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ON THE UNIFORM SPACE®

By

Hisanaru UMEGAKI

The notion of a uniform space has been introduced by A.Weil (cf. [1]7).
We shall prove that some topological properties of metric space can be
disousced in fully normal space (cf. [2]), using strucsure theory of uniform
space (§1)?. From this, we see that a part of conjecture of J.W.Tukey (cf.
[2]) is proper. Next, we shall discuss on a metrization condition (*) (cf,
§°) for uniform space (§?), and prove that condition is closely related to the
-completeness of uniform space (§3). Furthermore, we consider a local
property in uniform spacz and answer the Kakutani’s problem negatively.

§). TueoreM 1. In the fully normal space E, follming five conditions are
equivalent to each other:

(1) E is compact.

(2) E is countably compact.

(3) Every real valued continnous fanction on E is bounded.

(4) E is precompact for any aniform structure compatible with its topology.
(5) Uniform structare compatible with its topology is unique.

Proor. (1) —(2) and (2) - (3) are evident. (3)— (4) is proved by R. Doss
(cf[4]). We will now prove (1) »(5). After A.Weil, if E is a compact
uniform space defined by structure {I’s}, and @ is an open covering of E,
then for .every pe E there exists a such that 174 ( p) contains some set G in
®. Hence every structure of E is equivalent to the structure defined by all
open coverings. Thus the uniform structure of E is unique.

We will next prove (5) +(4). E has a unique structure which has to
coincide with the uniform structure of Weil, that is, defined by all bounded
continuous functions on E. As.as’ly may be seen, E is precompact for this
stsucture. Thus (4) has been proved. It remains to prove (4) »(1). Let E-
be a fully normal T;space, and {Ms} be the family of all open coverings of

*)» Received July 9, 1949
1) Numbers in brackets refer to the bibliography at the end of the paper.
2) See N. Bourbaki, [3].
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E. We denote by §(H, M) the union of all the sets of M meeting H.
Further let M* be the family of sets 5 (A, M), where MeM, and put Va (p)
= S5 (p, Ms). Then, from the definition of fully normal space, {I/«} definies
the uniform st ucture in E compatible with its topology. For arb.trary open
covering of E, there exists a such as Ms* < MP, from the definition of full
normality. Since E is prececompact for {1/}, there exist finite pointes pai
(f=1,2,,4) of E such that E= Uz, Va (pai). While, there exist Mi eI,
(/=1,2, -, n) such as V. (Psi) ¢ M.

Hence E =iL_TIM, that is, E is compact. Thus the theorem is completely
proved.

Since, after A.H.Stone [5], full normality and paracompactness (cf, [ 6 )
are equivalent in T'-space, we set the following corollary :

CoroLLarY L. Hausdorff space is compact if and only if it is countably
compact and paracompact.

Reumarx. Even if E is a locally compact and countably compact uniform
space, and moreover its uniform structure is unique, it need not necessarily
be compact. This is shown by the following example.

Exampie 1. Let E be the set of all ordinal numbers < Q, Q being the
first uncountable number. The topology of E is the usual one of an ordered
set, an open base being given by the family of all open intervals. It is well
known that E is a locally compact, countably compact and completely normal
space. It is aiso easy to see that every two disjoint closed sets are normally
separable and at least one of separator may be compact. Hence uniform
structure of E compatible with this topology is unique, by R. Doss’s theorem
(cf. [77). But E is not compact. Thus E is the required one. By Theorefn
1 E is not fully normal. Consequently,

CoroLrary 1.2. Locally compact, countably compact and completely normal

space is not always fully normal.
That is, locally compact, countably compact and normal space is not always

paracompact.

§2. Let us now turn to the metrization problem of uniform space.
A.Weil has proved that uniform space E with uniform structure {IV/a} is
uniformly homeomorph with metric space if and only if there exists a

3) A covering N which is a refinement of a covering R, is written as I < NR.
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countable system of entrouges {I/s} equivalent to {I/s}. For uniformly
locally countably compact space, we shall give another necessary and su-
fficient condition, that is,

TueoreM 2. Uniformly locally countably compact uniform space E is uniformly
homeomorph with metric space if and only if there exists a countable system of
entronges {Va} < {Va} such that

) Ve an

Proor. Since necessity is evident, we need to prove sufficiency only. Let
Ve (p) be countably compact for every p in E, and {Is,} and {I/y,} satisfy
the relations

”
V‘; Ve Vn, Vync-gl Vﬁ;y n= 1,2, vees

In the first plice, we prove {I/y, (p)} is fundamental neighbourhood
system for each p in E. Otherwise there exist peE and an open set G (p)
containing p, such that I/, (p) € G (p), #=1,2,-~. From this we find a
countable sequence {pa} ¢ E such that pne 1y (p) ~ G (p), m=1,2,. Thus
{pe} =Va(p). If {pu} contains infinitely many different points then {p,} has
an accumulation point p, in Va(p). In the contrary case there is a point po
coinciding with infinitely many pa.

Since we have

PmEVv,,(P)CVﬂ,,(P) fOI.‘m>n, n=1,2, .

This is a contradiction.
We can also similarly prove, that {1, } is equivalent to {I/s}. From the
proof of this theorem, we have

Corovary 2.1. Locally countably compact regular space, in which each
point is Gs, satisfies the first countability axiom.

In perfectly normal space, every closed set is a Gs set. Hence locally
countably compact perfectly normal space satisfies the first countability
axiom. From this,

CoroLLARY 2.2 Compact completely normal space is not always perfectly
normal.

4) Such notion of countability was introduced by J.von Neumann [8].



60 H. UMEGAKI

For, let E' be Q adjoined by E in thc example of §1, the neighbourhood
system of O being defined as in §1. then E is compact and completely
normal, so that is fully normal, but not perfectly normal.

CoroLLarY 2.3. Countably compact and completely regular space is metrizable
if and only if, there exists a countable set of real valued continmons functions {fn}
defined on E such that, for any two distinct points p, q of E there exists an fu in
{fn} such a:fn(p) 4:fn(q)-

Proor. Since necessity is evident, we prove sufficiency. Let us put
Ve, owe={(p,q) @i(p)— gi(q)|<e i=1,2,--,n} for any continuous
functions @i (f=1,2, -, ), any positive number 7, and any positive number
e>0. Then {IV¢, -, ¢, ) @1, -, @n, e >0 defines a uniform topology in
E compatible with its original topology. Since N T'fs, 1m = A, Theorem 2
completes the proof. "

§4. In this section we consider a condition of completeness of uniform
space. J.Dieudonné® has proved that uniformizable space, which is metrizable,
has a uniform structure compatible with its topology, and that such space is
complete. The essential part of his proof lies in that, if for every p* ¢ E*—E,
E being uniform space and E* being completer of E, there exists a real
valued function f on E such that fis continuous in E and f(p) tends to
+ o when p tends to p* varying points in E, then E has a structure of
complete space.

Applying this method, we can replace the metrizability condition by the
condition (*) of Theorem 2.

Tueorex 3. If E is a aniform space satisfying the condition (*), then E has
a wniform stractvre compatible with its original topology which makes E compacte.

Proor. We shall first prove that there exists a uniformly continuous
distance function “4’’ satisfying the condition of semi-metric. Let us take
{Va, such as

@, = V1, Vaﬁ = I_/lvm”, TQ/M,H_I [ an n Vn, n= 1, 2, ety
and definz 4, such that
an(p,q) =0 if (p,9)eVa,,
dn(p,g)=1 if (p,q) €V a,,

5) See J.Dieudonné [9], [10].
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and put
dp,q) = 2 du (p, 2.

Then clearly 4(p, ¢) = Olif and only if p=g¢4 (by the condition (*)), and
dp,q)=4d(g.p) by Ve, = ﬂwn). That is, distance function d(p, q) is semi-
metric.  Since 4(p,q) is uniformly continuous, from- a theorsm A.Weil,
d(p, g), extension to E* of d(p,g), is also uniformly continuous. If p* e E*
— E, then there exists at most one point p, in E such that 4(p*, p)) = 0. From
this and using the method of Dieudonné (cf, [9]), the proof is compl ted.

Remark., We can show, using a Theorem of W.A Wilson (cf [117), that
the above distance function 4(p,q) satisfies also the triangular axiom of
metric.

Consequently, if {I74} is equivalent to {I”a}, then E is uniformly ho-
meomorphic with a metric space.

From this theorem we can deduce the following corollaries.

CororrarY 3. In a aniform space E satisfying the condition (*), the five
conditions of theorem 1 are equivalent to cach other.

Proor. It is enough to prove (4) » (1) only. But this is clear, since
precompact and complete uniform space is compact.

CoroLLary 3.2. If E is a uniformizable space which is enumerable sum of
compact sets, then E Fas a aniform stractare, by which E is complete.

Proor. From the postulate, there exists a (enumerable) sequence of com-
pact sets {Ka!, such that E = |J Kn. Let E* be the completer of E for a
uniform structure of E compa’;ible with its topology. Then each K, is also
compact in E*. For any p* ¢ E*—-E, there exists a sequence of continuous
functions {fu(p)}, defined in E* such that fu(p*)=0, fu(p)=1 for peKa
and 0<fx(p) <1 for every pe E*. If we put f(p)= i1 fu(p)/c#, then
cleatly f(p) is continuous in E* and f(p) =0 implies pe E* — E. We put
@(p)=1/f(p) for pe E. Then @(p) is continuous in E and tends to + o
when p tends to p* varying points in E. Thus our proof is completed (cf. the
first part of this section).

§5. We will conclude the paper by discussing local propetties of uniform
space. Let P be a hereditary property. In the topological group G, if G
has the property P locally, then G has property P uniformly locally. S.Kaku-
tani proposed the problem that, if E, a uniform space, has the property P
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locally, then has E it uniformly locally, or does there exist a uniform
structurc compatible with its topology such that E has the property P
uniformly locally. We can answer this problem negatively.

A.Weil has proved that if a uniform space E is uniformly locally compact,
then E is complete. While, in Example 1 of §1, we have known that co-
untably compact and locally compact completely normal space need not be
compact, and then it is not complete. Thus, from the above theorem of
Weil, it is not uniformly locally compact for any uniform structure com-
patible with its topology. Thus the problem is soloved negatively.

We will remark that, if E is a fully normal space, then this problem was
positively solved by Shiroda (cf. [12]).

Now regular T-space having an enumerable covering compact sets, is
normal. This is proved similarly as Tychonoff’s theorem (cf. [13]); that is,
regular T -space satisfying the second countability axiom is normal.

TueoreM 4. Connected, uniformly loally compact uniform space is normal.
Finally we will give an extension of a Kakutani’s theorem in metric space.

Tueorem 5. Connected aniform space E satisfying the second countability
axiom uniformly locally, is metrigable.

Proor. There exists a such that 1/, (p) satisfy the second countability
axiom for all pe E. For fixed p,eE, there exists {pi} <1 a(p,) such that
{pi} is dense in Va (p). And for each 7, there exists {pi};j < Va (pi) such
that { pij}; is dense in I/a (pi). In general, for each 7,7,--,m, there exists
{pij-mn)n € Va (pii-m) such that {pij. ma}n is dense in Ve (pi; m). We put

S = U {Ui Va (pi), Uij Va (pis), -+, Usi.n Ve (pijen), =}
Then § is open and satisfies the second countability axiom. If we can prove
that § is closed, then § coincides with the whole space E by connectzdness.
If S is not closed, then we can find a point pe 5 — 5. Since SN Ve (p)+¢

where Ve=1sc Va, there exists pij ne s (p), whence gelVe(pi n) = Va

(pij-w) = 8. This is a contradiction.
If connected uniform space satisfies the second countability axiom merely

locally, then E is not metrizable in general. This can be seen by the following
example (cf. Alexandorff-Hopf [14]).

ExampLe 2. Let E be the Euclidean half plane: {(x,y): y=0}. For
p = (x,9), >0, let its neighbourhood IV (p) be open spheres with center p
lying in E.  For p =(x,)), y=0, let its neighbourhood IV (p) be the open
sphere touching at p with x-axis. Then E is regular locally compact T,space
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and satisfies the second countability axiom locally. Thus E is completely
regular, but not normal. And clearly E is connected. From Theorem 4 and 5,
E is not uniformly locally compact, and satisfies the second countability
axiom uniformly locally. Hence E is not metrizable.
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