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§1. Let E be a topological space. = We call E a geaeral metric space
when to every two prints ¢ and b in E there correspinds a non-negative real
number @b, called distance function. A general metric space is called a
metric space when it satisfies the following conditions:

I. ab =0 if and only if a = b.
II. (Symmetry) ab = ba.

III. (Triangle property) ac < ab - bc.

Further, when a general metric space satisfies I and Il or I and III, it is
said to be a szmi-metric or a quasi-metric space, respectively. It is well
known that II is implied by the following condition III’ (Lindenbaum) :

. ac < ab + cb.

We shall here consider the following conditions IV — VI besides I, II and
IIT :

IV. ab < € and cb < & imply ac < 2 €.

V. (Uniformly rezular). For every & >0 there exists ¥ (€) > 0 such
that ab < @ (&) and ¢b < P (E) imply ac < &.

VI. For every € >0 and every a € E there exists ® (a,€) >0 such
that ab < 9 (a,&), ¢cb < P (a,&) and cd < P (a,€) imply ad < &,

E. Chittenden- proved the following theorem :

Theorem A. A fopological spacz E is homeomorphic to a melric space
provided that a distance function ab is definzd in E ani satisfies th2 conditions
I, II and V.

In the proof he used the new distance function defined by

d(a,b) =g I.R;E(ax, + o g X+ X D).
Moreover, E. Chittenden and A.H. Frink proved the following :
Theorem B. A semi-metric space is metrizable provided that the distance

function satisfies V.
Also, A. H. Frink proved the following two theorems? :

*) Received Jun. 10th. 1949.
1) Cf. A. H. Frink, “Distance functions and the matrization problem’”. Bull,
Amer. Math. Soc., 43(1937).
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Theorvem C. A quasi-wmetric space saiisfying the condition V is metrizable.

Theorem D. A quasi-meiric space satisfying the condition VI is metriza-
ble.

The object of this paper is to prove the following two theorems:

Theorem 1. A general metric space satisfying the conditions I and V is
metrizable.

Theorem 2. A general mestic stace saiisfying ihe condiiions I and VI is
metrizable.

These theorems are generalizations of Theorems C and D. For the proof
we tse Theorem A and the well known lemma due to Alexandorff and
Urysohn. The latter reads as follows:

Lemma. 7he fcllouing condiiicns are mecessary and sufficient ihat a
neighbourhood space E is meirizable :

There exisis in the spece E a sequence of families of seis {G\}, {G.}, ----,
{Gn}, - -+, each family {G} covering whole space E, such thai:

A. If two seis G, and G, of ihe n-th family (n >1) have a common
peint, then there is a set of ihe (n — 1)-ih family, coniaining boih G, and G,

B. If a and b are disiinct pcinis. ihere exists an n such that no set G
of ithe n-th family coniains both a and b.

C. Lei S, (x) be ihe sum of all seis G. of the n-ih family, coniaining
the pcint x. Then the sets {S, (x)}orm a complete sysiem of neighbourhood
of the point x.

§2. Proof of Thoerem 1. Let b =a in V. Then ca < ¥ (&) implies
ca < &  Hence, aa, — 0 is equivalent to a.a — 0. If we define d(a,b)=max
(ab,ba), then d (a,b) is symrhetric and equivalent to @b (and so ba) topologi-
cally. Putting now ¢* (&) =@ (P (&), d (a,b) < ¥2(E) and d (¢, b) < ¢*
(&) imply ab < ¥* (&) and cb < 9* (&). On the other hand ac < ® (&)
implies ca < £&. Then we have

d(a,¢) =max[ac,ca] < max{®(€),&]=¢,
by ¢ (&) < & If we put @ (€)= ¥ (&), then d(a,b) <+ (& and b(c,
b) <A (&) imply d(a,c) < & Since we can take V¥ (&)< é&/2, if we
define r, =1, 7. =9 (7)), ----, #we1 =% (#a), ----, then 7. — 0.

Let us now introduce a new metric p (a,d) such that,

p(a,b)=1 (ab=r,)

p(a,b)=1/2" (rp,>ab=r.-y) (n=12....).
As easily may be seen, p (a,b) satisfies the condition IV and is equivalent
to d (a,b) and then t» ab topologically. The symmetricity is also preserved.
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Therefore, by Theorem A, E is metrizable by using
d(a,b) = gLlb.  (pCax) + -+ p Xy %) + p (2:D))

@1., e €l
as a new distance function. q.e.d.

We can see that the condition V in Theorem I may be replaced by the
following :
‘ V’. For every & >0 there exists p () >0 such tha! ba< ¥ (&) and
be < P(&) imply ac < &.

§3. Prootf of Theorem 2. Let £ be a general metric space which
satisfies the conditious I and VI. Let U, (@) = E (ax < 1/n), which gives

the same topology as the original one. {U.(a)} is decreasing and by the
conditions I, A U;(a) =a. Let us now put
' =1,

() =min[m;1/m <P (x,n (x))],

W1 (2) =min[m; 1/m < @ (x, 1 ()],
and

Uiy (0 =V (0.

{V, (20} is obviously thz ejuivaleat system of neighbourhords to {U. (%)}
We shall prove that, {V,(x); x € E} =, satisfies the conditions A, B and
C of Lemma.

Let n A1, V(@) V,(b) £0 and take x & V. (@) V(). n.-(a)= n- (b)

implies ax < n, (b) and then bx < n,.(b) <n,.(a). Hence

by < n,(b) < n-(a) for all y € V, (b).
From the condition VI, ay < n,-; (@) and then y € V. (a), hence V,(d) <
Viei(@). By n.(a) <n.(b), we have V,.(a) = V,_,(b). Therefore A is
catisfied by {IN,). ‘

Let @ =b. Form /1\ U; (x) = x there is an » such as b € U, (a@). If we
take m = min [m;1/m < @ (a,n) < 1/n, then V, (x)does not contain both
a and b. For, if a,b € V, (%), then V,, (x) = Uy () U, (x) and U, (@)
< U (@) ; thereforea € V,,(a)V..(x). Sincexa<® (a,n) and xh<® (a,n) from
the codition VI, we have ab <1/n; i.e,b & U, (a), which is a contradic-
tion. Therefore B is satisfied by {2, }.

Sr(@) =V Vy(x) for a €V, (x). So that S,(a)DV,.(a) = U, (@).
Hence it is sufficient to prove that there is an m such that S, (a@) <V, (a)
for every V. (a). Take V. (@) = U, (@), andput k= min [k;1/k <1/n(a)].
Taking / such as ¥ (e, k) >1/I, we have S, (a) =V,(a) for this I. For,
b€ S, (@) if and only if there is V. (x) suth as a,b € V. (x). So that & €
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S; (a) if and cnly if there is an x such as xa < 1/{ and xb <1/l. For such
x, xa <1/l <P (a,k) <®(a,n (a)). And then min {1/m:1Im<P (a,n, (@)}
> @ (a,k): that is, 7., (@) =1/m > ® (a,k)). The same is true for xb.
Hence ab < n, (@), and then b € V, (a). q.e.d.
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