NOTES ON FOURIER ANALYSIS (XXV):
QUASI-TAUBERIAN THEOR™>

By
Genichird Sunouchi.

The first general treatment of quasi-Tauberian theorems was given by
N. Wiener (16). In this note the author proves another quasi-Tauberian
theorem concerning absolute limit under Wiener’s conditions. Wiener
derived the Cesaro summability theorem of Fourier series frcm his general
theorem. In this paper further applications of his theorem and analcgues
concerning absolute limit are given. Some of theorems proved in this
paper are known and the qther are new. It is interesting that these theo-
rems are derived from two key theorems which are given in §1. In§ 2,
the Cesaro and absolute Cesaro summability theorems due to Paley [11)
and Bosanquet [1)(2] are derived from the key theorems. In§ 3, we prove
the Cesaro and absolute Cesaro summability theorems of the conjugate
Fourier series. These theorems include the essential parts of the results
due to Paley (11) and Bosanquet-Hyslop {5). The Cesaro summability
problems of the derived Fourier series are discussed in§ 4. The essential
part of the results due to Takahashi (13), Wang (14) (15), Zygmund (17),
Bosanquet (3] (4] and Hys]oﬁ (7) are derived from our key theorems. It
is well known that these results are interpreted as the relation between
Cesaro summation and Riemann summation of the first kind and their
a nalogues concerning absolute summation. In §5, the relations between
the generalized jump of a function and its Fourier constants are discussed.
This problem was treated early by Zygmurd (18] and Szisz {12). These
results are known as the relation between Cesiro summation, Riemann
summation of the second kind and their analogues concerning absolute
summation. As applications of these theorems, we can also prove theorems
analogous to the results due to Misra (9] and Moursund (10J.
) In the sequel we shall fully use the notations and theorems of Chapter
VII in the Wiener's work (16) without references.

*) Received Sept. 1,1949.



168 GEN-ICHIRO SUNOUCHI

1. The key theorems.
Wiener’s key theorem (cf. Wiener (16), Theorem XXII' and XXIII’) reads

as follows. ,
Theorem 1. Let f(x) be of limited total variation over every finite

interval. Let
(1°) K, (x) be bounded and continuous,

(2°) f |d (Ki (x) e=*)| < const., and Ki(x) ~ A:e"®

A>0, 4,%+0) as x— — oo,
3% K (x) € Ly( — o0, 00).

Put k (u) = f K; () e*dx (i =1,2) and let k, (u) |k, (u) be analytic over
— EZSRe(u) =\ +_2, and let it belong to L, over every ordinate in that strip.
Then if
lim| Ki(y —xdf(x) = Af K (x) dx,

Yoo

it jollows that

o

lim|] K,(y —xdf(x) = Af K, (x) dx.
0 —o0

Yoo

In the hypothesis, if Ky (x) =0(x=0), we may replace the strip — & <Re(u)
<\ -+ & by the narrower strip — & < Re(u) < ¢.
The proof has been given in Wiener (16), Chapter VII.

Theorem 1. Under the hypothesis of Theorem 1,

f Edyj K, (y —xdf (0 ‘ <o
i 0 |
implies

fw‘dymez (y — 0 df (2)|< oo
—oo 0

Proof. Under the hypothesis of the theorem, Wiener concludes (see
(163 p. 75), that

(1)f dzR(y—z)f Kl(z—x)df(x):f df(x)f K, (y —x—2)dR(2).
e 0 — o0

0

Put
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f K, (y — 20 df(x) = F(y),
0

then
f |dF ()] < oo.

— o0

By the convolution theorem of Fourier transform,

K, (x)=f K,(x — 2)dR (2),
where -
R U Y X
R(x) = —2”‘[(15[ B du
and

2) f [dR (2)]| < oo. (Wiener (16), pp. 72-77).

It is sufficient to prove f |dG (y)| < oo, where

—o0

G = f K,(y — x) df (x).
Now !

G =«f df(x)f K, (y —x—2)dR(2)
0 -0
=f dzR(y—z)f K, (z—x)df(x) (by (1))
—00 0

=f d:R(y —2) F(2)

=(R(y—2) F&)J —f R (y — 2).dF (2).

Using the hypothesis and Theorem 1, we see that F( + o) exists
(we assume F( — o) exists, this is permissible in the following applica-
tions) and that R ( + o) and R ( — o) exist by (2). Thus the first term
of the right hand side is constant, so we have

fldGO’)I:f ldy,| R(y —2z)dF(2)|.

—oco —oco —oc0

But, by the unsymmetric Fubini’s theorem (cf. Cameron and Martin (6))
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and (2), we have

fwldG €3] éfmldF(z)lfmldyR(y —2)|< .
Thus we get th_ewtheorem. h h

2. The Cesaso and ahsolute Cesaro summabilities of Fourier series.

Theorem 2. Let f(x) € L with period 2z or defined over ( — o0, )
and zero outside ( — A, A). Let

. 1/A
Iim (C,m) P (y) = 11§n mxf?’ (A —ayd)m-tdy
0

and

2 oo 1

lim (C,m) & (9] = l\im—”— xf P () dyf(l —2)"cos A yzdz
A> 8
0 0
= lgm wf P (&) y1em (wt) dit

0

where

1
oW ={fx+y)+f(x—y)—25}/2 and ryw(x)zf(l — £)*=1cos txdt, (a>0).

Then (1) if (C,m)P () —0,asy—0, then @[fpoj is (C, m + &)-summable
to zero, where m=1, € >0, (ii) if © (P is (C, m)-summable to zero, then
(C,m+1+8&PYW)—0,a y—0, where m =0, & >0.

Proof. After Wiener we put,

m+1) (1 — e*)me x<0
K(m)(x):{( v )0( enrer, E;>O;
and
1
MWK (x) = 7? e”f(l — z2)™cos (z¢®) dz (m > 0),
0

then the condition (2°) in Theorem 1 is satisfied for A =1, and we can put
K () = K™ (1) or Ki(x) = “K (x) in Theorem 1. If we put

© I'm+2) I'(e+1)
m —_ (m) ux —_
Ta(2t) = _f K™ (x) edx = TC p 2y

and

on(it) = f WEK(x)er dx = I'(m + 1) —
e Pm+1—u) C()SVZ_
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then as |Im(u)] —» o

lom(®) | 2T (m + 1)
[aCu) |~/ 2m D(n + 2) e |

Thus from Theorem 1 if » > m, then

, Re(u)—m+n+1/2
Imgu}

3 lim| ™K (y —x)df(x) = Af MK (x)dx
Y->eo
0 —co
implies
) lim | KW (y —x)df(x) = Af K® (x) dx,
y>eo
0 —-oco

while if m > #n+ 1, (4) implies (3).

Theorem 2. Using the notations of Theorem 2, (i) if P () is |C, m|
-summable in ( — oo, ©) {( — =, w) for the Fourier series case}, then S (P]
is |C, m + &|-summable, where m = 1 in the Fourier integral case, m >1
in the Fourier series case, and (ii) if © (@) is |C, m|-summable, then ® (y)
is | C,m+1+4 &|-summable in ( — oo, ), where m =0 in the Fourier
integral case, m > 1 in the Fourier series case.

Proof. In the proof of Theorem 2° we use Theorem 1° instead of
Theorem 1. In the Fourier series case, since ® (y) is |C, m|-summable in

( — &, 7) but not in ( — o0, + ) we need to prove

J1arwi<«,
1
where
I(w) = wf P (1) 1+ (wb) dt, B>0).
The Riesz kernel r, (x) satisfies the following relations (cf. Bosanquet (1)) :
1
) “/u(x)+iry~¢(x)=f(1—t)“‘1emdt(x20, a>0)
b .
6) Hyea(®) = 1 — ayy ()
@) X Y140 (X) = A yy (%)
€)) gd;c (X Y140 (2) = @y, (X)
) s (2 =1/x°, where p = Min (2, 8).
We have

dl (o) = j—w{w [ P () 18 (i) dt} = af P () 7 (b) di

k4
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284+ D

= (wt)=?|@ () ]dt
1

$=1tas—1ye

<4 {2[(25—1)7r] flsv(t)ldt

S (p>1),
and then

f[d](w)|§f 0w Pdw < o,
1 1

Thus & (%), where the function ® (x) vanishes in T — m, 7}, is |C, 8]
-summable (B > 1).
Thus the theorem is proved completely.

3. The Cesaro and absolute Cesaro summabilities of the conjugate
Fourier series.
Let f(x) € L with pericd 27 or defined over ( — oo0,00) and zero outside
(— A, A). Let
Vv =fE+y —-Ffx—w,

then it is known the existence of the integral
00
~ 2 R}
v =— [ Y dy.

We put, after Paley (8),

1/A

conj. lim (C, m) (@) = lim A Y @) A — A)™2dt (m > 1)
>0 ADeo o

and
lim (C,m) & (f) = ligm—%— wf\[r(t) Yrep(t) dt
0

00

=Hm ADA + m) | A=+ Coypm (AN Y (8) di

A>oo
0

where Cn (%) is Young's function. Then we have

Theorem 3. () If Con]->11m C,m) Y@ =s, then ©(f) is (C, m + &)
-summable iv s, where m =1, € >0, and (i) if €(f) is (C, m)-summable
to s, then cong._whm Com+1+ & @) =s, where m=0, &€>0.

N. B. Paley proved the theorem m =0, but the case 1=m =0 the
definition of ccn] lim Y (y) is different, so that the theorem needs to be
formulated in another form, but we don’t enter in this case.
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1/A
If A ¥@ A —at)™? dt is of bounded variation in ( — oo0,0) {(— 7,

0
n) for the Fourier series case}, then we say that Y (¢) is conj. |C, m|

-summable.
Theorem 3. () If ¥ (t) is conj |C, m|-summable, then S(f) is |C,

m -+ &|-summable where m >1 for the Fourier integrel case, m > 2 for the
Fourier series case, and (ii) if S(f) is |C, m|-summable, then ¥ (1) is conj.
|C, m+1+&|-summable, where, m > 0 for the Fourier integral case, m >1

for the Fourier series case.
Proof. If (y) ~3b, sinny, then we have (cf. Paley (8))

an<1 — %_)m _ )\,P(l + Wl) f )~y (N A (£) dt

e
=1'"A 4+ m) xf Xo(A2) D) dt

0

where
X = 2L o) | = =Lt cLaw ],

and
Xo(t) = O1/t°), o = minQGmn,2).
For the place of K,(x) or K, (x), we take
(m + 1)1 — e®)me?, x<0)
(m) —
K@ { 0, x>0
and
(m,)i(“ (x) — Xo(ez) e”.
Then we have

f X,o(€?) €% €% dx = f X, () 1t dt = f PR @
0 0

—o0

where -1 K(t) is defined in Theorem 2, and the dash denotes differentia-
tion with respect to . By the integration by parts the above integral beco-
mes

E(m—-l)K(t) tujw . Mf(m—l)K(i) -1 df
0

0
— uf (m-l)}'{(t) fu-1 d‘t,
0
since for m >1, " DK(t) t1*<— 0 as {— oo,
Evaluating the integral we have
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— ul’Gmn) ul’ (m)

— = o.(u), say.
I‘(m+1—u)cos—7-r—<u—2——l—) F(m+1~—u)sm—2—u
Similarly we have

f K™ (x) ¢w dx = T'(m+ 2)I'(u + 1)

Tutmt2 = (), say.
Since
- . INGD)
on(u) ~ N 27 [Im(u)| - FRoTm=ilz ghrw=—m=1
and
U'(n+2)
Tn (u) ~ i'i}*h-(*;)ln_{_l

as |Im (#)|— oo, we have
an(u) 2I'(m)

() |~ N 2w D(n+ 2) e@-n=1 |
and k,(u) /k; (1) belongs to L. over every ordinate in the strip, provided that
2(—m+n+3/2) < —1,
that is # + 2 < m. Since other conditions are evident, COnjy.egim (C,m)Y¥ ()

= s implies

Re(u)-m+n+3/[2

Im(u)

im S (C,m+E) =s @m>1D.
The proof of Theorem 3’ is analogous.
4. The Cesaro and rabsolute Cesaro summabilities of the derived
Fourier series.
Suppose that there is a polynomial

r-1

(U
P = 2 i'; t;
) i=0
such that for — 7r St~

O (D = o [(fx+ D = POY+ (= Dr fx—1) — P(— O} ]
is integrable in the sense of Cauchy. In the sequel we suppose P (Z) =0

without any loss of generality. The (C, m)-mean of the 7-th derived
Fourier series ©™ (f]) is denoted by

P If pyf’?m(wt) (i) dt (m >7),

0

CP(w) = (— D2
where
V(D) = Tm) t=" Cu(t) = fl(l — 2)™-1cos (12) dz
and !

1
10) YR (@) = f(l —z)"zrcos (fz + § nr) dz
0
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(=1~ 'm4+7—i+1) _

= I g (Z) F(m ¥ 1) Yi+m—i (t)

(cf. Jacob (8)). For the the sake of brevity, we investigate the case » = 1.
‘Then

Cut@) = (= DZew [y Gty w1y at
0

= —i—wzféb(t) dtf(l — z)"zsin (zwt) dz

0
1

2 jq) (t) di fco‘ (1 — z)™ 2zt sin (zwi) dz

H

—fCI)(e‘T) de HW-D(1 — z)"z sin(zeV - T)dz, (w=e").

Il

Let

1
K (x) = {em (1 — 2)"z sin (z¢®) dz,
‘10
then

o o 1 '
A1) ou(u) = f “ K(x) v dx = f 1541 g f (1 — 2™z sin 2t dz
— oo 0 0

= ft“l 7;+11L (t) (by (10))

0

_ [ u g TOm +2) TGm+1)
_[t dt[l,(erl) Pan(D + s vm(z)]

DG+ 2) I'm+ 1)
Tu T Tu
Tim+1—u) cos5- I'(m — u) cos -5

_ Pm+1)Cm+1—un)
coslzﬁ 'tm—u+1)

In order to deduce this formula, it is necessary to make some restriction
on m and #, but the resulting formula is valid in the analytic domain of #

by the principle of analytic continuation.
Put

1/
(Cm) D) =w| (1 — )P (L) di,
0
then the kernel becomes

K (x) =m+1)A —e*)"e”
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and
TG +2) I'(e+1)

CCu+m—+2) (m > = 1.

,T(m)(u) = fK(nz) Cx) i dx —

When o, (#) is numerator the range of analyticity of k.(u)/k,(u), is
sufficient tobe — &< Re(u) < &, since K™ (x) = K;(x) = 0 (x>0) in Theorem
1, but when o,(#) is denominator the range is — & <Re(u) <2+ & by
MK(x) = K,(x) ~¢* as x— oo in Theorem 1. In the latter case m should
be limited to be >1, for the poles of I'(m — » -+ 1). Since the order of
asymptotic formula of o, (u)/Ta(#) as |Im(u)|— oo,is |Im(u)|Ed-m+n+ilz+l
by Theorem 1, in order to conclude r.(u)/o.(u) € L,, it is sufficient

2<Re(u)—m+n+—§—><——1 m>—1)

that is, n+ 2 <.
Similarly ou.(#)/7v.(#) € L,, when

——2(Re (u)—m+n+%~+1> <—1 (m < 1),

that is # > m — L.
Thus we get the following theorem.

Theorem 4. (G) If &) = *217-{f(x + ) —1f(x—1)} is (C, m)-summable
to zero as t—0, then & (f) is (C, m 4 1+ E)-summable to zero, where
m >0, >0, and (ii) if & (f) is (C, m)-summable to zero, then (C, m+ &)
P () —>0ast—0 where m>1, &€>0.

Theorem 4. (G) If ® (¢) is |C, m|-summable in ( — 7z, ), then & (f)
is | C, m + 1+ &|-summable, where m >1, and G if S (f) is | C, m}
-summable, then ® () is |C,m + &|-summable, where m > 1.

More generally in the case of the r-th derived series, instead of (11),
we have from (10) for ¢$’(#) which denotes the Mellin transform of the
C{X-kernel,

. _ mn : NI m+r—i+1)
ag")(u)—ft {Z(,) T'im—7+1)

0 i=0

'yl+m—i(t)} dt

I'(m=+1) P(u)

coszéﬁl‘ (m+1—un)

tl

where P, (#) is a polynomial of # of order . When ¢$(«#) is denominator,
k(u)/k,(n) is sufficient to be analytic in — € <Re (u)<7r+1 + & by Ki(x) ~
e"+® as ¥ ~ oo, and it is sufficient to suppose m >7. Let {7 be the
Mellin transform of &, (¢), then (u)/c$>(#) € L,, when 2{Re(u) — m+
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n+ % +7}< —1, that is n+ r <m, but e(u)/7{°(u) € L,, when—2 {Re

(u)—m+%+r<< —1(m>7r), that isn>m —r.

Theorem 5. @) If hm (C,m) P () =0, then SN is (C,m+ 7 + &)
-summable 1o zero, where m >0, and (ii) f SN () is (C, m)-summable to
zéro, then lim (C, m —7 + 1+ &) d, (1) = 0 where m >r = 1.

Theorem 5. () If ®,() is |C, m|-summable in (—=n, ), then S [f)
s |C, m+ 7 + &|-summable, where m >1 and (ii) i & [(f) is |C, m|

-summable, then ¥, () is |C,m—r + 1+ &|-summable in (—n,x), where m >
7 > 0.
5. Relations between generalized jump of a function and its
Fourier coefficients and certain of its applications.
Let v (@) =) =fa+1) — (=" fAx+¢t)and let ¥, @)=y /7!

If ltmol Y, (t) = B,, Zygmund (15] called it the #-th jump of f(x) at x and
-
proved that

L Bi=1im (G, @) (ancos nx+ basin )@+, (@>k+1)
n>eo
which denotes the (k + 1)-th derivative for x.
result as follows. According to Zygmund (153,
lim (C,a) (a.cosnx -+ b,sin nx)“’“)
N->oo

We shall generalize this

— (B+1)
:g 1)e+ lim

n->eo

K(‘” O (¢) dt (where K® (8)

is (C, a)-kernel)
T \h(t) 1 dz;+1 f . >Lt
- lliﬂ}ef v ar [ (A =207 cos g ]d)”

: k+1
e R e R R

- lim 1 ‘\I’k(t)

el k+1
im = G f(l A)EIAF ‘cos( A +—2 n)d)\
)

Comparing with Theorem 1, the kernel
1
DK (%) = e("“)”'f(l — AN+ cos (M‘” k + L n)a'?\
0

is of the same order as the kernel of derived series.

For instance, let
k =0, then

1
MK (x) = €° f A — A Insin (\e®) dA,
0
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oo 3 1
o.(u) = fK(’x)e“” dx = fe“w e” | (1 — )% 1sin (ne®) da
—oo 0

—ca

) cos TF(’m —u+1)

Theorem 6. (i) If 1};}} (Co)VY(@) =fx+8) —f(x—1) =]
then lim (C,1+ a + &) (nbucosnx — na, sinnx) — j/x where =0, & >0,

a;d conversely (i) If ’gm (C, a) (nbpcos nx — nap sin nx) — j/n, then
lim (C & + &) Yu(t) — j, where a >1.
50

Theorem 6. (1) If ¥.(£) is |C, a|-summable in (—x, x), then (nb,cos
nx — nay sinnx) is |C, 1+ a + &|-summable, where o >1 and & >0 and (ii)
if (nbycosnx — napsinna) is | C, a|-summable, then Y, () is | C, a+ &

summable, where o >1.

N. B- If f(t)""an sin n.f,, then
n=1

oo

1
1 . F() — F(0) o~ bu (cos nt — 1)
‘t—ff(u) du = 7 = 2
0

- nt.

w 7thn sin*%nt
=221 .,
n=1 ? nt
This is the (R, 2)-summation of #b.. Theorem 6 and 6 denote the relation
between (R, 2) and (C, 2+ ¢€), and |R’, 2] and |C, 2 + &|, respectively.

More generally

Theorem 7. If ®.(¢) is (C, a)-summable (o j as t - 0, then (a.cos nx
+ busin nx)®+D is (C k + 1+ a + &)-summable to j/=, where a >0, & >0,
and (ii) if (ancpsnx + bpsinnx)®*+D is (C, a)-summable to j/m, then ()
is (C,a — k + 1 + &)-summable to j, where a >k, & >0.

Theovrem 7. (1) If ®w(t) is |C,a|-summable in (—m, m),then (ancosnx
+ by sinnx)®D §s |Ck+ 1+ a -+ &|-summable, where a>1, &>0, and
(ii) # (ancosnx -+ bpsin nx)@+0 js |C, a|-summable, then ®i(t) is |C,a —k
+ 1 4 €| -summable, where a >k, & >0.

From these theorems, we can see the relation between the generalized

jump and generalized Gibbs’ phenomenon by Szasz’s Theorem [12].

oo

Theorem 8. If the conjugate Fourier seriesz (bnCOS BX — apsinux) is

n=1
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Abel-summable and }im(C,a)x&(t) =0, then the series is (C,a& + &)-summable
0
and exists lim (C, ) L f ¥@® .
&0 w t
€

oo

Theorem 8. If the conjugate Fourier series Z(bncos nx — @, Sin nx) is

n=1
| A|-summable and ¥ (t) is |C, a|-summable in ( — x, w), then the series is

|C, a + &|-summable (a>1) and the integrallﬂ f \Irgt) is | C, a|-summable.

Proof. Since (C,a) Yy (t) —> 0, (nb,cosnx — na,sinnx) is (C,1 + a + &)
-summable to zero by Theorem 6. Using the well known Tauberian
theorem, the Abel summability of the series implies (C, & + &)-summability.

£->0 V4 t

The existence of im (C,a) - f ¥ s due to Paley (11).

Theorem 9. When (C,a)y (t) > 0 as t — 0, in order that the conjugate

Fourier seriesz (bnCOs nx — ansinnx) is summable to + oo by Abel's method,

n=1

the necessary and sufficient condition is lim (C, &) ‘k-(—tt)- dt = +oo.
&0
Theorem 9. When ¥ (t) is |C, a|-summable in ( — m,n), in order that
the conjugate Fourier series is not summable by |A|-method, the necessary

and sufficient condition is
17] %t) at is not | A|-summable ( — =, m) where a >1.

Proof. The necessity is 'c{nalogous to the proof of the Theorem 9

The sufficiency is due to Theorem 1, where A = -+ oo.

6. Cesaro and absolute Cesaro summability of the derived series of
conjugate Fourier series.
Let

I

f(x)~z (ancos #x + b, sin nx) = 2 An (),

n=0 n=0
and its conjugtea series be

oo

D (bucos nx — ansin nx)

n=1

If

2 Bn(x)r
n=1

then its derived series is
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o oo

2 — (1 an CoS nX + n by Sin nx)= 2 — nAn(x).

n=1 n=1

The (C, k)-mean of this series is (cf. Sayers (20))
(@) = (k_:’b—”» f <p<t> Lot e (wt)] dt,

where
D) = flx+ 1)+ fx— 1) — 2.

Then we have
N
a2 () = lim (k—j’l—)—{ [ sv(t)»jt- Lot yus2(wt)] dt
0

N-yoo

N
= lim Acof 7)(t) — [(et) 1% Cyip(wi)] dt
0

N->oo

N
= L» A[aﬂf P(t) 9, (@) dt]

0

=lim A (
N->o0
where
We have
1 (6} +2n 1 A
=1 1P| dt + (_Emf|¢(t)ldt+ =G
) (D)+2n

Hence, if we put

f ¢§f) dt =P (D,

then &Y, (&) -0, as €— + 0, applying the second mean value theorem.
Then, by the integration by parts,
Ti(w) = lﬂifm AL — Wi(u)(@u)? g (wu )I¥
0 ¢
N
+ Aw f V() X(ot) dt,
where !
X = L .

Since, for £ > 0,
thg-1- LCI..+.z(t) = B0 = O (P EF28) = O,

as t — oo, and
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[0 4 oo,
t

as { — oo, we get

(W) = B_r)n Amf Yi(t) X (wt)dt = Af Ti(u/w) X (u) du.
0 0

But
X(u) = -L{24 1 «mzct)]}
= {ﬂ W+ -2, (t)}

Tar |t e dt T+x

d o d ,

d[{ 13 ')’L+2( ) 4 183 dt '}’k+1(t) t* ')’L+z(t)}'

ddlfi{t '—;ii? (2 DIEX 2(8)) — E yian(E) }
If we put

e (B o) = 20D,
then
X(1) = %{t Xo(D} — Xo(D) = X} (D).
Consequently,
as (@) = Af zxo(t) di
= Awf W (u) wu X (oun) du,
0
where :
X)) = d# C (17 Cena (D) = —%{t"“ Ci(D) = —7‘15; Cya(t))
and
, _ 1 (I'tkE+3) 'k + 2) I'(k+1)
')'Ic-n(t) ﬁ‘{m‘ﬁ'ﬁﬂc(ﬂ -+ 2*——‘1—\ D) vi(l) + *—F(k — 1)')'rc—1(t)} .

If we put as the kernel of the key theorems in §1,
D K(x) = e* X, ("),

then its Mellin transform is

f @ K(x) e dx = f ¢ e X (") dx

—oco —co

= f £ X (E) dt

0

S Tk + 2) D+ 1 INCD)
=jt 1{P(k+17')’k(t)+2 —*—I‘(k——l) Ye-1(8) + "*’—‘——P(k ) 'Yk—;(i)}dt
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L — 4k —Du—D —(u =D +4G; -1+ 4k =D +1}_—
- I'tk+1—wu)cosmu/2
say.
As |Im(u)] —-oo, its asymptotic behaviour is
OT”(M) ~ Allm(u)lh’e(u)—m+1+ll‘£ .
The ordinary Cesaro kernel has the Mellin transform
() ~ Bl Im(u)| "1,
as |Im(u)|—oo.
When o,(#) is the denominator, the range of analyticity of k.(u)/k.(u)
is sufficient to be —& < Re(u) < 2 + & since "™K(x) = K,(x) ~ €% as x >
in Therem 1. Hence in this case m should be limited to be > 1.

If
2(Re(u) —m+3/2+n+1)< —1,

that is
n + 3<m,
then
™ (u) /o, (u) € L*
and if ,
—2(Re(u) —m+3/2+n+1)< —1, (m>1),

that is,

: n>m— 2,
then

() [TM(u) € L,
Thus we have the following theorem.
Theorem 10. If we put

oo

() = ‘D(t) ) di
t

then, (1) if 11m (C, m) d,(t) =s (thai is conj. 11m C,m+1D)P@)]t=s),
then & (f) zs (C m + 2 + &)-summable io s, where m=0, €>0, and (ii) of
& (f) is (C, m)-summable to s, then lgf)l (C, m—1+ & O(t) =s { that is,
mgjd lim (C,m + &) (1)t =s, where m >1 and & > 0.

Theorem 10°. The same is true for ihe absolute Cesaro summability,
where in the case (i) m =0 must be replaced by m = 1.

N. B. When . .
F(x) ~ Z_an cos nx;;l— bnsin nx CF(x) € L0, 270,

n=1

A. Zygmund (19] proved that if

—1 lim F(x+ )+ F(x—1) — 2F(x) dt

T dely (2 Sln—lf t)
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exists then Zan is summable (K, 2). Hence we get the following Corollary
of Theorem 10.

Corollarv ]fz series, then the (K,2)-summab-

n=1

ility of Z an implies its (C,2 -+ E)-summability.
n=1
Similarly estimating as in §5, we have
lim (C,a)( — b.cos nx 4+ a,sin nx)

>0

= hmﬁ_ﬁ f(p,(t) %K&;‘"J(Ddi (where K-(t) is

n-yeo 7T AZ'

conjugate (C, o — 1)- kernel)

= lim AF <P,(t) 8 gt Cye-1(2/E)] dt (where A is a constant)

e—>0

o

= lim Aw | P.() y,_, (wt)di
7 0

= lim Af(wf) q)r(t) v, (@t) di.

w-yoo

Comparing with (12), put
f L2 ar =y, 0,

t

then we have, similarly as (13),
lim (C,a) ( — bancos nx + apsinnx)’

n->c0

= lim Awf!lfl(u) u X (wou)du,

w0
where
, d "
X[ (t) = 7{' (t")’w+1<t))~

Hence the kernel is
WK (x) = X (e,

which is the same order as the kernel of the derived series of the conjugate

series. Thus we get

Theorem 11. (i) If
lim (C, a)—tf g—)’ftg—t)dt =s

t>0
t
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then li9m (C,a+2+ &) (na.cosnx + nbysinnx) =s, where o=0,E>0
and conversely (ii) if lim (C,a) (7 ancosnx+ nb, sinnx) = s, then hm (C,

1300

a—1+¢&) - f¢(f)dt—s,wherea>1,8>0,

Theorem 11. The same is true for the absolute Cesaro summability.
N. B. If

1
74 sin®*- nt
Hm 2<m(z/2)f ZOpe hmZ A () zsm(a/z) 22
a—>+0 u%-Hn 1 4 Sinz%

exists at x =0, we say that the sequence (#nd,) is. (K’, 2)-summable.
This is the conjugate analogue of (R, 2)-summability. Then Theorem 11
implies that (K’, 2)-summability implies (C, 2 + &)-summability, provided

that > (a.cos nx -+ bssinnx) is Fourier series, Concerning this sort of
N=1

summability we shall return in ancther occasion.
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