
ON SOME DIVERGENCE PROBLEMS*)

By
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This paper contains three §§ on different problems. In the first § we shall
concern the problem of J.D.Hill and S.Kakutani, in the second the extension
of a theorem of H. Steinhaus, and in the third a property of sυbserios of di*
vergent series with function-terms.

§ 1. On a problem of J. D. Hill and S. Kakutani.

Let (r«(x)} be the Rademacher system, JL D. Hill (£23) and S. Kakutani (CO)

proposed the problem, whether, for the sequence 0<^pi^p.2S> • °° such

that pn /fa + — + pn) -> 0 {n -• oo), the Riesz mean

φn (χ) = P*M*) + ~+P*r*(x)
pi + ••• -f pn

tends to zero almost everywhere as n -> oo.

I was told that this problem had been solved negatively by S. Kakutani,
but I am not aware of his precise result. On the other hand, using the in-
dependency of the system, G. Maruyama recently gave a negative example using
the Kolmogorofϊ lemma on the law of the iterated logarithm (£53).

We shall give here another negative example (£93) by an elementary lemma
of S. Mazur and W. Orlicz

LEMMA. Let f(x) be a measurable function of period 1. Then for any sequence

of positive numbers n±< n%< • » , we have', for almost all x,

lim sup \f(m x) I = ess. max. \f(x) |.

First of all we note the evident relation rn {x) = n (2n^1x), and let n (x)«
r{x) for brevity. In the sequel we shall use these notations of the Rademacher
functions without any notice.

Our purpose is to construct a sequence {pn} such that 0 <pi<p2<
pn I (pi + —V pn) -> 0 (# -> αo) and that if we put
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(1) Ψn (x) - P* r{x)+p2r(2χ) + -ft, r(2*-*x)
pi + p 2+ "' + pn

then we have

(2) lim sup I <p« (x) I = 1

almost everywhere..Since the set (we understand throughout this § that the set
is included in (0,1)) of convergence of {φn (x)} is of measure 0 or 1, and since
if it converges almost everywhere, its limit is necessarily zero (see C2D)» the
equality (2) implies its almost everywhere divergence.

Let us define a sequence of integers

(3) &n\ &\-, &ϋ (« = i , v )

by induction. Let ^ί1^ = kv? = 1 and suppose that the integers

kίS\US\~; £ ? ( ,= 1,2, . . - , , - 1 )

were defined. Put ^ = n + /S^ and kW =n + Um\ 4-1 (m> V).

If we consider the function which is the sum of n number of the Ra*

demacher functions,

fn (x) = r{x) + r(2χ) + ... + r(»x)$

then by the Mazur-Orlicz lemma, we have

00 W («)
(:4) l im sup |/» (2*m ΛΓ) | - l im sup 1 r {2km x) + - + r (2W+Λm x) | = n

m-+ao w-»co

almost everywhere, for U^ < Uf*<•••->» and ess. max. |/« (ΛΓ) 1 =̂ #. Accordingly
there exist an integer vn and a set En, | JEM | > 1 — n~2 such that at least one of
the terms

(n) (n) (n)

("5) \fnψlχ)\, [/n(2*2χ)|, -.., |/,(2^w X), |

is greater than # (1 — n~τ) for x e En* The sequence (3) is thus completely

defined. Putting now m — 1, 2, •••, vn> and » = 1 2, ••• we arrange the
(n)

functions fn (ϊk™χ) successively, which we denote by

(9) c i ] , [ 2 ] , » . , c n ,

Then we can easily see that every m(x) appears in (9) once and only once in

order of its index.

Let B = liminf Ew and Ni be the number of the Rademacher functions
included in [ / ]. Then | E \ = 1, and we see from the definition of the sequence
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lim sup I [/] / Ni ] = llm (1 - Nr1) = 1 (x «£).

(3) that

(7)

Let

( 8) qx = 1 and q% = (qx Nλ

Then we have

(9) qi /(qiNi-h - + qi-i

and from ( 8) and (9) we deduce that

/ > 1).

N i 1/2-» 0 as / -• oo,

D 4*11 ΦZ I
Ni + ô N» + - + qi Ni Ψ + qi Ni

j Nί+ — + qi-Λ Ni-i

qiNil2+qi Ni

Hence from this and (7) we have

(10) lim sup I Ft (x) ί = lim sup I [ / ] N " 1 i = 1

for xεE, that is, almost everywhere.

Let us now define a sequence {pn}. If rn (x) is included in [ / ] we put

pw = q%* From (8) we see immediately that pJ(Pi + ••• + pn) - > 0 as » -• oo, and

from (10) that b'm sup \ φn (x) \ = 1 almost everywhere.

Thus the negative example is constructed.

The sequence {pn} defined above is not strictly increasing, but it is easy

to find a seqneuce {pn} with this additional property. The detail may be

omitted.

REMARK. Let/(λ ) be a function of period 1, of Liρα(0 < a

generally, of Lip(α, 2)) and such that

(more

Let {pk} be a monotone sequence of positive numbers tending to oo, and such

thatpk/(p!+ •- +pk)-+ 0 as k-+ oo, and let [m} be a lacunary sequence of

integers: m+i/ffk > q > 1 (k = 1, 2, ...)•

Then by M.Kac (C3 3), the sequence
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pi'T — + pk

tends to zero in L ?Ίnean as y£->oo.

If, moreover, nk+i is a multiple of m (k= 1,2, •••), the set of convergence

of {ψ * (x)} is of measure 0 or 1. In this case, by the similar device as above,

we can also construct two sequences f pk } and {m)9 nk+i/nk > q> I such that

{ψk (x)} diverges almost everywhere.

§ 2. A property of divergent εeries.

THEOREM. Consider the series of bounded measurable functions

00

( l ) Σ a (x)

If in a set E, 0 < ! JB) <Ξ oo, we have

( 2 ) lim sup [ sn (x) | = oo .

ί ^ r ^ J «(Λ) ώ ^ / ^ /A* »"//& partial sum of the series (1), /^» there exists a

monotone sequence of positive numbers {λδ} such thsat λδ->*0 as £-*co ^»i / ^ /

(3) lim sup! σn (x) I = oo

almost everywhere in E, where σ« (x) denotes the n*th partial sum of the series

00

(4) Σ λ* ** (x)-
Λ = 1

H. Steinhaus proved this theorem in the case an (x) ^0(k — 1,2,—) (C73)

PROOF. Let us define a sequence of positive integers { m } by induction.

By (2) we can find a positive integer nι and a set B i d £ • ( — ! , 1) such that at

least one of the terms

I d\(ΛΓ) !> !di (x) + a%{x)\, •-, I i\ ΛΓ; + — + ^ (x) |

is greater than 1 in Elf and, | E i | > I E (—1,1)1— 1.

Suppose that the integers nv and the sets Ev (v = 1 , 2, - , / - - I ) were all

defined. Then by (2) we can determine a positive integer m and a set E* c

E (— i> i) such that at least one of the terms

I *»,_!+! U)!) I *»i_i+i ί̂  ) + ^ _i+2 W I, —> I ^» i β l+i W + — + **i fa) f

13 greater than i2 in E*, aud | E* | > | E (—/,/) | - /~2

J h e requences { *̂} and {J5>} are thus defined, Let us now put
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λk = 1 (l^k^ /j), = i"1 (m-i < k^£m), (/ > 1),

and JB*= liminfjΞ*. Evidently XΛ | 0 as k-+ oo and the set E* coincides with

E except a null set In fact, we have

jB- E* =TT Έ(E-Ei) c"Π Σ ["{£.(-/,/) -Ei) f (-oo,-/) + (/,oo)Ί
P=l i=p p=l i=p L J

00 00

= TTΓΣ{E (-/,/)-£<} f (-oo,-rt +(*,
P=l Li=p

00 CO

which is clearly of measure zero.

For any xεfc* we have the equality (3), since for large ; 0 we have
CO

xεUEi and f̂ om the definition of {»•}> f° r anY Aτ there exists an integer

/ > »JV-I such that

\k an (x)
"ΛΓ-1Ί

> N. q. e. d.

REMARKS (i). If the series (1) is oscillating finitely, we can not necessarily

find a sequence { λ* }, λ* | 0 (k-> co) such that the series (4) diverges almost

everywhere in JE. For example, the series

-~~- + cos x + cos 2χ + —

is divergent for all #, but for any { λ*}, λ* | 0 (/fe-> oo) the series

-τj^-+ λ 2 c o s x + λ 3 c o s 2 χ + •••

is convergent for ΛΓ Φ 0 (mod. )

(ii) In our theorem we can choose the sequence { λ* } as to be convex.

The proof of this fact is not so difficult, and may be omitted.

(iii) From remark (ii) and known theorems (see C1CΓ), p. 104), if we can

find a Fourier-Stieltjes series (Fourier-Lebesgue series of bounded function),

which is divergent oscillating infinitely almost everywhere, then we may

determine a Fourier series of Lebesgue integrable (continuous) functions with

the same property.

§3. Subseries of divergent series.

Let us consider the series
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with real or complex terms which is not absolutely convergent. R. P. Agnew
(CO) proved that there exists a sequence of indices

such that

(1) **+!-»*-•« as £-00

and the series

is divergent.
We shall consider now the corresponding result for the series of functions,

and prove the following theorem.

THEOREM 1. Let an (x) \n = 1,2, ) be bounded measurable functions and

suppose that the series

(2) rfi(x)+ a2{x)+ •••

diverges in a set Ey 0 < J JE| g oo, in the following manner- the set E is decomposed

into at most enumerable sum of sets E%y \E%\ > 0 ( ' = ϊ>2, ) and subseries of the

series (2)

diverge to ±: oo or oscillate infinitely, that is,

N

(4) lim sup Σ amri) (x) = 00

for x Eiif = 1,2,-).
Then there exists a sequence of indices {nk} such that the expression ( 1 )

holds and moreover the series

( 5 ) anχ{x)ι+ an2(x) + -

diverges to ±co or oscillates infinitely almost everywhere in E.
For the proof of this theorem we first prove the lemma which is a special

case of the theorem.

LEMMA. Let an (x) (n = 1,2, —) be bounded measurable functions, and suppose

fhat th? series (2) diverges to rt oo or oscillates infinitely, that is,
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lim sup
N

Σ *n {x) : =

for xεE, 0 < IEI < co.

T ^ « / ^ conclusion of Theorem 1 /J

PROOF OF LEMMA. We shall define the sequence { m } by induction. Let

Π\ = 1 and suppose that the indices »j, »2, , »* are determined. Denote

Γ
^f _ β.]i\ Λe series 21 tf»Λ + *y ix) diverges to ± oo

(_or oscillates infinitely
(6) Mo= B E Γthe same as above for the series Σ Ŵi

00

ΛΛ β J3 E Γthe same as above for the series Σ
x L j = l

We have then £ = Mi + M2 + ••• + Λft. In fact, if x is not contained in
the set'Sum of the right-hand side, then all the partial sum of the series in
the brackets of (6) are equelly bounded, and then the partial sums of the series
(2) are also bounded, this contradicts the assumption (3), whence

E c Λ f i + Λf2+ - + Mk\

the opposite inclusion is obviously true.
There exists a natural number \ t such that if we put

(at least one of the partial sums of the series\

Σ *V* (*) i s ^ k i n a b s o l u t e v a l u e )

then

Since an (x) are bounded functions, there exists a natural number \> s u c h
that by denoting

N2= M E| the same as in (7) for Σ anh+
x L y=λi + i Λ

we have

Proceeding in this manner we may define N19 N2, successively and finally
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such that

Nk = MIΈ Γthe same as in (7) for

and

Obviously we have

> | M i + M 2 + - + λϋfcl-β-uw + 2-«*w + - + 2-<*) > | E | - 2 - * .

Let the indices of the terms of the series appeared in the definition of

Nu N2) - , NH be

successively, then

( 8 ) nkϊp+ι— tik±p>k ( / > = 0 , 1, 2, ••-, i > * — 1 ) .

The sequence {nk}, thus determined, has the property (1) in virtue of (8),
Let B* = liminf Ek, then (£*|.= \E\ as we can easily see, and the point x ε JE*
is contained in every Ek for sufficiently large k, whence, as we see immediately
from the definition of Nj, the series (5) diverges to ±00 or oscillates in*
finitely. This proves the lemma.

We are now in a position to prove Theorem 1. Without loss of generality
we may assume that 0 < | EΛ \ < 00 (i = 1, 2, •••), for if | JBy| = 00, the set Ej is
decomposed into an enumerable sum of sets of finite measure.

By lemma there exist subsequences {/?}* a {m{%k}k(i = 1,2, •••) such

that nu+i — «A*+I->CO ( £ - > X ) and the series

(9) * § * " ? ' W

diverges to ± 00 or oscillates infinitely almost everywhere in B* (/=1,2, •••)•
In order to determine the required sequence { nk } we shall use the " dia-

gonally selecting method '\
First of all, let

#n

rX) M + a

n

rΌ (Λ*) + * + &. /Ί) (x)
*1

be the partial sum of the series (9) (/ = 1) such that at least one of its partial
sum is greater than 1" in absolute valμe^and every difference of the consecutive
indices is greater than 3 •
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Secondly, let

an

rr> (x) + a^ (x) 4- ••• + tfw'2) (Λ )

be the partial sum of the series (9) (/ = 2) such that

/£0 > «Cυ 4- 2,

and at least one of its partial sums is greater than 2 in absolute value and the

difference of the consecutive indices is greater than 2.

Thirdly, we find the partial sum of (9) (/ = 1)

tf/i)(x) + tf/i) (ΛΓ) + ••• -f a i)(tv)
* * + 1 %

such that

tf*> + 3
2

and the other properties in the second step hold replacing 2 by 3

Taking the seires (9) for / — 3,2,1, 4,3,2,1, 5,4,3, — successively, wfe may
obtain by the similar device the sequence of indices of their terms

which we denote by { nk }, then the sequence { m } is the required one, q.e d

COROLLARY. "Let

(10) έrfj) (/ = 1, 2,

/" constant terms (real or complex), and suppose that each of them is not

absolutely convergent* Then there exists a sequence of suffices {nk} such that

nk — nk-i -* °° as k -> oo and the series

diverges for every / = 1, 2, •••.

Without loss of generality we may assume that all the terms of (10) are

real. If (10) is not absolutely convergent either the series of its positive teums

or that of negative terms diverges to ± « (# = 1, 2, •••). Let £» = (/, $ + 1)

(i « 1, 2, •••) and let an (x) = d£> if AT e £ ι Then from Theorem 1 we may get

the required sequence.
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Our theorem may be generalized as follows:

THEOREM 2. Under the same assumption as in Theorem I, if 0 < μ», μn'un+\

-*1 as n-*π> and Xμu— «>, then there exists & sequence {nu } such that

k nk

Jim 2 μmj 2 μi -= 0

and the series (4) diverges almost everywhere in E.

This is an immediate consequence of Theorem 1 and Mr. Sunouchi's The*
orem (C8̂ ).

Comparing Theorem 1 and the Agnew theorem, stated in the beginning
of this §, it may arise the question whether the restriction of divergence*
manner such as (4) is superfluous or not for the validity of Theorem 1, but
it remains open.

Tόhoku University, Sendai,

References

[ I ] Agnew, R. P., Sujseries of series which are not absolutely convergent, Bull,

Amer. Math. Soc, 53;2 (1947), p. 118-120.

C2] Hill, J. D., Summability of sequences of 0's and Γs, Aim. of Math., 46;4(1945),

p. 556-562.

[ 3 ] Kac,M., Convergence of certain gap series, Ann. of Math., 44;3 (1943), p.411-

415.

[ 4 ] Kakutani, S., Monthly of Real Analysis, 1(1947) (In Japanese).

[ 5 ] Maruyama, G., ibid., 2-9 (1949) (in Japanese).

[ 6 ] Mazur, S. and Orlicz, W., Sur quelques propriei.es de fonctions periodiques

et presque periodiques, Stud. Math., 9 (1940), p. 1-16.

[ 7 } Steinhaus, H., Sur une question concernant la convergence de series des

fonctions, Fund. Mnth., 11 (1928). p. 186-192.

[83 Sunouchi, G., On the distribution of th2 signs of the terms of unconditionally

convergent series, Monthly of Real Analysis, 3-3 (1949), (in Japanese).

[ 9 ] Tsuchikura, T., Monthly of Real Analysis, 2-9 (1919) (in Japanese).

[10] Zygnrund, A., Trigonometrical series, 1933.




