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Let M be a bounded closed set on the z-plane, which is of logarithmic
capacity zero and w = w(z) be one-valued and meromorphic outside M, every
point of which is an essential singularity of w(z). Let » be a transcenden-
tal singularity of the inverse function z = z(w) of w = w(z), whose pro-
jection be @;. Let K: |w— ay| < p be a disc and F, be a connected piece
of the Riemann surface of z(w), which has ® on its boundary and lies
above K. Let F, be mapped on a domain A on the z-plane. A is multiply
connected in general and the boundary of A consists of Jordan curves {I'.},
Jordan curves or arcs {I')} and a closed sub-set M, of M, where there are
no points of M on and inside of I', and if I', is a Jordan curve, then 17 con-
tains points of M in its inside and if I") is a Jordan arc, then I', ends at
two points of M..

T, is the boundary of a hole in A, We add the insides [I] of I', to A
and let

(D A=A+ S
Then the following theorem holds, ’

THEOREM. (i) F, covers any point cf K infinitely often, except a set of
logarithmic capacity zero.
(i1) If A is of finite connectivity, then F, covers any point of K infinitely

often, with two possible exceptions.
(iii) If A is of finite connectivity, then F, covers any point of K infinitely

often, with one possible exception.

(i) is proved by the author?, (ii) and (iii) are due to K. Noshiro®
When M consists of only one point, then A is simply connected, so that
(ii) contains Kunugui’s theorem®, that if M consists of only one point,
then F, covers any point of K infinitely often, with two possible exceptions,
I will give a simple proof in the following lines.
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PROOF. (i). (@) First we will prove that F, covers any point of K at
least once, except a set of logarithmic capacity zero,

Since M, is a sub-set of M, we have cap M, == 0, where cap M, means
the logarithmic capacity of M.

We map A on |{| <1by z=2({), then M, is mapped on a null set ¢
on [¢| = 1. Let v(&) = w(z(£)), then v(&) is regular and |v({) — a| < o
in |&] <1 and |v(&) — a;] = p on the complementary arcs of ¢, on [{] = 1,
so that v(&) belongs to the U-class in Seidel’s sense. Hence by Frostman’s
theorem®, F, covers any point of K:|w — @y < p, except a set of logari-
thmic capacity zero,

(b) To prove that F, covers any point of K infinitely often, except a
set of logarithmic capacity zero, we will first prove the following lemma,

LEMMA. If a disc K, containzd in K is covered exactly n-times by F,,
then K is covered exactly wn-times by F,, so that z(w) has only algebraic sin-
gularities in K.

PROOF. Let D be a connected domain, which contains K,, such that
every point of which is covered exactly #n-times by F, and let E be its
boundary which lies in K, Suppose that D does not coincide with K, then
E +=0 and let w, bz a boundary point of D, which lies in K.

From the desfinition, w, is covered at most n-times by F,. If w, is
covered n-times, then the part of F, above a small disc K, about w, conta-

ins n discs F, -- .-, F,, consisting of only inner points, where a piece of
the Riemann surface of (w — wy)'* is considered as k discs.
If there is no connected piece of F, above K, other than F, -..., F,, then

K, is covered n-times by F,, so that K, belongs to D, which contradicts
the hypothesis, that w, is a boundary point of D. Hence there is another
connected piece F, above K,, other than Fj, -.-., F,, then F; does not cover
the common part D, of D and K,. This contradicts (@), since cap D, > 0.
Hence every point of E is covered at most (% — 1)-times by F,. We will
prove that cap £=0, Let E; be the sub-set of ' E, which is covered k-times

n-1
by F,, then E = EZE,C Suppose that cap E > 0, then for some k, cap Ex > (
Py
O=k=n—1). Since capEy =0 by (a), we have 1=k=n—1, Let
E) be a closed sub-set of Ex, such that cap E, >0. Then there is a
point w, € Ey, such that cap Ew(K:) >0, for any small disc K; about wy,
where E.(K,) is the part of Ep contained in K.
Since wy € E,, w, is covered k-times by F,. Hance the part of F, above
K, contains k discs F;, -..., F. consisting of only inner points, Since
1<k =<n-—1, there is another connected piece Fy above K, other than F,,
.« Fx. Since EXK,) is covered k-times in Fy, -- -, Fx, F, does not cover
Ek(K,) which contradicts (), since cap EXK,) > 0 Hence cap E= 0.
Let z;(w), ----, z(w) be n branches of z(w) in D and w, be anv point

4) 0. Frostman: Potentiel déquilibre et capacité des ensembles. Lund (1935).
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of E. We may suppose that A is a bounded domain, so that z;(w) are
bounded in a neighbourhood U of w,. We put
H(z — zi(w)) = 2" + ay(w) 2" ot @) =

then a:;(w) are one-valued and regular and bounded in U. Slnce cap E=0,
a;(w) are regular at w,, so that U is covered #n-times by F,, hence w,
belongs to D, which is absurd. Hence D has no boundary point in K, so
that D coincides with K, q. e. d.

(c¢) By this lemma, we will prove that F, covers any point of K infini-
tely often, except a set of logarithmic capacity zero. Let E be the set of

points in K, which is covered finite times by F,, then E = EE;C, where
k=0
Ey is a sub-set of E, which is covered k-times by F,.

Suppose that cap E >0, then for some %k, cap E; > 0. Since cap E; =0
by (a), we have 1<k < . Let E; be a closed sub-set of E,, such that
cap Ei > 0. Then there is a point w,<E;, such that cap Ex(K;) >0 for
any small disc K; about w, Since wy€Ex, w, is covered k-times by F,,
hence the part of F, above K, contains %k discs F}, ----, F. consisting of
only inner points. Since by the hypothesis, z(w) has a transcendental
singularity at a,, we see, by the lemma, that thzsre is another connected
piece F, above K; other than F, -.-., F. Since E; (K,) is covered k-times
in F,,---., F,, F, does not cover EXK,), which contradicts (@), since
cap Ex(Ky) > 0. Hence we have cap E =0, so that F, covers any point
of K infinitely often, except a set of logarithmic capacity zero.

(ii) Next suppose thatZ is of finite connectivity.

Since M, is a bounded closed set of logarithmic capacity zero, by Evans’
theorem®, we can distribute a positive mass du(a) on M, of total mass 1,
such that

1 _
2) u(z) = floglzj—éldu(a), <fdu(a) = 1)
My Uy
tends to + oo, when z tends to any point of M,.
We put

f log—1— du(a) = u(2) + i6(2),
Mo
( 3 ) { = e¥t+i = 'r(z)e“’“), (7’(2) — eu(z))’
w(z) = F(1).
Let C. be the niveau curve 7(2) = const. = 7, then C, consists of a
finite number of Jordan curves, which cluster to M, as r—»>o. Since the
total mass is 1, by integrating on the negative sense on C,, we have

(4> fdé’(z)=f—~d _fi“—ds~27z
Cr

5) G. C. Evans: Potentials and positively infinite singularities of harmonic func-
tions. Monatshefte fir Math. u. Phys. 43 (1936).
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where ds is the arc element and » is the inner normal of (,, so that
20

s 7 0. We write 7, € instead of 7r(z), 6(2).

Let C; (A) be the part of C,, which lies in A, then by (4) and-g% >0,

(5) fdé‘(z) = 27

(A
Let A, be the part of A, which lies outside C,.

Suppose that F, covers three points «, 3, of K finite times and z,, --,
2y be zero points of (w(2) — a)(w(z) — B)(w(z) —y). We take off these
points from A, and let A’ be the remaining domain. Then w(z) =, =3,
*+  in A). Let F. be the image of A, on the w-plane, then F, is the cover-
ing surface of the basic domain F;, which is obtained from K by taking
off three points «, 3, . Let |F,] be the area of F, and L(r) be the
length of the image of C.(A) and S(») = |F,|/7p*, then since the number
of closed 1", is finite, we have for a suitable 4 >0, 7, >0,

[F] = A +fdrf|p<t>|zrde,
) s

ra

(6) L(r):fIF'(l)!rdG, (r Z7ry),

Cp(A)

so that by (5),
[L(r)]2§ffdej[‘lF;(t)l;rdegzﬂrle/(t)l_,rde

. (A) () (A
_ dlF| o ., ., dS(r)
(7) = 277 dr ——27tp7’——dr .
Since by (i), F, covers any point of K infinitely often, except a set of
logarithmic capacity zero, we have
(8) 1im S(7) = oo.
r->00
Suppose that L(7) = [S(r)J** in a set of intervals I, = [, r./] (v =1,
..), then we have by (7),

"~ dt
s 52002 oo <=

so that there exlsts 7 <7< - < rp— oo, such that L(r.) < [S(7x)]3",
hence by (8),

Lirw)
9 lim 5y =0

Let p be the Euler’s chracteristic, then by Ahlfors’ fundamental theorem
on covering surfaces?®,

(10) o(Fe) = p(F)S(r) — RL(r), p = Max (p, 0),
where 2 is a constant depending on F, only. Since p(F,) = 2 and

6) L. Ahlfors: Zur Theorie Cer ULerlagexun<>=ﬂachen, Acta Math. 65 (1935).
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an p(F) SMP + N,
where A(7) is the number of holes in A,, we have
(125 A7)+ N=28(r) — hL(7).

Next we will evaluate A(7).
Let A(r) be the total length of ths image of the boundary of holes of
Ay, then by Ahlfors’ covering theorem,
[S(r) — A(r)[2zp|=h L(7), or
A(r))27p < S(r) + B L(7). .
Since M7) = A (r)/27p, we have
A7) =S(7) + R L(r),
so that from (12),
S(r)=2h L(r) + N,
which contradicts (9). Hence F, covers any point of K infinitely often,
with two possible exceptions.

(iii) Next suppose that A is of finite connectivity and suppose that F,
covers two points @, 3 of K finite times and let N bz the number of zero
points of (w(z) —a)(w(z) — 3) in A. If we take a, B instead of a, @,
« in the proof of (ii), then p(F,) = 1 and

p(F) = p(A) + N,
so that by (10),

p(A) + N = S(r) — hL(r), or

S(») S hL(r) + p(A) + N,

which contradicts (9). Hence F, covers any point of K infinitely often,
with one possible exception.

Hence the theorem is completely proved.
We remark that by modifying ithe proof slightly, the same result holds,
when w'2) is onz-valued and meromorphic in a neighbourhood of M.

REMARK. Let G (x, y) b2 an integral function of x and y and y(x) be
an analytic function defined by G (%, y) = 0 and F be its Riemann surface
spread over the x-plane. Let E b2 th2 set of x, which is not covered by
F. Tnen Julia® proved that £ does not contain a continuum. Gezneralizing
this Julia’s theorem, I have proved that if y(x) is not an algzbroid function,
then F covers any point of thz x-plane infinitely often, except a set of logarith-
mic capacity zero.® This can b2 deducaed from the following theorem by
means of a lemma analogous to the lemma proved in (i) (b).

THEOREM. Let K:|x— ay]| < p bz a disc and F, be a connected piece of
F, which lies above K. Then F, covers any point of K at least once, except
a set of logarithmic capacity zero.

PROOF. We map F, on| z| <1 by x= x(z). Then by Fatou’s theorem,

7) G. Julia: Sur le domaine d’existence d’une fonction implicite définie par une
relation entidre Gz, y) = 0. Bull. Soc. Math. (1926).
8) M. Tsuji, 1. c.C1).
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lit%l x(2) = x, exists almost everywhere on | z| = 1, when z—¢* non-tangen-
z->el
tially to [z| = 1. If |x, — a] < p, then x, is an accessible boundary point

of F. Since, as Julia proved, if x tends to an accessible boundary point
%, of F, then lim y(x) = oo, we have

x>0
limy (x(2)) = o,
2->¢i0
so that if we denote the set of such e¢® by E, then by Lusin-Privaloff’s
theorem,® mE = 0, hence almost all points of |z]| =1 are mapped on

|x — ay] = p, so that x(2) belongs to the U-class in Seidel’s sense, hence
by Frostman's theorem, F, covers any point of K at least once, except a
set of logarithmic capacity zero.
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