example
by means of spectral sequences.

In fact, a recent theorem by Vezzosi and Vistoli expresses the equivariant K-theory of
a smooth toric variety as a subalgebra of a product of representation rings of tori, while the
comparison of the equivariant and the ordinary K-theory is provided by a spectral sequence,
introduced by A. Merkurjev (from results of M. Levine).

From now on, given a smooth toric varietyX over the fieldk, with the action of an
algebraic torusT , we will denote byK∗(X) the ordinary K-theory, and byKT∗ (X) the T -
equivariant K-theory. The latter has a naturalstructure of graded ring, and each equivariant
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morphismf : X → Y induces a pullbackf ∗ : KT∗ (Y ) → KT∗ (X). In particular,KT
0 (X) is

a module over the representation ringRT ∼= KT
0 (Speck), via the homomorphism induced by

the morphismX→ Speck ([Mer, Example 2.1]). Remember thatK0(k) ∼= Z.

THEOREM 1.1 ([VeVi, Theorem 6.2]). If X = X(∆) is a smooth toric variety, and
σ1, . . . , σr are the maximal cones of ∆, there is an injective homomorphism of RT -algebras

KT∗ (X) ↪→
r⊕
i=1

K∗(k)⊗ RTσi .

An element (ai) ∈⊕r
i=1K∗(k)⊗RTσi is in the image of this homomorphism if and only

if, for each i �= j , the restrictions of ai and aj to K∗(k)⊗ RTσi∩σj coincide.

As a consequence,KT
0 (X) is afinite RT -module. The following theorem is a specializa-

tion to toric varieties of [Mer, Theorem 4.3].

THEOREM 1.2. Let X be a smooth toric variety, with the action of the torus T . There
is a homology spectral sequence

E2
pq = TorRTp (KT

q (X),Z)⇒ Kp+q(X) ,

such that the boundary homomorphisms

Z⊗RT KT
q (X)→ Kq(X)

are induced by the functor that forgets the action of T .
In particular, the ring homomorphism Z⊗RT KT

0 (X)→ K0(X) is an isomorphism.

2. Conditions on the fan∆ for the RT -flatness (freeness) ofKT
0 (X(∆)). In [VeVi]

Vezzosi and Vistoli give, as a consequence of their description of the equivariant K-theory,
a sufficient condition for the Merkurjev spectral sequence to degenerate atE2: in that case
there is an isomorphismZ⊗RT KT∗ (X) ∼= K∗(X). The condition is that the action of the big
torusadmits enough limits ([VeVi, Definition 5.8]).

This means that for allm ∈ M \ Z (whereM is the lattice of 1-parameter subgroups
of T , andZ the locus of zeros of a polynomial in SymZ(M

∨)), and for every closed point

x ∈ X, the morphismGm
m
↪→ T → X (the second arrow sendst to tx) extends to a morphism

A1→ X. It is clear that complete toric varieties belong to this class.
According to [VeVi, Proposition 6.7], a smooth toric varietyX(∆) admits enough limits

if and only if the set ⋂
τ∈∆

⋃
σ∈Stτ

(σ + 〈τ 〉) ⊂ NR(3)

has nonempty interior ([VeVi, Proposition 6.7]). This fact is very useful, as it allows to single
out many toric varieties whose K-theory has an explicit description.

Nonetheless, there are two main flaws in it. First, it provides only a sufficient, but not
a necessary condition: we will see below an example of a toric variety that does not have
enough limits, but such that the Merkurjev sequence degenerates. Second, it involves not only
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the face order of the cones in the fan, but the exact way in which the cones are set inside the
vector spaceNR. In particular, having enough limits is not a combinatorial invariant.

In this section we will give a necessary and sufficient condition, depending only on the
simplicial structure of the fan. This condition follows rather easily from the presentation of
KT∗ (X) as a Stanley-Reisner ring (or “face ring”) of the simplicial complexS∆ associated to
∆, and from a well-known criterion by Reisner, giving conditions on a simplicial complex in
order for its Reisner-Stanley ring to be Cohen-Macaulay (but see Section 4.3 for an alternative
proof, avoiding Reisner’s Theorem).

We recall here some notions of combinatorics, which we use in Theorem 2.3.
By a simplicial complex over the finite set (ofvertices) V = {v1, . . . , vs} we mean the

pair (V ,Σ), whereΣ is a set of subsets ofV (thesimplices or faces), such that:

σ ∈ Σ, τ ⊂ σ ⇒ τ ∈ Σ ;
{v} ∈ Σ for any v ∈ V .

Thedimension of a faceσ is the number of vertices ofσ minus one; the dimension ofΣ is
max{dimσ | σ ∈ Σ}. A simplicial complex ispure if all its maximal faces have the same
dimension.

Let∆ be a regular fan inRn. We associate to it thesimplicial complex S∆ in the following
way:

- thevertices of S∆ correspond to one-dimensional cones of∆;
- thefaces correspond to cones in∆.

The dimension ofS∆ is max{dimσ | σ ∈ ∆} − 1. A geometric realization ofS∆ is |∆| ∩
Sn−1 ⊂ Rn, whereSn−1 = {x ∈ Rn | |x| = 1} .

DEFINITION 2. Let R be a ring, andΣ a simplicial complex with verticesV =
{v1, . . . , vs} and facesS ⊂ P(V ). The Stanley-Reisner algebra on R relative toΣ is the
R-algebra

R[Σ] = R[X1, . . . , Xs]
I

,

whereI ⊂ R[X1, . . . , Xs ] is the ideal generated by all those monomialsXi1 · · ·Xih such that
{vi1, . . . , vih } �∈ S.

DEFINITION 3 (see [BH], 5.3). Let(V ,Σ) be a simplicial complex of dimensionn−
1, and letV be given a total order. For eachi-dimensional faceσ we writeσ = [v0, . . . , vi ]
if σ = {v0, . . . , vi} andv0 < · · · < vi .

Theaugmented chain complex of Σ is:

C(Σ) : 0→ Cn−1
∂→ Cn−2→ · · · → C0

∂→ C−1→ 0 ,

where we set

Ci =
⊕
σ∈Σ

dimσ=i

Zσ and ∂σ =
i∑

j=0

(−1)jσj
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for all σ ∈ Σ, andσj = [v0, . . . , v̂j , . . . , vi ] for σ = [v0, . . . , vi ]. By definition, dim∅ =
−1.

For an abelian groupG, thei-th reduced simplicial homology of Σ with values inG is:

H̃i(Σ,G) = Hi(C(Σ)⊗G) , i = −1, . . . , n− 1 .

The dual (cochain) complex HomZ(C(Σ),G) has differentials̄∂ , defined as(∂̄φ)(α) = φ(∂α)
for φ ∈ HomZ(Ci ,G), α ∈ Ci+1. Thei-th group ofreduced simplicial cohomology ofΣ with
values inG is:

H̃ i(Σ,G) = Hi(HomZ(C(Σ),G)) , i = −1, . . . , n− 1 .

If σ is a face of the simplicial complexΣ, the link of σ in Σ is lkΣ σ = lk σ = {τ ∈
Σ | σ ∩ τ = ∅, σ ∪ τ ∈ Σ}. It is easy to see that lkΣ σ is itself a simplicial complex over
the set{v ∈ V | v ∈ τ for someτ ∈ lk σ }.

PROPOSITION 2.1 (Reisner’s Criterion). ([Reis, Theorem 3]) Let (V ,Σ) be a sim-
plicial complex. The ring Z[Σ] is Cohen-Macaulay if and only if, for every simplex σ ∈ Σ,
we have

H̃i(lk σ,Z) = 0 for i < dim(lk σ) ,

and, moreover,

H̃i(Σ,Z) = 0 for i < dim(Σ) .

The following proposition gives a presentation of the equivariant K-theory of smooth
toric varieties, in terms of generators and relations, similar to that given in [BDP] for the
equivariant cohomology.

PROPOSITION 2.2 ([VeVi], Proposition 6.4). There is an isomorphism of K∗(k)-
algebras

KT∗ (X∆) ∼=
K∗(k)[X±1

ρ ]ρ∈∆1

I
,

where Xρ are indeterminates, each corresponding to a one-dimensional cone of ∆, and I is
the ideal inK∗(k)[X±1

ρ ] generated by all products
∏
ρ∈F (Xρ − 1) with F a subset of ∆1 that

does notgenerates a cone of ∆.

Now we can state and prove the result we announced.

THEOREM 2.3. Let X = X(∆) a smooth n-dimensional toric variety, associated to
the fan ∆. The following are equivalent:

(1) KT
0 (X) is a flat RT -module (or, equivalently, a projective RT -module, forKT

0 (X)

is a finite RT -module, or a free RT -module, since RT is a Laurent polynomial ring over Z);
(2) TorRTi (KT

0 (X),Z) = 0 for all i > 0;
(3) TorRTi (KT

q (X),Z) = 0 for all q ≥ 0 and for all i > 0;
(4) The following two conditions hold:

(i) ∆max= ∆n (⇒ S∆ is pure);
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(ii) H̃i(lk σ,Z) = 0 for any i < dim(lk σ), σ ∈ S∆, and

H̃i(S∆,Z) = 0 for any i < dim(S∆) .

PROOF. Let us write for shortK = KT
0 (X), and set∆max = {σ1, . . . , σr }. We will

show(4)⇔ (1)⇔ (2)⇔ (3).
(4) ⇒ (1). If dim(σ ) = n, RTσ = RT , so Condition (i) and Theorem 1.1 imply

thatK embeds into the productRT r . The ringRT is a subring ofK via the diagonal map
(RT ↪→ RT r , a �→ (a, . . . , a)), andK is a finitely generatedRT -module. Note also that, if
M is a maximal ideal inK, andm =M ∩ RT , then dim(K�) = dim(RT�). In fact, if ℘ is
a minimal prime ideal inK, contained inM, thenK/℘ ↪→ RT/℘̄ for some minimal prime
ideal℘̄ in RT , such that℘̄ ⊂ m.

We have verified the hypotheses of the following lemma.

LEMMA 2.4. Let R and S two noetherian rings, R regular, R ⊂ S, and S a finite
R-module. Moreover, suppose that for all ideals M maximal in S and m maximal in R, with
M ∩ R = m, we have dimR� = dimS�.

Then S is a projective R-module if and only if it is a Cohen-Macaulay ring.

PROOF. (Lemma 2.4) Letm ⊂ R be a maximal ideal. By the Auslander-Buchsbaum
formula ([BH, Theorem 1.3.3]),S� is a projectiveRm-module if and only if the depth ofS�
as aR�-module equals the depth (and so the dimension, asR is regular) of the ringR�.

Let d = dimR� and letx̄ = x1, . . . , xd be a regular system of parameters forR�. Then
x̄ is a regular sequence inS�; this is equivalent to saying thatx̄ is a regular sequence inS�
for each maximal idealM in S such thatM ∩ R = m.

Suppose thatS is a projectiveR-module. Then the sequencex̄ is maximal for every such
M. By the assumption that dimS� = dimR�, we see that for each maximal idealM of S,
the length of a maximalS�-regular sequence equals dimS�, that is,S is Cohen-Macaulay.

Conversely, ifS is Cohen-Macaulay, then for every maximal idealm ⊂ R, the depth of
S� as aR�-module equals the depth ofR�, that is,S is a projectiveR-module. �

It remains to prove thatK is a Cohen-Macaulay ring. Proposition 2.2 gives a ring isomor-
phismK ∼= Z[X±1]/I with X = X1, . . . , Xl indeterminates, andI = (∏j∈F (Xj − 1)|F �∈
S∆) ⊂ Z[X±1].

On the other hand, the Stanley-Reisner ring ofS∆ is Z[Y ]/J with Y = Y1, . . . , Yl , and
J = (∏j∈F Yj |F �∈ S∆) ⊂ Z[Y ].

Consider the following ring homomorphism:

Z[Y ] ϕ→ Z[X](4)

Yi �→Xi − 1 .

Obviously,ϕ is an isomorphism, andϕ(J ) = I ∩ Z[X], soϕ induces an isomorphism

Z[Y ]
J
∼= Z[X]
I ∩ Z[X] ,
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and it remains an isomorphism if we localize respectively at the multiplicative systemsSJ =
{∏i (Yi + 1)k}k∈N andSI = {∏i X

k
i }k∈N:

S−1
J

Z[Y ]
J
∼= S−1

I

Z[X]
I ∩ Z[X] =

Z[X±1]
I

= K .(5)

The ring on the left is a localization of the Stanley-Reisner ringZ[S∆], which is Cohen-
Macaulay by Proposition 2.1.

(1) ⇒ (4). If K is a projectiveRT -module, then by Lemma 2.4K is a Cohen-
Macaulay ring. ThenZ[S∆] is also Cohen-Macaulay: indeed we need only check that the
localizations ofZ[S∆] at maximal homogenous ideals are Cohen-Macaulay (asZ[S∆] is a
graded ring). This proves(1)⇒ (4.ii).

Now we show that all maximal cones have dimensionn = dim(X).
Let us prove this by contradiction: suppose that, say, dimσ1 < n.
This implies that, if we denote byπi : RT → RTσi the projections induced byTσi ⊂ T ,

and setIi = kerπ1, we have: htI1 ≥ 1.
Let πiij be the projectionsRTσi → RTσi∩σj . By Theorem 1.1,

K =
{
(x1, . . . , xr) ∈

r∏
i=1

RTσi

∣∣∣∣πiij (xi) = πjij (xj ) for all i, j

}
.

If x1 is a nonzero element in
⋂
i>1 kerπ1

1i , thenx = (x1,0, . . . ,0) ∈ K, and annx = I1, so
ht(annx) ≥ 1.

Let m be the kernel of the rank mapRT → Z, A the localizationRT�, and℘ an
associated prime ideal ofK as aRT -module such thatI1 ⊂ ℘. As℘ ⊂ m, ℘A ∈ AssA K�
too, and ht(℘A) = ht(℘).

Since, for a local noetherian ringR and a finitely generatedR-moduleM, projdimR M ≥
ht(a) for any ideala associated ofM, we have:

1 ≤ ht(℘A) ≤ d def= projdimA(K�) .

It follows that 0 �= TorAd (K�,Q) = A⊗RT TorRTd (K,Z), so TorRTd (K,Z) �= 0, contradicting
our assumption.

(1)⇒ (2). Obvious.

(2) ⇒ (1). From now on, letB = Z[Y1, . . . , Yn] be the ring of polynomials inn
indeterminates. Notice that the morphismϕ defined in (4), followed by the canonical arrow to
the localization at the multiplicative system{∏i X

k
i }k∈N, is a ring monomorphism that makes

RT a flatB-module. Remember that for eachσ ∈ ∆, RTσ ∼= RT/Iσ for some idealIσ
contained in the kernel ofRT → Z. Let Jσ = Iσ ∩ B, andBσ = B/Jσ . For anyτ ≺ σ we
have a surjective mapBσ → Bτ such thatRTσ → RTτ is obtained from it, by tensoring with
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−⊗B RT . We define here theB-module

M =
{
(a1, . . . , ar) ∈

r∏
i=1

Bσi

∣∣∣∣ ai |Bσi∩σj = aj |Bσi∩σj for all i, j

}
.

ThenK = M ⊗B RT , andK is flat overRT if and only ifM is flat, or projective, overB.
Assumption (2) implies that

TorBi (M,Z) = 0 , i > 0 .(6)

As B is a graded ring withB0 = Z, M is flat overB if and only ifMp is flat overBp, with
p ∈ N varying among all primes, where we have definedIp = (p)+ (Y1, . . . , Yn), Bp = BIp
andMp =MIp = M ⊗B Bp.

By the local criterion of flatness (see for example [Eis, Theorem 6.8]),Mp is flat over

Bp if and only if Tor
Bp
1 (Mp,Z/(p)) = 0. From (6) it follows that Tor

Bp
1 (Mp,Z(p)) = 0, as

ZIp ∼= Z(p), the localization ofZ atp. From the short exact sequence

0→ Z(p)
·p→ Z(p)→ Z/(p)→ 0

it follows that Tor
Bp
1 (Mp,Z/(p)) = 0 if and only if multiplication byp in Zp ⊗Bp Mp is

injective: and this is true, sinceM, and alsoMp, are torsion free.

(3)⇒ (2). Obvious.

(2)⇒ (3). Fix an integerq > 0. Proposition 2.2 implies that

KT
q (X) = Kq(k)⊗Z K

T
0 (X) .

Let L∗ be the Koszul resolution (1) of theRT moduleZ: everyLi ∼= ∧i
(RT )n is a free

RT -module. Then, by the definition of TorRT∗ (−,Z) as a derived functor of−⊗RT Z,

TorRTp (KT
0 (X),Z)=Hp(L∗ ⊗RT KT

0 (X)) ;
TorRTp (KT

q (X),Z)=Hp(L∗ ⊗RT KT
q (X))

=Hp(L∗ ⊗RT (KT
0 (X)⊗Z Kq(k))) .

SinceLp⊗RT (KT
0 (X)⊗ZKq(k)) ∼= (Lp⊗RT KT

0 (X))⊗ZKq(k), we can apply the Universal
Coefficient Theorem (in homology, see for example [MacL, V.11, Theorem 11.1]): given a
homology complexL∗ of abelian groups with no elements of finite order, and an abelian
groupG, then for anyi > 0 there is a split short exact sequence:

0→ Hi(L∗)⊗G→ Hi(L∗ ⊗Z G)→ TorZ
1 (Hi−1(L∗),G)→ 0 .

In our case, for everyp > 0, there is a short exact sequence (K = KT
0 (X)):

0→ TorRTp (K,Z)⊗Z Kq(k)→ TorRTp (KT
q (X),Z)→

→ TorZ
1 (TorRTp−1(K,Z),Kq(k))→ 0 .

(7)
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To conclude, notice that, forp > 1, TorRTp (K0(X),Z) = 0, while Z ⊗RT K0(X) =
TorRT0 (K0(X),Z) is torsion-free, so TorZ

1(Z ⊗ K0(X),G) = 0 for any abelian group
G. �

EXAMPLE (of a toric variety that satisfies the conditions of Theorem 2.3, but that does
not admit enough limits).

Let {e1, e2, e3} a basis inN ∼= Z3. For any triple(a1, a2, a3) ∈ {0,1}3, let σa1,a2,a3 be
the cone generated by{(−1)a1e1, (−1)a2e2, (−1)a3e3} (they are the “octants” ofR3).

Let us consider now the fan∆ such that the maximal cones are:

∆max= {σ000, σ010, σ011, σ111} .
X(∆) is a non-complete variety; it can be embedded as an openT -invariant set ofP1×P1×P1

(more precisely, it can be obtained fromP1 × P1 × P1 removing the closure of three one-
dimensional orbits:P1× {0} × {∞}, {∞} × P1× {0}, {∞} × {0} × P1).

Let ρ1 = pos{e2} (= {re2 | r ∈ R, r ≥ 0}, see Section 1.1) andρ2 = pos{−e1}.
Notice thatσ000 is the only maximal cone that containsρ1 as a face, whileσ111 is the

only maximal cone containingρ2. So⋃
σ∈Stρ1

σ + 〈ρ1〉 = σ000∪ σ010,

while ⋃
σ∈Stρ2

σ + 〈ρ2〉 = σ011∪ σ111.

The intersection of these two sets is pos{e1,−e2}, which has empty interior. A fortiori the set
(3) has empty interior, soX(∆) does not admit enough limits.

On the other hand,|∆| ∩ S2 is homeomorphic to{(x, y) ∈ R2 | x2 + y2 ≤ 1}, so it is
contractible, therefore the reduced homology ofS∆ and of every link is zero: the equivalent
conditions of Proposition 2.3 are thus satisfied.

3. K-theory and subdivisions of the fan. The combinatorial conditions equivalent
to the flatness ofKT

0 (X(∆)), given in Theorem 2.3, depend only on the topology of the
support of the fan∆, not on its subdivision into cones. IfKT

0 (X) is not flat, someE2 term
outside the column of index zero in Merkurjev spectral sequence is nonzero:

TorRTp (KT
q (X),Z) �= 0 for someq, p > 0 .

A natural question is: given the toric varietyX(∆), does there exist a description of these
groups TorRTp (KT

q (X(∆)),Z), involving only topological invariants of|∆|? We will show in
Proposition 3.4 and in Corollary 3.5 that a necessary and sufficient condition for the existence
of such a description is the vanishing of the reduced homology of all links of the conesσ �= 0
in ∆, in every dimension strictly less than the dimension of lkσ .

In the next section we will assume this condition on∆, and will be able to give the
expected description.
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3.1. Blow-ups along orbit closures. Let us begin by comparing two toric varieties
associated to fans with the same support. Let∆1 and∆2 be two fans inRn, corresponding
to toric varietiesX1 = X(∆1) andX2 = X(∆2). Assume that|∆1| = |∆2|. Let ∆′ be a
common subdivision of the two fans: that is, every cone of∆1 or ∆2 is union of cones of
∆′. The identity ofRn induces twoT -equivariant morphismsφi : X(∆′) → Xi . They are
birational, as the two varieties have the same torusT n as a dense open subset, andproper (see
[Ful, 2.4]).

For birational and proper equivariant morphisms between toric varieties the weak decom-
position theorem holds; it was proved independently by Morelli in [Mor] and by Włodarczyk
in [Wło].

THEOREM 3.1. Every birational proper equivariant morphism between smooth toric
varieties φ : X(∆′)→ X(∆) can be decomposed as follows:

X(∆′)→ X1← X2→ · · · ← Xk → X(∆) ,

where X1, . . . , Xk are smooth toric varieties, and every arrow is an equivariant morphism
obtained by composing blow-ups along T -invariant closed subvarieties.

We have reduced the problem to the study ofKT
0 and its groups TorRT∗ , whenφ is the

blow-up of an orbit closure.
Blowing up the orbit closure relative to the coneσ consists of replacinḡOσ with a T -

invariant divisor. This corresponds to the modification of the fan, called thestar subdivision.
Given two conesσ, τ in NR, let us denote withσ + τ their Minkowski sum: σ + τ =

{x + y | x ∈ σ, y ∈ τ }. It is a cone inNR.

DEFINITION 4. Let∆ be a simplicial fan inNR, σ ∈ ∆, andρ ⊂ σ a one-dimensional
cone (ray) passing through the relative interior ofσ (i.e.,ρ is contained in no proper face of
σ ). Thestar subdivision of ∆, relative to the coneσ and to the rayρ, is the fan{σ/ρ} · ∆,
obtained as the union of∆ \ Stσ and

{ρ + σ ′ + ν | σ �= σ ′ ≺ σ, ν ∈ lk σ } .
In other words, this subdivision does not change the cones not containingσ , but it divides

each cone containingσ into the cones generated byρ and every proper face.
Assume now thatσ is regular. Thenσ is generated by vectors inN , e1, . . . , es , that can

be completed to a basis ofN . Letρσ the one-dimensional cone generated byq = e1+· · ·+es .
Let {σ } ·∆ = {σ/ρσ } ·∆.

PROPOSITION 3.2 ([Oda], Prop. 1.25). The blow-up of the toric variety X(∆) along
the orbit closure Ōσ is the toric variety associated to the fan obtained by the star subdivision
of ∆ relative to σ and ρσ :

BlŌσ
X(∆) = X{σ }·∆ .

3.2. How the groups TorRTp (KT
0 (X(∆)),Z) change by subdivisions of∆. Let us

see how the equivariant K-theory of the blow up depends on the K-theory of the variety, of
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the orbit closure and of the exceptional divisor. LetY = Ōσ be the centre of the blow up,
andY ′ = φ−1(Y ) the exceptional divisor. The situation can be pictured by the following
(cartesian) square:

Y ′ �
� j ��

ψ
����

X′

φ
����

Y
� � i �� X

wherei andj are the embedding ofY andY ′ respectively, andψ = φ|Y ′ . Y ′ is the projective
bundle overY defined by the conormal sheafC of Y in X: Y ′ = P(C) (see [Har, Theorem
II.8.24]). TheKT -theory ofX′ is connected to that ofX, Y andY ′ by a split short exact
sequence ofRT -modules:

0→ KT∗ (Y )
α−→ KT∗ (X)×KT∗ (Y ′)

β−→ KT∗ (X′)→ 0 ,

whereα andβ are defined as follows. LetF be the class inKT∗ (Y ′) of the kernel of the
canonical surjectionψ∗C → OY ′(1) = OP(C)(1), andλ−1 the operator ofKT∗ (Y ′) defined
by: λ−1F = ∑

i≥0(−1)iF i . If y ∈ KT∗ (Y ), we defineα(y) = (i∗y,−ψ∗(y)λ−1F). If
x ∈ KT∗ (X) andy ′ ∈ KT∗ (Y ′), thenβ(x, y ′) = φ∗x − j∗y ′ (The corresponding short exact
sequence for ordinary K-theory can be found in [Man, Theorem 15.2]; the equivariant version
can be obtained in a similar manner.).

The long exact sequence of the TorRT∗ (−,Z) splits into short exact sequences, for any
i ≥ 0:

0→ TorRTi (KT∗ (Y ),Z)→ TorRTi (KT∗ (X),Z)× TorRTi (KT∗ (Y ′),Z)→
→ TorRTi (KT∗ (X′),Z)→ 0 .

(8)

REMARK 1. In the case of toric varieties, we can see that the exceptional divisor of a
blow up is a projective bundle, also by comparing the fan∆ with the star subdivision{σ } ·∆,
or better by comparing the fans associated toY andY ′.

The orbit closure relative toσ is the toric variety associated to the projectionStσ of
St∆ σ on the quotientN(σ)R, andY ′ is the orbit closure associated toρσ in {σ } · ∆. It is the
toric variety associated to the projectionStρσ of {σ } · Stσ on the quotientVρ := NR/〈ρσ 〉
(see Section 1.2).

Let us recall the following definition ([Ewa, Chapter VI, Definition 6.3]).

DEFINITION 5. LetΣ = Σ ′ · Σ ′′ = {σ ′ + σ ′′ | σ ′ ∈ Σ ′, σ ′′ ∈ Σ ′′} a fan inRn (join
of two fansΣ ′ andΣ ′′) such that

(a) Σ ′ is contained in a vector subspaceU ⊂ Rn with dim(U) < n,
(b) Σ ′′ can be projected bijectively on a fanΣ0 contained in the orthogonal comple-

mentU⊥ of U .
Then we callΣ0 a projection fan of Σ perpendicular toΣ ′, and say thatΣ has a projection
fan (with respect toΣ ′,Σ ′′).
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Now denote with∆σ the projection onVρ of the set of cones (inNR) {τ +ρσ | σ �= τ ≺
σ }, and with∆lk σ the projection, on the same space, of{τ + ρσ | σ ∩ τ = {0}, τ + σ ∈ ∆}.
We can easily see thatStρσ = ∆σ · ∆lk σ , and that∆lk σ can be bijectively projected on the
orthogonal complement of|∆σ |. ThereforeStρσ has a projection fan: this is significant in
view of the following proposition ([Ewa, VI, Theorem 6.7]):

PROPOSITION 3.3. LetΣ,Σ ′,Σ ′′ be regular fans in Rn such thatΣ = Σ ′·Σ ′′, and let
Σ0 be the projection fan ofΣ perpendicular toΣ ′. Then the projection π : Σ → Σ0 induces
a map of fans such that, for any σ0 ∈ Σ0, we have an isomorphism π̄−1(Xσ0)

∼= X(Σ ′)×Xσ0

(where Xσ0 is the affine toric variety relative to σ0, as a cone in its linear span 〈σ0〉, and the
lattice considered is not N , but N ∩ 〈σ0〉. See Section 1.1.).

This means exactly thatX(Σ)→ X(Σ0) is a fibre bundle onX(Σ0) with fibreX(Σ ′).
In the case of the blow up of̄Oσ

∼= X(Σ0),Σ ′ = ∆σ , andX(Σ ′) ∼= Pr−1.

The following proposition and corollary contain the condition that we must assume, in
order to describe TorRTp (KT

q (X),Z) in terms of topological invariants of|∆|.
PROPOSITION 3.4. Let X = X(∆) the smooth toric variety associated to the fan∆ in

NR ∼= Rn, σ ∈ ∆d a cone of dimension d ≥ 2,∆′ = {σ } ·∆,X′ = X(∆′) (i.e.,X′ is the blow
up of X along the closure of the orbit Oσ ). Then the following hold:

(i) if H̃j (lk σ,Z) �=0 for some j<n−d−1, then TorRTi (KT
q (X),Z) �∼=TorRTi (K

T
q (X

′),Z)
for some i > 0, q ≥ 0;

(ii) conversely, if TorRTi (KT
q (X),Z) �∼= TorRTi (KT

q (X
′),Z) for some i, q ≥ 0, then for

some τ , with σ ≺ τ , we have H̃j (lk τ,Z) �= 0 for some j < n− dim(τ )− 1.

PROOF. (i) With the above remarks and notation in mind, we need only to recall the
relation between the K-theory ofY andY ′. We know thatY ′ is a projective bundle with
baseY and fibrePd−1; T acts on the base and on each fibre, and the projectionY ′ → Y

is T -equivariant. We apply [Thom, Theorem 3.1] and get a group isomorphismKT
q (Y

′) ∼=
KT
q (Y )

⊕d , which is alsoRT -linear, sinceY ′ → Y is the projectivization of aT -linearized

vector bundle (the normal bundle toY ). Hence the abelian group TorRTi (KT
q (Y

′),Z) is thed-

fold direct power of TorRTi (KT
q (Y ),Z). Assume thatH̃j (lk σ,Z) �= 0 for somej < n−d−1.

From Theorem 2.3 it follows that TorRTi (KT
q (Y ),Z) �= 0 for somei > 0 and for someq ≥ 0.

From the exact sequence (8) we have

TorRTi (KT
q (X

′),Z)∼= TorRTi (KT
q (X),Z)⊕ TorRTi (KT

q (Y ),Z)d−1

�∼= TorRTi (KT
q (X),Z) .

(ii) By the exact sequence (8) we can say that, if TorRT
i (KT

q (X
′),Z) �∼=TorRTi (K

T
q (X),Z),

then TorRTi (KT
q (Y ),Z) �= 0, and, by Theorem 2.3, this is true if and only if there exists some

τ such thatσ ≺ τ , andH̃j (lk τ,Z) �= 0 for somej < n− dim(τ )− 1. �

COROLLARY 3.5. Let∆ be a regular fan in Rn andX = X(∆) the associated smooth
toric variety. Then the following are equivalent:



EQUIVARIANT K-THEORY OF SMOOTH TORIC VARIETIES 217

(a) for every subdivision∆′ of ∆,

TorRTp (KT
q (X),Z) ∼= TorRTp (KT

q (X(∆
′)),Z)

for any p > 0 and q ≥ 0;
(b) H̃j (lk σ,Z) = 0 for any σ ∈ S∆ and for any j < dim(lk σ).

PROOF. (a)⇒(b) follows immediately from Proposition 3.4.
(b)⇒(a) follows from Proposition 3.4, from Theorem 3.1, and from the following re-

mark. �

REMARK 2. Let |S∆| be a geometric realization ofS∆, and letH̃•(|S∆|, |S∆| \ x;Z)
be the relative reduced (singular) homology, forx ∈ |S∆|. Then Condition (b) of Corollary
3.5 is equivalent to

H̃i(|S∆|, |S∆| \ x;Z) = 0 for all i < dim(S∆) , x ∈ |S∆| ,
see, e.g., [Sta, Proposition 4.3]. Therefore this condition depends only on the topology of
|S∆|, and if it holds, it still holds when we perform a star subdivision∆ or, when possible, the
inverse operation (star reunion of cones).

REMARK 3. If we assume, as we will do in Proposition 4.5, that all the maximal cones
of ∆ have the same dimensionn as the variety (i.e.,S∆ is pure of dimensionn − 1), then
|S∆| is a homology manifold, i.e., for everyx ∈ |S∆| eitherHn(|S∆|, |S∆| \ x) = 0 or
Hn(|S∆|, |S∆| \ x) = Z.

Indeed, suppose thatS∆ is pure: since|S∆| can be embedded in the sphereSn−1, the
highest homology of the link of a vertex is eitherZ or zero. More precisely, ifv is a vertex of
(some suitable subdivision of)S∆, then lk(v) is a pure(n−2)-dimensional simplicial complex,
embedded in a sphereSn−2. There are two possibilities: either| lk(v)| ∼= Sn−2 or | lk(v)| �∼=
Sn−2. In the first caseH̃n−2(lk v) = Z; in the second case, lkv is a(n− 2)-dimensional pure
simplicial complex that can be embedded inRr−2: so H̃n−2(lk v) = 0, as there can be no
(n− 2)-cycles. We conclude by the isomorphismHn−1(|S∆|, |S∆| \ v) ∼= H̃n−2(lk v), which
holds provided we consider a sufficiently fine subdivision of|S∆|.

Moreover, the above conditions imply thatH̃d(lk σ,Z) equals 0 orZ, for everyσ ∈ Σ
(not only for the vertices) andd = dim(lk σ). Indeed, letσ = σ ′ ∪ v, for v ∈ σ a vertex.
Then lkΣ σ = lklk σ ′ v. So we are back in the previous situation, as lkσ ′ is a pure simplicial
complex, and it satisfies the homology conditions on the links, since, forτ ∈ lk σ ′, lklk σ ′ τ =
lkΣ(τ ∪ σ ′).

4. Computing TorRTp (KT
q (X),Z)—when invariant by subdivision of the fan. The

main result in this section is Theorem 4.5, where we will be able to express the groups
TorRTp (KT

0 (X),Z) in terms of the reduced simplicial homology of the fan∆.

The proof of that theorem relies on the following remark: the embedding ofKT
0 (X(∆))

in the product of representation rings of tori (Theorem 1.1) can be restated by saying that
KT

0 (X(∆)) is the ring of global sections of a sheaf ofRT -algebras over the fan space∆.
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We will first recall the definition and the main properties of such sheaves. Then we will
apply them to compute the groups TorRT

p (KT
0 (X),Z) under the assumption that∆ satisfies

Condition (16), i.e., the vanishing of the local homology ofS∆. By means of homological
algebra machinery we will be able to find explicit formulas linking these groups to the reduced
homology ofS∆.

4.1. Cohomology of sheaves on fan spaces. Some of the following notation and ideas
have already been used in [Ale, Bac, BreLu, BBFK, Bri]. In [Bac] some aspects of sheaves
on partially ordered sets are studied, but the main focus is on geometric lattices. Bressler and
Lunts ([BreLu, §3]) study sheaves ofR-algebras on fan spaces, especially in the non rational
case. In [BBFK] Barthel et al. give conditions on the topology of|∆|, in order for the group
of global sections of a sheaf on∆ to be free on the ring of polynomials. Brion ([Bri]) applies
the theory of sheaves on fan spaces to the study of the polytope algebra.

Our reference for definitions and general properties of sheaves on topological spaces is
[Har, II.1 and III.1-2].

4.1.1. Sheaves on partially ordered sets. Let (X,≤) be a finite partially ordered set.
There is a topology onX, induced by the order, such that the open sets are theincreasing
subsets, that is,

A ⊂ X , A is open⇔ (x ∈ A, y ∈ X, x ≤ y ⇒ y ∈ A) .
Indeed, it is straightforward to verify that the intersection and the union of a family of increas-
ing subsets are increasing subsets. The continuous maps between two partially ordered sets,
with this topology, are the order-preserving maps.

For each elementz ∈ X, define the following sets:

X̄z = {x ∈ X | z ≤ x} is the smallest open set containing the elementz ∈ X,
Xz = {x ∈ X | z < x} = X̄z \ {z},
X̄z = {x ∈ X | x ≤ z} is the closure of{z},
Xz = {x ∈ X | x < z} = X̄z \ {z}.

Let us consider now apresheaf of abelian groupsF on X. To every open set (increasing
subset)U ⊂ X an abelian groupF(U) is associated:F(U) is called the set ofsections of F
onU ; for every inclusion of open setsV ⊂ U there is a group homomorphismρUV : U → V ,
called therestriction fromU toV . We will adopt the usual shorthands|V = ρUV (s) for anys ∈
F(U).

F is asheaf if the following glueing condition for sections holds:
given an open subsetU ⊂ X, an open coveringU = ⋃

i Ui , and a family of
sections(si ), si ∈ F(Ui) for anyi, that are compatible on the intersections,
that is, si |Ui∩Uj = sj |Ui∩Uj for anyi, j ; there exists a unique global section
s ∈ F(U) such thats|Ui = si for anyi.

The stalk of F at x ∈ X is by definitionFx = lim←−F(U), with U varying in the set{U ⊂
X | x ∈ U, U open}. Since this set contains̄Xx as a minimum, we have more simplyFx =
F(X̄x).
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REMARK 4. We can write in a more explicit form the sections of a sheafF on the
open setU . Since

U =
⋃
x∈U

X̄x =
⋃

x∈Umin

X̄x ,

whereUmin is the set of the minimal elements ofU , we have

F(U) ∼= {(sx)x∈Umin | sx ∈ Fx, sx |X̄x∩X̄y = sy |X̄x∩X̄y , x, y ∈ Umin} .(9)

Notice that, by the above formula,F is determined by the data of
(1) the stalksFx for everyx ∈ X, and
(2) the restrictionsFx → Fy for all pairsx ≤ y.
Indeed, in order to assign a sheaf on the finite partially ordered setX, it is enough to

assign an abelian groupGx to every elementx ∈ X, and, to each pairx ≤ y, a group
homomorphismρxy : Gx → Gy such that for any triple of elementsx ≤ y ≤ z in X the
equalityρyzρxy = ρxz holds. If, given these data, wedefine F by means of (9) for every open
U ⊂ X, we get a sheaf onX, whose stalks are the groups{Gx}.

We recall that a sheafF is flabby if, for each pair of open setU ⊂ V , the restriction
F(V ) → F(U) is surjective. Flabby sheaves are acyclic, i.e., they have zero cohomology
in positive degree, see [Har, Proposition 2.5]: we will exploit this property both to compute
the cohomology of the simple sheaves on fan spaces (see below), and to connect the groups
TorRT∗ (KT (X),Z) to the hypercohomology of suitable complexes of sheaves.

The following criterion for flabbiness is proved in [BreLu] in the case thatX is a fan
space.

LEMMA 4.1. Let F a sheaf (of abelian groups) on the finite partially ordered set
(X,≤). The following are equivalent:

(i) F is flabby;
(ii) for any x ∈ X, the restriction Fx = F(X̄x)→ F(Xx) is surjective.

PROOF. Clearly (i)⇒(ii). Conversely, to prove (ii)⇒(i), it is enough to show that, if
Condition (ii) holds, then, for any openU and anyx �∈ U , we can extend every section on
U to a section onV = U ∪ X̄x . Any open subsetU ⊂ V can be obtained by successive
extensions of this kind.

Notice thatF(V ) can be identified with the subset ofF(U) × Fx of all pairs that have
the same restriction toU ∩ Xx : the lemma is proven if we show that, for eachx ∈ X, and
V ⊂ Xx , the restrictionF(Xx)→ F(V ) is surjective. We proceed by induction on cork(x),
where we define theco-rank of x, cork(x), as the maximumr among the length of chains
x = x0 < · · · < xr , wherexi ∈ X for anyi.

If cork(x) = 1, the elements ofXx have co-rank zero, so they are all open points ofX:
thereforeF(Xx) =∏

y∈Xx Fy , and for everyV ⊂ Xx , F(V ) =∏
y∈V Fy .

Assume now that cork(x) > 1, andV � Xx . If y ∈ Xx \ V , F(V ∪ Xy) ∼= {(s, s′) ∈
F(V ) × Fy | s|V∩Xy = s′|V∩Xy }. Given a sections ∈ F(V ), in order to extend it toV ∪ X̄y
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we need only to find somes′ ∈ F(Xy) such thats′|V∩Xy = s|V∩Xy , and we can do that by
inductive hypothesis, as cork(y) < cork(x). �

4.1.2. Sheaves on fan spaces. Let us now specialize to the case of fan spaces, that is,
when(X,≤) is the set of cones of a regular fan∆ in Rn. We introduce an order “≤” on ∆,
defined in the following way:

σ, τ ∈ ∆; σ ≤ τ ⇔ τ ≺ σ (τ is a face ofσ ) .

Notice that≤ inverts the face order, so the topology on∆ relative to this order depends only
on the combinatorial structure of∆.

Given a coneσ ∈ ∆, the sets defined in the previous sections become:

∆̄σ = σ̄ is the subfan generated by the coneσ ;
∆σ = ∆̄σ \ {σ } = σ̄ \ σ = ∂σ is the boundary of̄σ ;
∆̄σ = {τ ∈ ∆ | σ ≺ τ } = Stσ is thestar of σ in ∆;
∆σ = ∆̄σ \ {σ } = Stσ \ σ .

The open sets for this topology are the subfans of∆. The cone containing only the point
0 ∈ Rn is the unique maximal element, therefore the maximum, of∆. The set{0} is open,
and dense in∆, which is thus irreducible, as a topological space. The maximal cones are
the minimal elements with respect to the order. Notice that this topology corresponds to the
Zariski topology onX(∆) whose closed sets are theT -invariant subsets ofX(∆).

For an abelian groupG, let G̃ be the constant presheaf with values inG. In fact,G̃ is a
sheaf, since all nonempty opens in∆ are connected. Moreover,G̃ is flabby, as all restrictions
to nonempty opens are the identity ofG. Also the sheaves, obtained by restrictingG̃ to the
stars of cones (which are closed in the fan space∆) are flabby (and so acyclic).

Let us define a class of sheaves, whose cohomology can be easily computed in terms of
the simplicial cohomology of certain subsets of∆.

DEFINITION 6. If G is an abelian group, andσ ∈ ∆, the simple sheafG(σ) with
support inσ and values inG is defined in the following way on the stalks:

G(σ)τ =
{
G if τ = σ ,

0 if τ �= σ ;

and all restrictions are zero.

REMARK 5. We recall that the projection of Stσ on the quotientN(σ)R is a fan, which
we denote withStσ (see Section 1.2). It can be identified with a subspace of∆: to every cone
of Stσ we associate its preimage (through the projection) inNR. Notice that the corresponding
simplicial complexSStσ is just the link lkS∆ σ .

The following two facts are crucial. (A less direct proof can be found in [Bac].)

PROPOSITION 4.2 (see [Bac], Lemma 3.1).Let G be an abelian group, and σ ∈ ∆.
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(i) The global sections of the simple sheafG(σ) are

Γ (∆,G(σ)) = H 0(∆,G(σ)) =
{
G if σ is a maximal cone ,

0 otherwise .

(ii) If i ≥ 1, then

Hi(∆,G(σ)) ∼= H̃ i−1(SStσ ,G)
∼= H̃ i−1(lk σ,G) ,(10)

where H̃ ∗ is the reduced simplicial cohomology.

PROOF. The first part of the proposition is straightforward, in view of the formula (9)
describing the sections of sheaves on∆: the global sections ofG(σ) are the families of
sections on maximal cones, compatible with the intersections. Ifσ is not maximal, all these
sections are zero. If it is maximal, the only nonzero sections are those inG(σ)σ = G.

Let us prove (ii). As we pointed out in Remark 5, we can consider the star ofσ as
the closed image of a fan spaceStσ through a continuous mapjσ : Stσ ↪→ ∆ (σ in ∆
corresponds to 0 inSt(σ )). The sheafG(σ) on∆ can be obtained by pushing forward viajσ
the sheafG(0) on Stσ : G(σ) = (jσ )∗G(0). SoHi(∆,G(σ)) = Hi(Stσ,G(0)). We must
thus prove the follwing:

given a fan∆, Hi(∆,G(0)) = H̃ i−1(S∆,G) for i > 0 .

Let G̃ the constant sheaf on∆ with values inG. The simple sheafG(0) is a subsheaf of̃G.
The quotient sheaf̄G = G̃/G(0) has stalks equal to those ofG everywhere, except at 0, and,
for any pair of conesτ ≺ σ , the restrictionFσ → Fτ is either zero or the identity. In other
terms, ifi0 : {0} ↪→ ∆, andj0 : ∆ \ 0 are the (open and closed resp.) embeddings of{0} and
of its complement, then̄G = (j0)∗(G̃|∆\0). The short exact sequence

0→ G(0) = (i0)!G̃|0→ G̃→ Ḡ→ 0

induces the long exact sequence in cohomology:

0→ H 0(∆,G(0))→ H 0(∆, G̃)→ H 0(∆, Ḡ)

→ H 1(∆,G(0))→ H 1(∆, G̃) = 0 ,
(11)

and, sinceG̃ is acyclic,

0→ Hi−1(∆, Ḡ)
∼=−→Hi(∆,G(0))→ 0 for i ≥ 2 .

Since∆ \ 0 is closed in∆,Hi−1(∆, Ḡ) = Hi−1(∆ \ 0, G̃|∆\0) = Hi−1(∆ \ 0, j∗0 Ḡ), so we
can conclude by applying the following lemma. �

LEMMA 4.3 (see [Bac], Theorem 2.1).Given a fan ∆ and an abelian groupG,

Hi(∆ \ 0, Ḡ) ∼= H̃ i(S∆,G) for i ≥ 1 ,

where now we consider Ḡ as the constant sheaf with values in G, on ∆ \ 0 (we should write
j∗0 (Ḡ)).
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PROOF. Let∆1 = {ρ1, . . . , ρm} be the set of one-dimensional cones, andS the set of
all the stars of the cones in∆1: S = {Cj = St(ρj ) | j = 1, . . . ,m}. S is a closed covering
of ∆ \ 0. The restriction ofḠ to any intersection of elements inS is a flabby sheaf: we
can thus consider a generalized Mayer-Vietoris sequence, that will allow us to compute the
cohomology ofḠ.

Let Gi0...ip = Ḡ|Ci0∩···∩Cip . The sheaves appearing in the following complex are all

acyclic, except (possibly)̄G:

0→ Ḡ→
m⊕
i=1

Gi →
⊕

1≤i0<i1≤m
Gi0i1 →

⊕
1≤i0<i1<i2≤m

Gi0i1i2 → · · ·

→
⊕

1≤i0<···<in−1≤m
Gi0...in−1 →

⊕
1≤i0<···<in≤m

Gi0...in → 0 .
(12)

Differentials are defined as follows:

d((a10...ik )i0...ik ) = (bj0...jk+1)j0...jk+1,(13)

where (indexes marked with∧ are omitted):

bj0...jk+1 =
k+1∑
h=0

(−1)hāj0...ĵh...jk+1
.(14)

The above notation means: ifa ∈ Gj0...ĵh...jk+1
(U), thenā is the image ofa via the restriction

mapGj0...ĵh...jk+1
(U)→ Gj0...jk+1(U).

The complex (12) is exact (and so an acyclic resolution of the sheafḠ). To show this, fix
a coneσ , say of dimensiond − 1, and consider the complex of the stalks relative toσ . Notice
that(Ḡi0...ip )σ = G if σ ∈ Ci0 ∩ · · · ∩ Cip , and 0 otherwise, so this localization is the Koszul
complexG⊗K∗(1, . . . ,1):

0→ G→ Gd →
2∧
Gd → · · · →

d∧
Gd → 0 ,

which is exact.
For any(p+1)-uple of indexesi0, . . . , ip, the intersection of the stars of one-dimensional

cones{ρik } is either the empty set, or the star of the coneσi0...ip generated byρi0, . . . , ρip :

Ci0 ∩ · · · ∩ Cip =
{

Stσi0...ip if σi0...ip ∈ ∆ ,

∅ if σi0...ip �∈ ∆ .

Therefore, the complex of the global sections of resolution (12) is

0→
⊕
ρ∈∆1

H 0(St(ρ), Ḡ|St(σ ))→
⊕
σ∈∆2

H 0(St(σ ), Ḡ|St(σ ))→ · · ·

· · · →
⊕

σ∈∆n−1

H 0(St(σ ), Ḡ|St(σ ))→
⊕
σ∈∆n

H 0({σ }, Ḡ|St(σ ))→ 0 .
(15)
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SinceH 0(St(σ ), Ḡ|St(σ )) = G for anyσ , we can simplify as follows:

0→
⊕
σ∈∆1

G(σ)→ · · · →
⊕
σ∈∆n

G(σ)→ 0 .

It is clear that, if we define differentialsas in (14), this is the cochain complex ofS∆ with
values inG, except in degree−1, so its cohomology coincides with the reduced simplicial
cohomology ofS∆ with values inG, in degree≥ 1 . �

We define now a sheaf ofRT -algebras on a fan space∆, which will play an important
role in the following.

DEFINITION 7. We denote withA the sheaf ofRT -algebras on∆ with stalks:

Aσ = RTσ , σ ∈ ∆ ,
whereRTσ ∼= ZT̂σ is the ring of representations of the torusTσ . The restrictionsAσ → Aτ

are the mapsRTσ → RTτ induced by the inclusionsτ ↪→ σ .

REMARK 6. Theorem 1.1, which gives an embedding of the equivariant K-theory of
X into a product of algebras of representations of tori, can be restated in a short (and useful)
way, by means of the sheaf we have just defined:

Γ (Σ,A) = A(Σ) ∼= KT
0 (X(Σ))

for any subfanΣ ⊆ ∆.

LEMMA 4.4. The sheaf A is flabby.

PROOF. (A similar construction is used in the proof of [Bri, 3.2 Proposition].) Let
us apply Lemma 4.1: it is enough to show that, for any coneσ ∈ ∆, the restriction to the
boundaryAσ → A(∂σ ) is surjective. Assume thatσ is maximal of dimensionn (we can
always reduce to this case). Asσ is regular, it is generated by a basis{u1, . . . , un} of the
latticeN ⊂ Rn. Let {v1, . . . , vn} be the dual basis inM.

Let τ2 be a face ofσ (possibly τ2 = σ ), and τ1 ≺ τ2 a proper face. Say:τ1 =
pos(u1, . . . , ul) and τ2 = pos(u1, . . . , ur ), with l < r. The free abelian groupM/τ⊥1 is
a direct summand ofM/τ⊥2 : indeed,M/τ⊥1 can be identified with the subgroup ofM/τ⊥2
generated by (the classes of)v1, . . . , vl . This direct decomposition yields two maps, an in-
jectionM/τ⊥1 ↪→ M/τ⊥2 and a surjectionM/τ⊥2 � M/τ⊥1 ; these two maps induce maps
of the corresponding group algebras:ϕτ2τ1 : Z[M/τ⊥1 ] = RTτ1 ↪→ RTτ2 = Z[M/τ⊥2 ], and
π
τ1
τ2 : RTτ1 � RTτ2. This latter is the projection seen above: ifa ∈ RTτ2, we writea|τ1 for
π
τ2
τ1 (a). Since, for two facesτ , ρ of σ , the compositionsM/τ⊥ � M/(τ ∩ ρ)⊥ ↪→ M/ρ⊥

andM/τ⊥ ↪→ M/σ⊥ � M/ρ⊥ coincide, the same holds for the corresponding maps of
group algebras: soϕτ∩ρρ ◦ πττ∩ρ = πσρ ◦ ϕτσ .

Now, an element ofA(∂σ ) is represented by a compatible family(aτ )τ≺σ with
aτ ∈ RTτ such thataτ2|τ1 = aτ1, for τ1 ≺ τ2 ≺ σ . Let a ∈ RT be the elementa =∑
τ≺σ (−1)n−dimτ+1ϕτσ (aτ ). Thena|ρ = aρ for everyρ ≺ σ .
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This follows from the equality(ϕτσ (aτ ))|ρ = ϕτ∩ρρ (aτ |τ∩ρ), and from the fact that∑
ρ≺τ

(−1)n−dimτ+1 = 1 , while, forρ′ � ρ ,
∑

ρ∩τ=ρ′
(−1)n−dimτ+1 = 0 . �

4.2. TorRTp (KT
0 (X(∆)),Z) and the reduced homology ofS∆.

THEOREM 4.5. Let X(∆) be the smooth toric variety associated to the fan ∆ in Rn.
Assume that the maximal cones of ∆ are all of maximal dimension: ∆max = ∆n. Moreover
assume that

H̃i(lk σ,Z) = 0 for all σ ∈ S∆, i < dim(lk σ) .(16)

Then, for any p > 0,

TorRTp (KT
0 (X(∆)),Z) ∼=

n⊕
i=p+1

H̃
i−p−1(

S∆,Z
(ni ))

.(17)

PROOF. For convenience we split the proof in five steps.
Step 1. LetK∗ be the complex of sheaves ofRT -algebras on∆, obtained by tensoring

with − ⊗RT A the Koszul resolution ofZ (as aRT -module: see (1) in Section 1.3, setting
σ = 0).

The terms of this complex are:

Ki =
∧−iAn for − n ≤ i ≤ 0

and zero fori < −n andi > 0.
Notice that, for 0≤ p ≤ n, the(−p)-th cohomology group of the complexK∗(∆) of the

global sections ofK∗ is precisely TorRTp (KT
0 (X),Z), sinceK∗(∆) is obtained by tensoring a

projective resolution ofZ withKT
0 (X). On the other hand, the sheavesKi are acyclic, as they

are finite direct products ofA, which is flabby (Lemma 4.4). Hence for anyi ≤ 0,Hi(K∗(∆))
is isomorphic to thei-th group of hypercohomologyHi (K∗). So we have:

TorRTp (KT
0 (X),Z) ∼= H−p(K∗) , p ≥ 0 .

Step 2. We will approximateH∗(K∗) by means of a spectral sequence, relative to a
suitable filtration of the complexK∗ associated to the filtration of the fan space∆ by dimen-
sion of the cones. (This method is similar to that used in [Bac, §4], where a spectral sequence
approximates the cohomology of a sheaf.)

Let∆i = {σ ∈ ∆ | dim(σ ) = i}, codim(σ ) = n− dim(σ ), and let{P i}i be the filtration
of ∆ with P i the (closed) union of all cones of codimension< i − 1:

∅ = : P 1 ⊂ ∆n =: P 2 ⊂ ∆n ∪∆n−1 =: P 3 ⊂ · · ·
· · · ⊂ ∆n ∪ · · · ∪∆1 = ∆ \ 0=: Pn+1 ⊂ ∆ =: Pn+2 .
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Notice that

P s+1 \ P s = {σ ∈ ∆ | codim(σ ) = s − 1} ,
∆ \ P s = {σ ∈ ∆ | codim(σ ) ≥ s − 1} .

Given a sheaf of abelian groupsF on∆, denote withFs the sheaf obtained by restrictingF
to∆ \ P s and then by extending it by zero to∆. In other words, ifjs : ∆ \ P s ↪→ ∆, then
Fs = j!(F|∆\P s ). The stalks ofFs are

(Fs)σ =
{
Fσ if codim(σ ) ≥ s − 1 ,

0 otherwise .

For anys there is an inclusion of sheavesFs+1 ↪→ Fs . The support of the quotient sheaf
Fs/Fs+1 is contained inP s+1 \ P s , which is a discrete topological space: so we have the
following decomposition as a direct sum of simple sheaves:

Fs/Fs+1 =
⊕

σ∈∆n−s+1

Fσ (σ ) .(18)

If, instead of a sheaf, we consider acomplex of sheavesK, we can define in a similar way
the complexesKs , which give a filtration ofK, and the quotient complexesKs/Ks+1, which
can be written as a direct sums of complexes of simple sheaves. We can reconstruct the
hypercohomology of the complexK from that of its restrictions to the setsP s+1 \ P s , by
means of the following proposition, analogous to [Bac, Thm 4.1].

PROPOSITION 4.6. There is a cohomology spectral sequence:
E
pq

1 = Hp+q(∆,Kp/Kp+1)⇒ Hn(∆,K) .(19)

The differentials at level E1 are the connecting homomorphisms of the long exact sequence
relative to the short exact sequences

0→ Kp+1/Kp+2→ Kp/Kp+2→ Kp/Kp+1→ 0 .

PROOF. This is a quite standard result. Consider, for everyp, the short exact sequence

0→ Kp+1→ Kp → Kp/Kp+1→ 0 .

Let K̄p = Kp/Kp+1. The hypercohomology long exact sequence is

· · · → Hi−1(K̄p) d→ Hi (Kp+1)→ Hi (Kp)→ Hi (K̄p) d→ Hi (Kp+1)→ · · ·
We setAp,i = Hi (Kp) andEp,i = Hi (K̄p), change indexes,q = i − p, and then set
A = ⊕Apq , E = ⊕Epq . We obtain an exact couple

A �� A

����
��

��
�

E

d

���������

whose corresponding spectral sequence is the above one. �
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Step 3. Let us modify Condition (16) in order to simplify the spectral sequence just
introduced. If lkσ is the link ofσ in the simplicial complexS∆, we know that

H̃i(lk σ,Z) = 0 , σ ∈ ∆ \ 0, i < dim(lk σ) .(20)

If d = dim(lk σ), all we can say is:

H̃d(lk σ,Z) ∼=
{

Z if lk σ ∼= Sd (i.e.,σ is “inside”∆) ,

0 otherwise .

(See Remark 3 on page 217.)
Applying the Universal Coefficient Theorem, we replace homology with cohomology:

H̃ i(lk σ) ∼= H̃i(lk σ) for all σ, i .

By (18) the termEpq1 of the spectral sequence (19) can be written:

Hp+q(∆,Kp/Kp+1)=Hp+q(∆, ⊕
σ∈∆n−p+1

K∗σ (σ )
)

=
⊕

σ∈∆n−p+1

Hp+q(∆,K∗σ (σ )) .

Step 4. Every summand in the last direct sum is the hypercohomology group of a com-
plex of simple sheaves on∆, with the same supportσ . Let us study the behaviour of such
complexes.

LetG∗ be a complex (in cohomology) of abelian groups such thatGi = 0 for i > 0. For
anyσ ∈ ∆ there is a complex of simple sheavesG∗(σ ) supported inσ . Let us compute its
hypercohomology.

Consider the well-known spectral sequence:

E
ij

2 = Hi(∆,Hj (G∗(σ )))⇒ Hi+j (∆,G∗(σ )) ,
whereHj denotes thej -th cohomology sheaf of a complex of sheaves. HereHj (G∗(σ )) =
(H j(G∗))(σ ), so by Lemma 4.2, ifi > 0,

Hi(∆,Hj (G∗(σ ))) = H̃ i−1(lk σ,Hj (G∗)) .
If σ �= 0, Condition (16) on∆ implies the vanishing of all columnsEi∗2 , except possibly for
i = 0 andi = n− dim(σ ).

There are two cases:
(1) dim(σ ) = n: only columnE0∗

2 is nonzero, and

Hj (∆,G∗(σ )) = E0j∞ = E0j
2 = H 0(∆,Hj (G∗)(σ )) = Hj(G∗)

for j ≤ 0;
(2) dim(σ ) < n: then the terms in the 0-th column are

E
0j
2 = H 0(∆,Hj (G∗)(σ )) = 0 ,

while those in the other non vanishing column, of indexn− dim(∆) = d + 1, are

E
d+1,j
2 = Hd+1(∆,Hj (G∗)(σ )) .
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Now specialize toG∗(σ ) = K∗σ (σ ): by formulae (2) in 1.3, the two cases can be rewritten:
(1) dim(σ ) = n:

Hj (∆,K∗(σ )) = E0j∞ = E0j
2 = Hj(K∗σ ) = TorRT−j (RTσ ,Z)

soHj (∆,K∗(σ )) = Z for j = 0, and 0 forj < 0;
(2) dim(σ ) < n: in the 0-th column we still have, for anyj

E
0j
2 = H 0(∆,Hj (K∗σ )(σ )) = 0 ,

while if the column index isn− dim(σ ) = d + 1, we have

E
d+1,j
2 = Hd+1(∆,Hj (K∗σ )(σ )) = Hd+1(∆,TorRTj (RTσ ,Z)(σ )) .

The last term vanishes forj > n− dim(σ ) = d + 1: we conclude that

Hj (∆,K∗σ (σ )) = 0

for j < 0. Forj ≥ 0 we can only say that (by Proposition 4.2):

Hj (∆,K∗σ (σ )) = H̃ d(lk σ,TorRT−j (RTσ ,Z)) = H̃ d(lk σ,∧−j σ⊥) .

Step 5. In short: forj < 0, the only contribution toHj (∆,K∗) comes from the(n+1)-
th column of the spectral sequence (19), relative to the restriction of the complexK to the
0-dimensional cone.

1 2 . . . n n+1 n+2

−1 ∗ ∗ . . . ∗ ∗
−2 ∗ . . . ∗ ∗
−3 . . . ∗ ∗
. . . . . . . . . . . . . . . . . . . . .

−n . . . ∗ ∗
−n−1 . . . ∗
−n−2 . . . TorRT1 (KT

0 ,Z)

−n−3 . . . TorRT2 (KT
0 ,Z)

. . . . . . TorRT3 (KT
0 ,Z)

. . . . . . . . . . . . . . . . . . . . .

−2n−1 . . . TorRTn (KT
0 ,Z)

. . . . . .

TABLE 1. Non-vanishingE∞ terms of the spectral sequenceEpq1 =
Hp+q(∆,Kp/Kp+1)⇒ TorRT−p−q(KT0 (X),Z).
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So, consider the caseσ = 0. The complexK∗0(0), which is supported at the origin, has
zero differentials. Indeed, the differentials ofK∗0 ared ⊗ idZ, whered are the differentials of
a Koszul complex relative to elements that belong to the annihilator ofZ asRT -module.

ThereforeK∗0(0) is a direct sum of the complexesK∗0i , each one having at most a nonzero
component:

K∗0(0) =
0⊕

i=−n
K∗0i(0) ,

where we define, for−n ≤ m ≤ 0,

Km0i(0) :=
{
Ki0(0) if m = i,
0 if m �= i.

Hypercohomology commutes with direct sums, and the hypercohomology of a complex with
a unique non-vanishing sheafF in degreei coincides (up to a shifting of the indexes byi)
with the cohomology ofF . So we have

Hl (∆,K∗0i(0)) = Hl−i(∆,Ki0i (0)) for l ≥ i.
SinceK−i0 (0) = TorRTi (Z,Z) = Z

(ni ) , we conclude that,for p > 0,

TorRTp (KT
0 (X),Z)=

n⊕
i=p

H i−p(∆,K−i0 (0))

=
n⊕

i=p+1

H̃ i−p−1(S∆,Z
(ni ))

.(21)

Hence the theorem is proved. �

The following proposition is complementary to Theorem 4.5, as it gives more informa-
tion on the groupZ⊗RT KT

0 (X).

PROPOSITION 4.7. The abelian group TorRT0 (KT
0 (X),Z) ∼= Z⊗RT KT

0 (X) is torsion
free, and its rank is less than or equal to the number of cones in ∆.

PROOF. By Proposition 4.6,Z ⊗RT KT
0 (X) admits a filtration· · · ⊂ Fp ⊂ Fp+1 ⊂

· · · , such that the quotientFp+1/Fp is the termEp,−p∞ of the spectral sequence (19). So
Z ⊗RT KT

0 (X) is torsion free ifEp,−p∞ is such for everyp. The chain of equalities at the end
of Step 3, in the proof of Proposition 4.5, forq = −p, yields

E
p,−p
1 = H0(∆,Kp/Kp+1) =

⊕
σ∈∆n−p+1

H0(∆,K∗σ (σ )) .

By the last equality in Step 4 of the same proof, settingj = 0 andd = p − 2, we have, for
1 ≤ p ≤ n+ 1,

E
p,−p
1 =

⊕
σ∈∆n−p+1

H̃ p−2(lk σ,Z) ⊂ Z#∆n−p+1 .
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The inclusion follows from the fact that̃Hp−2(lk σ,Z) equals 0 orZ. (See Remark 3 on
page 217, and use the Universal Coefficient Theorem to pass from homology to cohomology.)
Finally, recall thatEpqk = 0 for everyk ≥ 1, if p + q < 0 andp < n + 1, so there are

inclusionsEp,−pk+1 ⊂ Ep,−pk , andEp,−p∞ ⊂ Ep,−p1 . This implies thatZ ⊗RT KT
0 (X) is a free

abelian group, and its rank is≤∑n+1
p=1 rk(Ep,−p∞ ) ≤∑n+1

p=1 #∆n−p+1 = #∆. �

4.2.1. Computing TorRTp (KT
q (X),Z) for q > 0. All the other columns of Merkur-

jev’s spectral sequence can be found starting from (17).
By (7) in the proof of Theorem 2.3, we obtain

TorRTp (KT
q (X),Z) ∼=TorRTp (KT

0 (X),Z)⊗Z Kq(k)

⊕ TorZ1(TorRTp−1(K
T
0 (X),Z),Kq(k)) .

(22)

Notice that, forp = 1, the second summand on the right vanishes, asZ ⊗RT KT
0 (X) is

torsion free, by Proposition 4.7. Therefore all the terms TorRT∗ (KT
0 (X),Z) appearing in (22)

can be replaced by the expression we gave in (17): we obtain expressions for anyE2
pq term

of Merkurjev’s spectral sequence, involving only the reduced cohomology ofS∆ and the K-
theory of the fieldk.

4.3. An alternative proof of Theorem 2.3. Theorem 4.5 allows us to prove Theorem
2.3 without making reference to Reisner’s Theorem (Proposition 2.1). One implication,(4)⇒
(1) (here we assume(1)⇔ (2)⇔ (3)), follows immediately from Theorem 4.5. The opposite
one is not straightforward, but it can be easily seen after a couple of lemmas on Stanley-
Reisner rings.

LEMMA 4.8. Let Σ be a simplicial complex on the vertices {v1, . . . , vt }, σ =
[v1, . . . , vl] a face of σ . Then we have an isomorphism of localizations of Stanley-Reisner
rings:

Z[Σ](Xσ ) ∼= Z[Stσ ](Xσ ) ,
where Xσ is the image of the monomial X1 · · ·Xl .

PROOF. Let the vertices of the star Stσ be {v1, . . . , vr } (l ≤ r ≤ t). By defini-
tion, Z[Σ] = Z[X1, · · · ,Xt ]/IΣ , whereIΣ = (Xi1 · · ·Xik | [vi1, . . . , vik ] �∈ Σ), while
Z[Stσ ] = Z[X1, . . . , Xr ]/Iσ , whereIσ = (Xi1 · · ·Xik | [vi1, . . . , vik ] �∈ Stσ). After we
localize to the multiplicative system{Xnσ | n ≥ 0}, all monomialsXi1 · · ·Xik ∈ Z[Σ] such
that [vi1, . . . , vik ] �∈ Stσ vanish: so the inclusionZ[X1, . . . , Xr ] ↪→ Z[X1, . . . , Xt ] can be
lifted to a well defined ring homomorphismZ[Stσ ](Xσ ) → Z[Σ](Xσ ) that is easily seen to be
injective and surjective. �

LEMMA 4.9. With the same notation as above,

Z[lk σ ] = Z[Stσ ]
(X1, . . . , Xr)

.

PROOF. Z[lk σ ] = Z[Xl+1, . . . , Xr ]/Ilk σ , with Ilk σ = Iσ ∩ Z[Xl+1, . . . , Xr ]. �
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The two following propositions can replace the reference to Reisner’s Theorem in the
proof of Theorem 2.3.

Remember that the closure of the orbitOσ can be considered a toric variety for the action
of the quotient torus̄Tσ = T/Tσ , and the simplicial complex associated to its fan is lkσ (see
Section 1.2).

PROPOSITION 4.10. Let X = X(∆) be a smooth toric variety associated to the fan
∆, pure of dimension dim(X), and Y = Ōσ the closure of the orbit associated to the cone σ .
Then

K
T̄σ
0 (Y ) is not RT̄σ -flat ⇒ KT

0 (X) is not RT -flat .

PROOF. SinceKT̄σ
0 (Y ) is notRT̄σ -flat, by Lemma 2.4 (in the proof of(4) ⇒ (1) of

Theorem 2.3)Z[lk σ ] is not a Cohen-Macaulay ring. By Lemma 4.9,Z[Stσ ] is not Cohen-
Macaulay either, forXσ is a regular element. The localization mapZ[Stσ ] → Z[Stσ ](Xσ )
is flat, soZ[Stσ ](Xσ ) cannot be Cohen-Macaulay ([BH, Theorem 2.1.7]). By Lemma 4.8 we
conclude thatZ[S∆] is not Cohen-Macaulay, soKT

0 (X) is notRT -flat. �

PROPOSITION 4.11. Let X = X(∆) be a smooth toric variety associated to the fan
∆, pure of dimension dim(X), and suppose that, for some τ ∈ S∆ and some i < dim(lk τ ),

H̃i(lk τ ) �= 0. Then there is some orbit closure Y = Ōσ such that KT̄σ
0 (Y ) is not RT̄σ -flat.

PROOF. If (a) Y satisfies the hypothesis (16) of Theorem 4.5, that is, if for allρ ∈ lk τ
we haveH̃i(lkρ(lk τ )) = 0 for anyi < dim lkρ(lk τ ), then we can apply Theorem 4.5 tōOτ ,
viewed as a toric variety whose simplicial complex is lkτ , and conclude withσ = τ . In fact

the formula (17) implies that TorRT̄τ1 (K
T̄τ
0 (Y )) �= 0.

If, on the contrary, (b) there is aρ such thatH̃i(lkρ(lk τ )) �= 0 for somei < dim lkρ(lk τ ),
then we cannot apply Theorem 4.5, but we can reason by induction, replacingX with Ōτ and
τ with ρ. Since dimŌτ < dimX, after a finite number of steps Assumption (a) must be
satisfied. We can conclude, by noting that ifτ ≺ σ ∈ ∆, Oτ is also aT̄σ orbit, and its closure
in Ōσ is the same as its closure inX. �
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