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Introduction. Lewis attempted to construct a logistic system! containing
an implication-relation < such that p < g (p strictly implies ¢) is synonymous
with “g is deducible from p”. In his calculus, the propositions,

that is, if p is impossilbe then p strictly implies any proposition, and
19.75 ~On~p <-g<p,

that is, if p is necessary then any proposition ¢ strictly implies p, and
further some paradoxical propositions have been proved®. Emch® and
Vredenduin® showed that such paradoxical propositions should ot always
hold in usual logic, and they attempted in two different points of view, to
construct new systems, the implication-relations of which seem to accord
with the usual deducibility. Vredenduin accepts only p<gqg- < -~ (p~¢q)
as a postulate, but not ~ O (p~¢q) < -p<gq, then he assumes < as an
undefined term. On the other hand, Emch assumes a unary operation O
as an wundefined term, by which he defines his implications v», and develops
his system in the analogous way to Lewis.

It is the purpose of this paper to present, in I some investigation of
Vredenduin’s suggestions, and certain properties in his system according to
Mckinsey’s results®, in II the equivalence between Vredenduin’s system
and Emch’s one, and in III certin extensions of their systems from a
viewpoint of modality.

1. Vrvedenduin's calculus of propositions is as follows: Undefined ideas;
elementary propositions p,q, 7, elc., negation ~ p, possibility & p, product
pq or p-¢q, implication p < g, and equivalence p = g.

1) Lewis axD Laxerorp, Symbeslic Logic.
2) Op. cit., p. 248.
3) A. F. Emcu, Implication and deducibility, Journ. of Symbolic Logic, vol. I
(1936), pp. 26—35; Addendum to this paper, op.cit. p. 58.
C. I. Lewig, Emch’s calculus and strict implication, op. cit., pp. 77—86.
A. F. Ewmcn, Deducibility with respect to necessary and impossible propogitions,
op.cit., vol. 2 (1937), pp. 78—8l.
4) P. G. J. VrEDENDUIN, A system of strict implication, op cit., vol.14 (1939), rp.
73—176.
5) J.C.C.Mcrmsey, On the number of complete extensions of the Lewis’s system,
op.cit., vol. 9 (1944, pp. 42—45.
J. C. C. MckriysEY, proof that there are infinitely many modalities in 82, op.
¢it., vol. 5 (1940), pp. 110—112.
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Postulates ; Definitions ;
V1 pq-qp VOl pVg = ~(~p~gq
V2 pg<p V02 p=q = p<q q<p
V3 p<pp V03 pog = ~p~q
V4 pgrr<p(pr) VU4 p=q = p>Dqg qg>p
V5 p<L~~p V05 poa = pg)

V6 p<{q g<r:< p<r
V7 p-p<ea:<¢q
V8 Opgy<Op
V9 Substitution (a)
V10 Substitution b’
V11 Adjunction
V12 Inference
Vi3 ~p<q < - ~q<p
VU4 pg <7 < -p~7r<~¢q
V15 p<q- < qr Lpr
V16 p<q-r<s: < pr <gs
V17 p <O P '
VI p<q-Op:<-Oa
V9 p<g < ~Op~q)
1. It is obvious that this system is included in Lews:s's system S2.
Vredenduin states in his paper that the asserted propositions 17.51, 17.52 and
19.47 of S2 can not be deduced from his assumptions, but if it were, 16. 33,
16.34, 17.5, 19.46, 19.48, 19.49, 19.5, 19.51 and 19.52 could not be deduced
because any of them can deduce some of 17.51, 17.52 and 19.47 in his
calculus. (See the later proofs of 17.51 etc.) We are sure that these
propositions have no paradoxical structure. In the following, we will
show that they are all deducible in his calculus. The head numbers of
propositions shall be identical with those in Symbolic Logic.
12.1—16.32 and 16.4——16.86 are proved in similar way in Symbolic
Logic.
LEMMA 1. p<qg <:pVr <-qVr[V15 12.44, VO0l, 12.3]
LEMMA 2. p<Lqg r<s:<:pVr < gV s[VI16, 12.44 VOI, 12.3]
LEMMA 3. p~p <-q, P <-qV~gq
V4] pg<p:<:p~p-<-~¢q
[V27] QED.

LEMMA 4. p - =-p(gN~q, p = DN @G~
[V15] p < gV~q:<:pp- < (gN~Q P

[LEM.3, 12.7, 12.15] p - <-p(g\V~q) (1)
[vaj PN ~q) < p (2)
[, (2, V02] QED.
LEMMA 5. p- < gV r:=:~7r < g\V~p[12.6,12.44, 12.3, VOI, V2]
16. 33 p<q =p<pq

[Vi5] p<qg < pp<qp
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r12.7, 12.151 p<q-< - p<pq (1)
[LEM. 17 p<Lpg - <:pN~p <L -pg\N~p
[16.737 p<Lpqg <:pN~p < - (pV~pP) (gN~p)

[LEM. 47 p<Lpg L:pN~p-<L-q\V~p
[LEM. 5] p<Lpg <:p-<-qV (p~p)

[LEM. 4] p<pg <:p<q (2)
LD, (2)] QED.

16. 34 p<Lq:=:pN q <-q [16.33, 12.44]

16.35 p- =:pVaqgp
[13.2] p<pVag
[16.33] p:=<:p-p\Vgq (1)
[(va] p-DdVag:<:p (23

LD, 2] QED.
17.01——17.4 is easily proved except 17.01" and 17.12,
117.01 ~(p<L~q) < pOg
117.12 ~(po~gqg) <X -p<gq
*17.5 is considered later. 17.51 and 17.52 are proved against the state-
ment of Vredenduin as follows:

17.51 pL~r q<Lr: < - ~@POQ
[Vi6] pP<L~r q<Lr:<:pg- <L - r~7r . (1
£'V19] g <L 7r~r:L:~S(Ppg~(r ~7)) (2>
[vorg ~Oiupg~ (r~7r)) = -~ Ppg(r N ~7))
[LEM. 4] = .~ ()
[V05] =~ (PO (3)
LD, (2), (3), V6] QED.

17.52 p<q p<L~q: < ~@pop) [17.5, q/p p/4]

17.53--—17.71 are all proved except 17.592, 17.7 and 17.71, where
17.7, 17.71 need not to be considered, because of 19.692.

*17.592 pOp-<L:p0q-V pO~q

18.1--—-18.92 are proved except the following propositions :
T18.1 ~pL~p L<-Op
+18.12 ~Op <L -p<L~p
118.13 ~(~p<Lp) <L - O~p
118.14 ~O~p L ~p<p
118.2 ~@p~qgop~q < p<q

118.3 ~p<L~q) < pog

118.31 ~@oqp < p<L~q

118. 35 ~ (pq <L~ 7r) <L (Ppgr) etc.

+18. 36 ~(qrs---- <L ~p) <L -O(pgrs ----) etc.
118.61 ~O~p pg<Lr:< q<7r

718.7 ~O~po g <p<yg

19.02 — —19. 451 are easily deduced.

19.51 p<Lr < - pg<r

[16.33] p<Lr = p<Lpr 1)

[V15] p<Lpr < pg<prq (2)
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[16.33] pg<7r- = pg<pgr
LD, (2),3)] QED.
19.52 g<7r-<-pg<r [19.51, 12.15]
19.5 p<r -V g<r:<:p9<r [LEM. 2,19.51, 19.52,13.31]
1948 p<q:<:p-<-qVr [19.5], 12.44]
19.49 p<r:<:p-<X-qVr [19.52, 12.44]
19.46 p<q Vv p<Lr:<:p-<-qVvr [19.48, 19.49 LEM. 2]
19.47 p<Lqg VvV p<Lr.- vV ~q<Lr:L:p-<-qVr
[19.48] ~qg<Lr:<L:i~qg- <L - rN~Dp
[LEM.5] ~qg < - rN~p:=:p-<-7rVgq
[(1),(2),18.11] ~¢<7r:<:p-<-qV7r
[(3), 19.46, LEM.2, 13.31] QED.

19.57 P qg~q:=:q~q
[LEM. 3] qg~q <:p-q~q
£12.173 P g~q:<-qg~q
(D, )] QED.

19.58 ( = second part of LEM. 4)
19.6 is identical with V15, and 19.61 is a special case of V16.
19.62 p<qgr:<:p<q-p<r

[Vi5] P<Lgr:<:p~r < -qr~r

[19.57] p<Lqr: <L :p~r <L . r~r

[12.6] P~r L rv~r:i=:p(rV~r)y <-r
FLEM. 4] =p<Ly

LD, @2)] p<Lqr < -p<r
£(3),12.15] p<qr-<.-p<gq
[(3),(4), Vi6] QED.
19.63 p<Lqr:=:p<Lq - p<r [19.61, 19.62]
19.64 1is identical with LEM. 1.
19.65 is a special case of LEM. 2.
19.66 ——19.682 are easily deduced from the above formulas.

%x19.69 p 0. qV7r:<:p0q V -pOr is considered later.

19.692 ——19.92 are easily proved except the following parts:

%19.692" ( = 19.69), %19.7" ( = 17.592)
%19.71 Op - <L: OG0 -V O P~
719.72-1 ~Op:<:p<L~q p<q
119.72-2 ~@oqp ~(PpO~q:p<~q-p<q
%19.72-3 ~(@POg) - ~POo~g):<L:~Op
119.73  ~O~p<:q<p ~q<p
119.74, 119.75

719.76  ~ @<L <X Op

19.77 ~(g=<p) <L -O~p

%19.8 ~Op~Oq <KX ~O BV Q
£19.81 ~O~p~O~q <L ~O~ (P

51
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x19.82 OV <L: 0PV -Og
119.83 ~Op~Og- <P =g¢
119.84  ~O~p~O~g < -p=gq
2. *x-Propositions. (i) It is obvious that 17.592, 19.71’ and 19.72-3
are deducible from one another, and 19.8, 19.81" and 19.82" are deducible
from one another.
(ii) 19.82 is deducible from 19.71":
[19.717] OBV <X:OWNVag @ V- OV a ~q) (1
{16.35,16.72] O Vg @) N - O PN g ~q)
=10V O ~a Vg~ q)

[LEM. 4] =:0q V- O@~ (2)
£val O(Pp~g L P
[LEM. 1] O~q VvV - Oq:<L:OpV-Ogq (3)

LD,2),3),V6] OV <:Op V- -Oq QED.

(iii) 19.69 is deducible from 19.82"
[19.827 O gV -pr):<:O ) VO () (1>
[16.72] pg- N pr:=:p(qV 7) (2)
0(1),(2),V05] p-0-qVvr:<:p0oq-<-pOr QED.

(iv) 17.592 is deducible from 19.69. [LEM.4, 12.7]

(v) 17.5 is deducible from 19.81":
[16.35] pr:=:(pr V q) dr

[16.72] 1= :pr \ pgr
[12.11 ~O@r) <X - ~Or-V -pgr) (1>
~O@q~r) L - ~O@@~7r N pg~7) (2)
[(1D,(2),V16] ~O@pr) ~O(q~r) <~ (br- N -pgr)
~O(g~r-< - pg~7) (3)
[19.81] ~O Wy N qpr) ~Og~7r N pg~7)

Il

~O Py N pgr N oq~7rv N pg~7r)

[16.727 =:~O(pr- N og~7r N Dpg(rN~r))
[LEM.4] :=:~Or VvV g~7 N pg)
[19.82] =:~O @7 NV ag~r)~O (D)= ~O(Pr)

~O(g~71)~O(Dg) (4>
[(3), )] ~Opr)~Og~r) < ~Opr) ~O(g~7)~O D
[16.33] ~O@r) ~O(g~7r) < ~O (g
[V05] ~(pOr)~(qgo~7r)- <.~ (»0gq) QED.
(vi) 19.7 is deducible from 17.5 [17.5, p/q q/r, 12.44]

Hence, every x-proposition is deducible from one another in Vreden-
duin’s system, but we can show that they are not deducible from his
system. In order to deduce them we translate V18 into a new stronger
postulate V18’;

VI8 ~O~a) Opi< Og

If we designate this system by V., then in V,, we can deduce V18 and
all the x-propositions which have no paradoxical structure, and also
Vredenduin's aim is attained as will be shown later.
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[Vi18] ~OW~pOp < - O¢q

[V14] ~OP~D~OG < ~Og

[pVaq/p] ~OBNG ~P~Og < ~OBV Y (1)
[16.72, 12.15] PN q ~q:=:p~q N g~gq

[LEM. 4] i=:p~gq (2)
[19.16, V15] ~Op~Og < ~O@0~p~Ogq (3)

[(D,2), 3, V6] ~Op~Oq < ~O @V @ (=19.81)
Hence, sx-propositions have been all asserted in V..

3. t-propositions and certain properties of the system V., We
next consider about t-propositions, which seem to have more or less
evidently paradoxical structures. As Vredenduin shows the independency
of 19.74 and 19.75, of his system, we can show it in his way that none
of t-propositions can be deduced in this system V, As he states, all
the assumptions of the system V, are altered to asserted propositions
of the system S2 if the (O-symbols are omitted. Effectively, postulate V18
are then altered to ~(p~¢q) p:< ¢q. In the system S2, ~(P~g)p:=:
~pN g p:=:~pp NV qbp:=:p3, and pg< g are asserted, hence that
is asserted. By Vredenduin’s method we can show that 18.1, 19.61, 19.75,
19.84 are all indepsndent of the system V,.® On the other hand, we can
deduce any of 18.1, 19.61, 19.75, 19.84 from t11.01' ~O(p~¢q). <. p<q
or from any of the remainders of f-propositionsin the system V,, then
every paradoxical proposition is independent.

Further, the following fact is to bs noticed: Halldén Stren shows?
that certain analogues of the paradoxes are deducible in SI, in which the
consistency postulate regarded as the cause of the paradoxes is independent,
namely

(1) ~Op 2 p<gq

T(2) ~O~p D-qg<p.

It can easily be shown in such a way as above, .that (1) and (2) are
not deducible in the system ,V, ((1);p=3, ¢=2, (2), p=2, g=1, in

6) 18.17.en. ~(p<~p,)~<-p (@)
18.61cvve~ (~p) - pg<r: < - g <7 (25
19. 84--.... p(1'<'p=(1 3D

Lewis and Langford give the following normal S2-matrix '(S. L., p. 493, Group I)
vy ‘ 1234 ’i ~p ” Cp ”p\/r[’ 1234
I |

1| 1234 || 4 | 1 1 | 2444
2 | 2244 || 3 | 1 2 | 2244
3 | 3434 | 2 || 1 3 | 2424
4| 4444 | 1|3 4 | 2222

Every proposition asserted in S2 has one of the designated values | and 2. Now
choose p=2, then (1) has the value 4, choose ip=2, ¢=1 and r=2, then (2) has
4; choose p=1 and ¢=2, then (3) has 4. Hence (1), (2) and (3) are independent
of S2.

7) HaLLpEN SOREN, A note concerning the paradoxes of strict implication, Journ.
of Symbolic Logie, vol. 13 (1948), pp. 138-139.
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Group 1.)

THEOREM 1. Every asserted proposition of S2 in Symbholic Logic is
asserted in the system V. except t-propositions which are not deducible
in V..

The following theorem are evident by the comparison with the assump-
tions of the systems S2 and V..

THEOREM 2. Every asserted proposition of V, is also asserted in S2.

THEOREM 3. The system V, has infinitely many complete extensions®.
This is easily shown by the Theorem 2 and by the fact that the system
S2 has infinitely many complete extensions. %

THEOREM 4. The number of irreducible molalities? in the system
V. is infinite.

The proof is trivial by the Theorem 2 and by the fact that there are
an infinite number of irreducible molalities in the system S2

I1. Relations among Lewis’s system, Emch's and Vredenduin’s.

Designate the following system by S2°, which are obtained when the
primitive symbol  is altered to symbol . Let us add to the system V,
a definition

V06 Op = ~@<L~p).

Designate Emch’'s system by E,, which are obtained when we translate
his symbol oo (logical implcation) into <, < (strict implication) into <,
sugical equivalence inio =, and strict equivalence into 1. in Emch’s system!®),

Ewmch’s system Eg:

Undefined ideas; Elementary propositions p, ¢, 7, etc., negation~p,
product pg or pg, possibility Op, consistency Op, and equivalence p = gq.

Postulates ; , Definitions:
L1 g < gqp L0l pVvg = ~(~p~q@
L2 » < pp L2 p<qg = ~0O0~@
L3 ) r<p(qr) L3 p=q- = p<qg q<p
L4 <L~ (~DP) (Lo p<qg =-~O@D~q)
L5 P<q qg<r:<-p<r (LO5) pITq = p<qg-qg<p
L6 p p<qg:< ¢ L6 pog = ~B~q

L7 OpCqg- <X 0OpOg LO7 p=q = PpDg gDP
L8 Og) <-Ob

8) McKINSEY, op.cit., thefirst paper.

9) W. T. Parry, Modalities in the survey system of strict implication, Journ. of
Symbolic Logic, vol.4 (1939),p. 144.

10) MCcCKINSEY, op.cit., the second paper.

11D Emech had an attempt such that the logical implication coincides with the
usual deducibility, then there arises no essential absurdity though we alter the
symbol.
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Li1 <00

L12 O < -Op

L13 O @g):;<:Op~r) vV -O(rg)

L14 Substitution (a)

L15 Substituion (b)

L16 Adjunction

L17 Inference

gp < p is deducible in E,, and the other assumptions of S2° are included

in one of E,, then the following theorem is shown:

THEOREM 5. The asserted propositions in S2° are all asserted in the
system E,'®.

Next, we show that the systems E, and V, are equivalent. Designate
the corresponding proposition of S2° to one of S2 by the same number
having the sign ° at the shoulder.

1. V1,V3--—VI12, V17, VOl- —V04 are included in the assumptions
of the system E, and V2 is easily proved in E,. V13, V14, V15, and V16
are proved in S2 and invariant by the above translation, then they are
proved also in the system E, by Theorem 5.

Vig': [L8] Olgp) <-Og
[12.15°] Opg) < -Ogq
[19.64°] OWg) X O~ <:Oqg vV S~ (1)
[L13] Op) <:OW~q) V- -ODg) (2)

(D, (2,15, 12.7°, 13.11°] O$p <:Oq-V O ~q)
[12.44°, LOIT ~Op~a)~Dg < ~Op

[12.6°] ~O~pOp < Og QED.
V19 L7, 12.7°7 Op<Obp
r12.44°7] ~Op<L~p (1)
(1), p~a/p, L02] p<qg <~ (P ~q) QED.
Vo6 :  [L02] ~OW~~p) = (Dd<L~P

[12.3°, 12.7°1 Op = ~(@P<~p) QED.
9. Lol. Lo3, Lo6, Lo7, L1 -Le6, L8, L11, L14——L17 are included
in the assumptions of the system V..

L02 : [V06, 12.3, 12.447 ~Op = p<~p 1)
(D p~q/p) ~OW~q) = b~qg < - ~(P~aq) (2)
rvoll p~q < ~@~q)=p~qg < ~p\NPp
[13.11] i=ip~qg. < -gq\V~D

[LEM.5] =:p. <L.-qVg\V~p
[13.31] =:p <-qV~p
[13.11] =:p < - ~pVa
[LEM.5] =:~qg <L ~pV~p
=i~ < ~p

[13.31]

12) This was shown by Lewis, op.cit.,, 3)
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r12.447 =:1p<q (3)

£(2),(3)] ~O@~q) = p<qg QED.

L7 ; [V19, 12.44, 12.3, 12.7] {Op<L~@<~p) (1)

Oag<L~ @<~ (2)

[(1),(2),V16] $pOq <X ~(p<L~p)~@q@<L~q)
[V06] OpPOq < OpOg QED.

L12: [V15] p<L~p <:ppg < ~pbq (1)
[12.7, 19.57] ppg < ~ppg:=:pq- < -p~p
f12.6] r=ipdV~Dp) < ~q
CLEM. 4] = 1p<L~q (2)

(D, (2)] P<L~p: < p<L~q
[V06, 12.44, L02] O (pq)<Op QED.
L13 is easily proved by 17.5.
Hence the following theorem has been established ;

THEOREM 6, The asserted propositions of the system V, are all
asserted in the systerfl E,, and vice versa.

Thus we have concluded by the theorems 1, 2, 5 and 6 that (:Z) the
system S2 includes the systems V, and E,*®, (ii) the systems V, and E, are
equivalent, and (iii) the systems V, and E, include the system S2°, hence,
both in V, and in E,, we can deduce not only the propositions which have
been asserted in S2, but also deducible one in S2, if they are invariant by
the translation  into O9.

III. Certain extensions of system V.. Becker™ and the others'® made
attempts to construct extensions of the system S2 or S3 in view of
modality. Whether can we hold the analogous extensions concerning to
the system V., without loss of Vredenduin’s purpose or not, and how many
modalities have they? As Tang'™ and Parry'® show in S2, we can deduce
the following lemmas in the system V..

LEMMA 6. p<q-= D= pq

[19.62, V2, V61 p <pqg < -p<p- (1)
[19.51] p<p < -pg<p (2)
(D, (2, V6] p<pg < pg<q

13) We maust, of course, add the Definition Op. =. ~(p<~p) to the system S2.

14) 1If, in V,, we prove only the propositions used in the proof of V,-E,, certain
proofs in I, of course, are unnecessary.

15) O.Becker, Zur Logik der Modalititen, Jahrbuch fir Philosophie und phéno-
menologische Forschung, vol. 11(1930), pp 497—548.

16) Parry, op. cit. and C. W. CaurcuamaN, On finite and infinite modal systems,
Journ. of Symbolic Logic, vol.3 (1938),pp. 77—82

17) T. C. Taxg, The theorem p<<q.=.pg=p and Huntington’s relation between
Lewig’s strict implication and Boolean algebra. Bull. Amer. Math. Soc., vol. 42
(1936), pp. 743—746.
E. V. HuxtixeroxN, Postulates for assertion, conjunction, negation, and equality.,
Proceed. of Arts and Sciences, vol. 72 (1938), pp.1—44, Theorem 97 (p.24>

18) Parry, op.cit.
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[16.33] P<pq - <:p<bq pg<p (3)
[va] p<pq pg<p:< p<pq (4)
[@3), (4), V02] p=pq = -p<pgq

[16.33] p=pg = p<qg QED.

LEMMA 7. If p < ghas been asserted, then Op<Oq, ~Oa<~Op,
and ~O~O p <L~O~ g may be asserted.

[Hyp., LEM.6] p = pq (1)
[val Olap) < -Ca (2)
[(1),(2)3 Op-<-Oaq

[12.447 ~Og <L - ~Op (3)
£ ~O~OPp L ~O~Cq QED.

LEMMA 8. ~O~p < ~O~Op. [18.41, LEM.7]
1. Designate by V, the systam deduced from the set (V, and the
following postulate C10).
C10 ~O~ D <~ O~~~ D
Then the following lemmas can be deduced in V.
LEMMA 9. Owp = Op, where by “Oqp” we mean the formula which
is formed by putting # “{>” symbols in front of p.
[Cl0, 12.3] ~O~p < - ~Ou~p
[12. 447 Ou~p <L - O~p
[12.33 Onp-<-Op QED.
LEMMA 10. ~Op < ~O~O~O P
[LEM.8, ~Op/p] ~O~~Op L~O~O~O P

"[LEM. 9] ~O P L~O~O~O P QED.

LEMMA 11. ~O~Op = ~O~O~O~Op

[LEM.10, LEM.7] ~O~O~O~Op < ~O~O P 1)
[LEM. 10, ~Op/p] ~O~Op < ~O~O~O~OP (2)
(L, )] QED.

LEMMA 12. ~O~O~O~p <-O~O~p [18.42], ~O~p < ~O~
O~O~p [LEM. 10] ~O~O~O~p <L~O~Op [LEM. 7, 18.42], O~O~
PLO~O~Op [LEM. 8,7], ~O~OHLO~O~Op [V 17, O~O~O
p<Op [LEM. 107 and the propositions deduced from these propositions by
12. 44,

This system V, is evidently included in S4 by Theorem 2, and it was
proved by Parry!® that these fourteen modalities cannot be further reduced
in $4.

THEOREM 7. The propositions asserted in V, are all asserted in S4
and the number of irreducible modalities in V, is fourteen.

2. Designate by V,.; the system deduced from the set (V, and a new
postulate C4.5).
C4.5 ~O~O~O P L~O P
LEMMA 13. ~O~O~Op = ~Op, O~O~Op - = -OP,

19) Parry, op.cit.
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O~O~O~D = O~ b, ~O~O~O~ b = ~O~ D,
Hence the fourteen modalities are reduced to ten in V..

THEOREM 8. The number of irreducible modalities in V,.; is at most
ten.

3. Designate by V,.;; the system deduced from the set (V, and a new
postulate C16).
c16 O~O~p = ~O~OP
Then, ~O~p<"C59P<0p, ~0p<VTGP<~00.
In the corresponding system of Parry, including this system V,.;;, the above
eight modalities can not be further reduced.

THEOREM 9. The number of irreducible mcdalities in V.. is eight.

4. Designate by V, the system deduced from the set (V, and a new
postulate C11).
C1l Op < ~O~Op
As in S5, it is easily proved that, Ci1 is deducible from C10 and C12
p- < ~O~Opin Vs, and vice versa. C4.5 is dedubible from Cl1 in Vs,
hence V, and V,.; are included in Vs.
LEMMA 14. Op = ~O~Op
[18.41, ~Op/p] ~O~Op < ~~Op
[12.3] ~O~OP <L Op (1
[(1),Cl1] QED.
Then. by Lemma 14 and the considerations in V.;. everv modalitv in Vs
is reduced to one ot thie rollowing six .~ ~2F < 9o < -Op; ~Op <
~p - <L-O~p. :
On the other hand, this system V; is included in S5, and these six
modalities can not be further reduced in S5, hence,

THEOREM 10. The propositions asserted in V; are all asserted in S5,
and the number of irreducible modalities in V; is six.

It is noticed that all these extensions of the system V., have no para-
doxical T-propositions as Vredenduin’s system. If we omit the symbol
in C11 and C16, we have p- < -~~pand ~~p = ~~p respectively,
and they are deducible in S2.

THEOREM 11. Any paradox of f-propositions can not be deduced in
each extension V,, V.;, Vi, Vs of the system V..

The author expresses here his hearty thanks to Professor M. Ito to
whom he has been indebted for his many valuable remarks und suggestions.
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