ON SOME DIVERGENCE PROBLEMS®

By

TaMoTsu TSUCHIKURA

This paper contains three §§ on different problems. In the first § we shall
concern the problem of J.D.Hill and S.Kakutani, in the second the extension
of a theorem of H.Steinhaus, and in the third a property of subseries of di-
vergent series with function-terms.

§1. On a problem of J.D.Hill and S, Kakutani.

Let {rx(x)} be the Rademacher system, J. D. Hill ((2)) and S. Kakutani ((4))
proposed the problem, whether, for the sequence 0<p <p, <+ - such
that pn /(p, + =+ + pu) > 0(n— ), the Riesz mean '

= hin (%) + + + pnra ()
@n (%) ¥ on

tends to zero almost everywhere as #— .

I was told that this problem had been solved negatively by S.Kakutani,
but I am not aware of his precise result. On the other hand, using the in-
dependency of the system, G. Maruyama recently gave a negative example using
the Kolmogoroff lemma on the law of the iterated logarithm ((5)).

We shall give here another negative example ((9)) by an elementary lemma
of S. Mazur and W. Orlicz ((6)) :

Lemva. Let f(x) be a measurable function of period 1. Then for any sequence
of positive numbers ny < ny < - =, we have, for almost ail x,

lirglsup |f (m x)| = ess.max.|f(x)L.

First of all we note the evident relation r (x) = r1 (2"1x), and let 7, (x)=
r(x) for brevity. In the sequel we shall use these notations of the Rademacher
functions without any notice.

Our purpose is to construct a sequence {pa} such that 0 < p; < p, <++—®,
pnl(pr+ =+ pn) >0 (n— ) and that if we put

*) Received Aug. 20, 1949,
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D17 (x) + par (@x) + - pu r(Z"“’x)

(1) on (%) = Pr+ pat ¥ pu
then we have
(2) limsup s (x) | =1

almost evérywhere. Since the set (we understand throughout this § that the set
is included in (0,1)) of convergence of {@x(x)} is of measure 0 or 1, and.since
if it converges almost everywhere, its limit is necessarily zero (see (2)), the
equality (2) implies its almost everywhere divergence.

Let us define a sequence of integers

(3) B2, B, e B (n=1,2,-)

by induction. Let & = (1) =1 and suppose that the integers

KO, B, o B (5=1,2, -, n—1)

were defined. Put & =+ (:_11) and A7 = 1 + ks + 1 (m > 1).
If we consider the function which is the sum of # number of the Ra-
demacher functions,
fa (3) = 7 (x) + r(@x) + - + r(27x),

then by the Mazur-Orlicz lemma, we have
. . (O . (n) n)
(4) lim sup | fu (2kn 5x) | = lim sup | 7 (2km x) + - + 7 (20 +em x) | =5
m->x0 m-x

almost everywhere, for B < kP <> and ess. max. | fn ()] = n. Accordingly
there exist an integer »» and a set Fan, | En|=1—#—2 such that at least one of
the terms

) (n) (n) )
(5) [fn (25 2) [, [fn (252) 1, =y [fn (20vm )]
is greater than #(1— #~1) for xeEs The sequence (3) is thus completely

defined. Putting now m=1,2, -, vs, and #z=1, 2,..-, we arrange the

fonctions fx (Jm)x) successively, which we denote by
(9) €13, C2], -, [4],

Then we can easily see that every s (x) appears in (9) once and only once in
arder of its index.

Let E =liminf E» and N: be the number of the Rademacher. functions
included in [7]. Then |E|=1, and we see from the definition of the sequence
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(3) that
(7) lin”!S;IPIEI.:]/M ='1im(l—1\L~l)=1 (x e E).
Let
(8) g1=1and gi = (g, N, + + + gi— _Ni-.x)/Ny2 (Z>1)
Then we have
(9) g [ (g N1 + - +q1—1N—])=‘N11/2 as />,
and from (8) and (9) we deduce that
Fitde | A0+ + -+ e[| | gili] {
()= N+ 2 No+ -+ g Ni | = | gi :/-+Q1Ni |
' 71 Ny + -+ qi— Nia
qi ”2+ qi Ni
= (14 N7 [P 1N~ o(1).
Hence from this and (7) we have
(10) limsup | Fi (x)| = limsup|[i] N7 =1

for x ¢ E, that is, almost everywhere.

Let us now define a sequerce { pn}. If ru(x) is included in [i] we put
pn=qi. From (8) we see immediately that pa/(p; + -+ + pn)->0 as #—> o, and
from (10) that lim sup!@s (x)| =1 almost everywhere.

Thus the neg:xzi:fe example is constructed.

The s=quence {p»} defined above is not strictly increasing, but it is easy
to find a seqneuce { p,,} with this additional property.  The detail may be
omitted.

Remark. Let f(x) be a function of period 1, of Lipa (0 < o« <1) (more
generally, of Lip(«, 2)) and such that

S(l,f(x)dx-—- 0, S:f“(x) dx =1.

Let {#x} be a monotone sequence of positive numbers tending to o, and such
that pr/(ps + - + pa)—>0 as k—oo, and let (s} be a lacunary sequence of
integers: mi/m > g >1(k=1,2, ).

Then by M.Kac (C 3)), the sequence
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bif(mix)+ -+ puf(nr x)
pit o+ pr
tends to zero in L>-mean as £— .

If, moreover, m11 is a multiple of m (k=1,2, ---), the set of convergence
of {yx (x)} is of measure 0 or 1. In this case, by the similar device as above,
we can also construct two sequences | pk' } and {#s ), #x+a/ne > g > 1 such that
{¥x (x)} diverges almost everywhere.

Vi (x) =

(k = ]’2’ )

§2. ‘A property of divergent ceries.

TuroreM. Consider the series of bounded measurable fanctions
(1) § ar ()

If, in a set E, 0 <'E| <0, we have
(2) lim sup [sa (x) | = .

where sn(x) denote the n-th partial sum of the series (1), them there exists a
monotone sequence of positive numbers { Ar} such that \e -0 as k—>co and that

(3) limsup|on (x)| = ®
? >x

almost everywhere in E, where on (x) denotes the n-th partial sam of the series
(4) ’§ A& ar (x).

H. Steinhaus proved this theorem in the case a (x) =0 (£ =1, 2,-) (7).

Proor. Let us define a sequence of positive integers {# } by induction.
By (2) we can find a positive integer #, and a set E, < E- (-1, 1) such that at
least one of the terms

lay ()], [ai (%) + @ (%), -, 1 1 2)+ =+ an (x)]

is greater than 1 in E,, and, |E,| > |E-(—1,1)|— 1.

Suppose that the integers », and the sets E, (v =1,2, -, 7--1) were all
defined. Then by (2) we can determine a positive integer # and a set Ei <
E-(—1,i) such that at least one of the terms

la"‘_l'l'l (X) l) 'a”i_l-l"l (x) + an;_,+2 (X) I’ R l a"'i—l-H (X) + - an, (X) [

is greater than 7? in Fi, aud | Ei| > | E- (—4,7)| - i
The requences { i} and { Ei} are thus defined, Let us now put



34 T. TSUCHIKURA

=1 (1<k=sn), =it ma<k=m), (>1),

and E*= liminf E;. Evidently A} 0 as £—~c and the set E* coincides with
E except a null set. In fact, we have
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which is clearly of measure zero.
For any xeE* we have the equelity (3), since for large 7, we have

@
x eIl Ei and from the definition of {#}, for any IN there exists an integer
1=1)
/> ny-1 such that
l
> v (x)
1

k=nyn_q+

> N. q. e d.

Remarks (i). If the series (1) is oscillating finitely, we can not necessarily
find a sequence { Az }, A%} 0 (£— ) such that the series (4) diverges almost
everywhere in E. For example, the series

——_§—+ cosx + cos2x + -

is divergent for all x, but for any { Az}, Az | 0(k— ) the series

Ay
2

+ Ay COSx + A3COS2x + -

is convergent for x == 0 (mod. 27).

(i) In our theorem we can choose the sequence {Ax} as to be convex.
The proof of this fact is not so difficult, and may be omitted.

(iii) From remark (ii) and known theorems (see (10], p. 104), if we can
find a Fourier-Stieltjes series (Fourier-Lebesgue series of bounded function),
which is divergent oscillating infinitely almost everywhere, then we may
determine a Fourier series of Lebesgue integrable (continuous) functions with
the same property.

§3. Subseries of divergent series,

Let us consider the series
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a, + ﬂg"‘ b

with real or complex terms which is not absolutely convergent. R.P.Agnew
(C1)) proved that there exists a sequence of indices

1sm<n< e
such that
(1) Bhty— Nk —> 0 as k—
and the series
an,+ any+ -

is divergent.
We shall consider now the corresponding result for the series of functions,
and prove the following theorem.

Turorem 1. Let an(x) (n=1,2,) be bounded measurable functions and
suppose that the series
(2) a,(x) + a,(x) + -

diverges in a set E, 0 <|E|< oo, in the following manner: the set E is decomposed
into at most enumerable sum of sets Ei, |Eil >0 (G =1,2,) and subseries of the
series (2)

(3) glam;n(x) (i=1,2,)
diverge to o or oscillate infinitely, that is,

> an ()
(4) lirgfgpllkzﬂam;i) (x)!=oo

for xeEi(i=1,2,).
Then there exisks a sequence of indices {mn} such that the expression (1)
holds and moreover the series

(5) anl(x)+ ﬂn2(x)+

diverges to = o or oscillates infinitely almost everywhere in E.
For the proof of this theorem we first prove the lemma which is a special
case of the theorem.

Lemma. Let an(x) (#=1,2, ) be bounded measurable functions, and suppose
that the series (2) diverges to o or oscillates z'nﬁm'te{y, that is,
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N t
lim SUp Z an (x = 00
N-x n=1 '

for xeE, 0<|E| < 0.

Then the conclusion of Theorem 1 is true.

Proor or LeMma. We shall define the sequence {# } by induction. Let
n, =1 and suppose that the indices #,, 7, -, m are determined. Denote
M,= EE (the series 3, an, + 1 (x) diverges to & o
= =

x
Lor oscillates infinitely J,

(6) M,= EE [the same as above for the series Z ﬂnk+l+kj(x)_!,
x j=1

(AL

]
My = EE [the same as above for the series >, At h-1)+ b (x)].
x j=1

We have then E = M, + M, + -+ + M. In fact, if x is not contained in
the set-sum of the right-hand side, then all the partial sum of the series in
the brackets of (6) are equelly bounded, and then the partial sums of the series
(2) are also bounded, this contradicts the assumption (3), whence

EcM+ M+ -+ M

the opposite inclusion is obviously true.
There exists a natural number A, such that if we put

*Al
> anri (x) is = & in absolute value

j=1 ’

(7) N1= MI'E

at least one of the partial sums of the series
x

then
[Ny | = | My | — 2-+D,

Since an (x) are bounded functions, there exists a patural number A, such
that by denoting

Ao
No= M g[ the same as in (7) fo§=§+ (it (x)l

we have
| N = | My |— 2~

Proceeding in this manner we may define N, N, successively and finally
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N such that
AR
Ni = M:'E [the same as in (7) for ] dnk+(k—1)+kj(x)]
2 t=A -1 1
and

| Nkl | Me|—272%

Obviously we have

[Er =N+ No+ - + N/
> M+ Mo+ -+ Ma|— (25D 4 2G4 . 4 2-8) > |E|[—2-h,

Let the indices of the terms of the series appeared in the definition of
M) 1\];3, oy Nk be

Hrt1s Wei2y s Bhivg

successively, then

(8) st —meip =R (p=0,1,2, -, vp —1).

The sequence {m}, thus determined, has the property (1) in virtue of (8),
Let E* = lim inf Fp, then |E*|=|E| as we can easily see, and the point x ¢ E*
is contained in every E; for sufficiently large 4, whence, as we see immediately
from the definition of INj, the series (5) diverges to =+ o or oscillates in-
finitely. This proves the lemma.

We are now in a position to prove Theorem 1. Without loss of generality
we may assume that 0 < |Ei|< o (1 =1,2,-), for if |Ej|=, the set E; is
decomposed into an enumerable sum of sets of finite measure. s

By lemma there exist subsequences {n(;;) o {7;;<i)}1, ¢f=1,2, --) such
that mts — At >0 (k- x) and the series

(9) g‘d'n;i) (x)

diverges to = o or oscillates infinitely almost everywhere in E:i (f = 1,2, --).

In order to determine the required sequence { s } we shall use the ‘“ dia-
gonally selecting method *’.

First of all, let

a0 (%) + 2,1 () + -+ 4,1 (x)
1
be the partial sum of the series (9) (/ = 1) such that at least one of its partial

sum is greater than 1'in absolute value,, and every difference of the consecutive
indices is greater than 1.
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Secondly, let

2, (o) + a,‘ﬁ)“(x) toetany ()

be the partial sum of the series (9) (/ = 2) such that

2
nk; = ngi) + 2,

and at least one of its partial sums is greater than 2 in absolute value and the
difference of the consecutive indices is greater than 2.
Thirdly, we find the partial sum of (9) (=1)

as + - +a
a0 () + " () A )

such that
L=+ 3
ky = Tk
and the other properties in the second step hold replacing 2 by 3.
Taking the seires (9) for 7-=3,2,1, 4,3,2,1, 5,4, 3, --- successively, we may
obtain by the similar device the sequence of indices of their terms

"

0y s DS D ey S s WO, ey (u=u @)
2 2 v

which we denote by { # }, then the sequence { s } is the required one, g.e.d.

COROLLARY. L7

(10) 2 a% (i=1,2 )
be series of constant terms (real or complex), and suppose that each of them is not
absolutely convergent. ‘Then there exists a sequence of suffices {mx} sach that
#h — Bk > as k—> o and the series
5
k;la"k
diverges for every i =1, 2, ---.

Without loss of generality we may assume that all the terms of (10) are
real. If (10) is not absolutely convergent either the series of its positive temms
or that of negative terms diverges to = (f=1,2, ). Let Ei=(, i+ 1)
(G=1,2, ) and let an(x) =a® if xeE¢ Then from Theorem 1 we may get
the required sequence.
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Our theorem may be generalized as follows :

TueoreM 2. Under the same assumption as in Theoremr 3, if 0 < pny um/untr
1 as >0 and 2 uu=®, then thers exists a s.quence { ne ; such that

. ]
11}2 1:21 Ui le uj-=0
and the series (4) diverges almost everywherein E.

This is an immediate consequence of Theorem 1 and Mr. Sunouchi’s The-
orem ((8)).

Comparing Theorem 1 and the Agnew theorem, stated in the beginning
of this §, it may arise the question whether the restriction of divergence-

manner such as (4) is supetfluous or not for the validity of Theorem 1, but
it remains open.

Toéhoku University, Sendai.
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