ON MEROMORPHIC FUNCTIONS WITH ESSENTIAL SINGULARITIES OF LOGARITHMIC CAPACITY ZERO

MASATSUGU TSUJI

(Received August 5, 1949; in revised form, August 4, 1950)

Let M be a bounded closed set on the z-plane, which is of logarithmic capacity zero and w = w(z) be one-valued and meromorphic outside M, every point of which is an essential singularity of w(z). Let ω be a transcendental singularity of the inverse function z = z(w) of w = w(z), whose projection be a_0 . Let $K: |w - a_0| < \rho$ be a disc and F_{ρ} be a connected piece of the Riemann surface of z(w), which has ω on its boundary and lies above K. Let F_{ρ} be mapped on a domain Δ on the z-plane. Δ is multiply connected in general and the boundary of Δ consists of Jordan curves $\{\Gamma_{\nu}\}$, Jordan curves or arcs $\{\Gamma_{\nu}'\}$ and a closed sub-set M_0 of M, where there are no points of M on and inside of Γ_{ν} and if Γ_{ν} is a Jordan curve, then Γ_{ν}' ends at two points of M_{ν} .

 Γ_{ν} is the boundary of a hole in Δ . We add the insides $[\Gamma_{\nu}]$ of Γ_{ν} to Δ and let

(1)
$$\widetilde{\Delta} = \Delta + \sum_{\nu} [\Gamma_{\nu}].$$

Then the following theorem holds.

THEOREM. (i) F_{ρ} covers any point of K infinitely often, except a set of logarithmic capacity zero.

(ii) If Δ is of finite connectivity, then F_{ρ} covers any point of K infinitely often, with two possible exceptions.

(iii) If Δ is of finite connectivity, then F_{ρ} covers any point of K infinitely often, with one possible exception.

(i) is proved by the author¹⁾, (ii) and (iii) are due to K. Noshiro²⁾ When M consists of only one point, then $\widetilde{\Delta}$ is simply connected, so that (ii) contains Kunugui's theorem³⁾, that if M consists of only one point, then F_{ρ} covers any point of K infinitely often, with two possible exceptions. I will give a simple proof in the following lines.

¹⁾ M. Tsuji: Theory of meromorphic functions in the neighbourhood of a closed set of capacity zero. Jap. Jour. Math. 19 (1948).

²⁾ K. Noshiro: Note on the cluster sets of analytic functions. The Jour. Math. Soc. Japan. vol. 1. No. 4. (1950).

K. Noshiro : Contribution to the theory of the singularities of analytic functions. Jap. Jour. Math. 19 (1948).

K. Kunugui: Une généralisation des théorèmes de MM. Picard-Nevanlinna sur les fonctions méromorphes. Proc. Imp. Acad. 17 (1941).

M. TSUJ1

PROOF. (i). (a) First we will prove that F_{ρ} covers any point of K at least once, except a set of logarithmic capacity zero.

Since M_0 is a sub-set of M, we have $\operatorname{cap} M_0 = 0$, where $\operatorname{cap} M_0$ means the logarithmic capacity of M_0 .

We map Δ on $|\zeta| < 1$ by $z = z(\zeta)$, then M_0 is mapped on a null set e_0 on $|\zeta| = 1$. Let $v(\zeta) = w(z(\zeta))$, then $v(\zeta)$ is regular and $|v(\zeta) - a_0| < \rho$ in $|\zeta| < 1$ and $|v(\zeta) - a_0| = \rho$ on the complementary arcs of e_0 on $|\zeta| = 1$, so that $v(\zeta)$ belongs to the U-class in Seidel's sense. Hence by Frostman's theorem⁴, F_{ρ} covers any point of $K: |w - a_0| < \rho$, except a set of logarithmic capacity zero.

(b) To prove that F_{2} covers any point of K infinitely often, except a set of logarithmic capacity zero, we will first prove the following lemma.

LEMMA. If a disc K_0 contained in K is covered exactly n-times by F_{ρ} , then K is covered exactly n-times by F_{ρ} , so that z(w) has only algebraic singularities in K.

PROOF. Let D be a connected domain, which contains K_0 , such that every point of which is covered exactly *n*-times by F_{ρ} and let E be its boundary which lies in K. Suppose that D does not coincide with K, then $E \neq 0$ and let w_0 be a boundary point of D, which lies in K.

From the definition, w_0 is covered at most *n*-times by F_{ρ} . If w_0 is covered *n*-times, then the part of F_{ρ} above a small disc K_1 about w_0 contains *n* discs F_1, \dots, F_n , consisting of only inner points, where a piece of the Riemann surface of $(w - w_0)^{1/k}$ is considered as *k* discs.

If there is no connected piece of F_{ρ} above K_1 other than F_1, \dots, F_n , then K_1 is covered *n*-times by F_{ρ} , so that K_1 belongs to D, which contradicts the hypothesis, that w_0 is a boundary point of D. Hence there is another connected piece F_0 above K_1 , other than F_1, \dots, F_n , then F_0 does not cover the common part D_0 of D and K_1 . This contradicts (a), since cap $D_0 > 0$. Hence every point of E is covered at most (n-1)-times by F_{ρ} . We will prove that cap E=0. Let E_k be the sub-set of E, which is covered k-times by F_{ρ} , then $E = \sum_{k=1}^{n-1} E_k$. Suppose that cap E > 0, then for some k, cap $E_k > 0$ $(0 \le k \le n-1)$. Since cap $E_0 = 0$ by (a), we have $1 \le k \le n-1$. Let E_k° be a closed sub-set of E_k , such that cap $E_k^{\circ} > 0$. Then there is a point $w_0 \in E_k^0$, such that cap $E_k^{\circ}(K_1) > 0$, for any small disc K_1 about w_0 , where $E_k^{\circ}(K_1)$ is the part of E_k^0 contained in K_1 .

Since $w_0 \in E_k$, w_0 is covered k-times by F_{ρ} . Hence the part of F_{ρ} above K_1 contains k discs F_1, \ldots, F_k consisting of only inner points. Since $1 \leq k \leq n-1$, there is another connected piece F_0 above K_1 other than \mathbf{F}_1 , \ldots, F_k . Since $E_k^0(K_1)$ is covered k-times in F_1, \ldots, F_k , F_0 does not cover $E_k^0(K_1)$, which contradicts (a), since $\operatorname{cap} E_k^0(K_1) > 0$. Hence $\operatorname{cap} E = 0$. Let $z_1(w), \ldots, z_n(w)$ be n branches of z(w) in D and w_0 be any point

⁴⁾ O. Frostman: Potentiel déquilibre et capacité des ensembles. Lund (1935).

of E. We may suppose that Δ is a bounded domain, so that $z_i(w)$ are bounded in a neighbourhood U of w_0 . We put

 $\prod_{i=1}^{n} (z - z_i(w)) = z^n + a_1(w) \ z^{n-1} + \cdots + a_n(w) = 0,$

then $a_i(w)$ are one-valued and regular and bounded in U. Since cap E = 0. $a_i(w)$ are regular at w_0 , so that U is covered *n*-times by F_p , hence w_0 belongs to D, which is absurd. Hence D has no boundary point in K, so that D coincides with K, q. e. d.

(c) By this lemma, we will prove that F_{ρ} covers any point of K infinitely often, except a set of logarithmic capacity zero. Let E be the set of points in K, which is covered finite times by F_{ρ} , then $E = \sum_{k=0}^{\infty} E_k$, where E_k is a sub-set of E, which is covered k-times by F_{ρ} .

Suppose that cap E > 0, then for some k, cap $E_k > 0$. Since cap $E_0 = 0$ by (a), we have $1 \le k < \infty$. Let E_k^0 be a closed sub-set of E_k , such that cap $E_k^0 > 0$. Then there is a point $w_0 \in E_k^1$, such that cap $E_k^0(K_1) > 0$ for any small disc K_1 about w_0 . Since $w_0 \in E_k$, w_0 is covered k-times by F_p , hence the part of F_p above K_1 contains k discs F_1, \dots, F_k consisting of only inner points. Since by the hypothesis, z(w) has a transcendental singularity at a_0 , we see, by the lemma, that there is another connected piece F_0 above K_1 other than F_1, \dots, F_k . Since $E_k^0(K_1)$ is covered k-times in F_1, \dots, F_k , F_0 does not cover $E_k^0(K_1)$, which contradicts (a), since cap $E_k^0(K_1) > 0$. Hence we have cap E = 0, so that F_p covers any point of K infinitely often, except a set of logarithmic capacity zero.

(ii) Next suppose that $\widetilde{\Delta}$ is of finite connectivity.

Since M_0 is a bounded closed set of logarithmic capacity zero, by Evans' theorem⁵⁾, we can distribute a positive mass $d\mu(a)$ on M_0 of total mass 1, such that

(2)
$$u(z) = \int_{M_0} \log \frac{1}{|z-a|} d\mu(a), \quad \left(\int_{M_0} d\mu(a) = 1 \right)$$

tends to $+\infty$, when z tends to any point of M_0 . We put

(3)
$$\int \log \frac{1}{z-a} d\mu(a) = u(z) + i\theta(z),$$
$$t = e^{u+i\theta} = r(z)e^{i\theta(z)}, \quad (r(z) = e^{u(z)}),$$
$$w(z) = F(t).$$

Let C_r be the niveau curve r(z) = const. = r, then C_r consists of a finite number of Jordan curves, which cluster to M_0 as $r \to \infty$. Since the total mass is 1, by integrating on the negative sense on C_r , we have

(4)
$$\int_{C_r} d\theta(z) = \int_{C_r} \frac{\partial \theta}{\partial s} ds = \int_{C_r} \frac{\partial u}{\partial \nu} ds = 2\pi,$$

5) G. C. Evans: Potentials and positively infinite singularities of harmonic functions. Monatshefte für Math. u. Phys. 43 (1936).

M. TSUJI

where ds is the arc element and ν is the inner normal of C_r , so that $\frac{\partial \theta}{\partial c} > 0$. We write r, θ instead of r(z), $\theta(z)$.

Let $C_r(\Delta)$ be the part of C_r , which lies in Δ , then by (4) and $\frac{\partial \theta}{\partial s} > 0$,

(5)
$$\int_{C_r(\Delta)} d\theta(z) \leq 2\pi.$$

Let Δ_r be the part of Δ , which lies outside C_r .

Suppose that F_{ρ} covers three points α, β, γ of K finite times and z_1, \dots, z_N be zero points of $(w(z) - \alpha)(w(z) - \beta)(w(z) - \gamma)$. We take off these points from Δ_r and let Δ_r^0 be the remaining domain. Then $w(z) \neq \alpha, \neq \beta$, $\neq \gamma$ in Δ_r^0 . Let F_r be the image of Δ_r^0 on the w-plane, then F_r is the covering surface of the basic domain F_0 , which is obtained from K by taking off three points α, β, γ . Let $|F_r|$ be the area of F_r and L(r) be the length of the image of $C_r(\Delta)$ and $S(r) = |F_r|/\pi\rho^2$, then since the number of closed Γ_r' is finite, we have for a suitable A > 0, $r_0 > 0$,

$$|F_r| = A + \int_{r_0}^r dr \int_{C_r(\Delta)} |F'(t)|^2 r \, d\theta,$$
(6)
$$L(r) = \int_{C_r(\Delta)} |F'(t)| r d\theta, \qquad (r \ge r_0),$$

so that by (5),

$$[\mathbf{L}(r)]^{2} \leq \int_{C_{r}(\Delta)} rd\theta \int_{C_{r}(\Delta)} |F'(t)|^{2} rd\theta \leq 2 \pi r \int_{C_{r}(\Delta)} |F'(t)|^{2} rd\theta$$

$$= 2\pi r \frac{d|F_{r}|}{dr} = 2\pi^{2} \rho^{2} r \frac{dS(r)}{dr}.$$

Since by (i), F_{ρ} covers any point of K infinitely often, except a set of logarithmic capacity zero, we have

(8)
$$\lim_{r\to\infty} S(r) = \infty.$$

Suppose that $L(r) \ge [S(r)]^{3/4}$ in a set of intervals $I_{\nu} = [r_{\nu}, r'_{\nu}]$ ($\nu = 1, 2, \dots$), then we have by (7),

$$\sum_{\nu} \int_{I_{\nu}} d\log r \leq 2\pi^2 \rho^2 \sum_{\nu} \int_{I_{\nu}} \frac{dS(r)}{[S(r)]^{3/2}} \leq 2\pi^2 \rho^2 \int^{\infty} \frac{dt}{t^{3/2}} < \infty$$

so that there exists $r_1 < r_2 < \cdots < r_n \rightarrow \infty$, such that $L(r_n) \leq [S(r_n)]^{3/4}$, hence by (8),

(9)
$$\lim_{n\to\infty}\frac{L(r_n)}{S(r_n)}=0.$$

Let ρ be the Euler's chracteristic, then by Ahlfors' fundamental theorem on covering surfaces⁶⁾,

(10)
$$\stackrel{r}{\rho}(F_r) \ge \rho(F_0)S(r) - hL(r), \quad \rho = \text{Max}(\rho, 0),$$

where h is a constant depending on F_0 only. Since $\rho(F_0) = 2$ and

6) L. Ahlfors: Zur Theorie der Überlagerungsflächen. Acta Math. 65 (1935).

4

(11)

 $\rho(F_r) \leq \lambda(r) + N,$

where $\lambda(r)$ is the number of holes in Δr , we have (12) $\lambda(r) + N \ge 2S(r) - hL(r)$.

Next we will evaluate $\lambda(r)$.

Let $\Delta(r)$ be the total length of the image of the boundary of holes of Δ_r , then by Ahlfors' covering theorem,

$$\begin{split} |S(r) - \Lambda(r)/2\pi\rho| &\leq h L(r), \text{ or } \\ \Lambda(r)/2\pi\rho \leq S(r) + h L(r). \end{split}$$
Since $\lambda(r) \leq \Lambda(r)/2\pi\rho$, we have $\lambda(r) \leq S(r) + h L(r), \end{split}$

so that from (12),

$$S(r) \leq 2h L(r) + N,$$

which contradicts (9). Hence F_{ρ} covers any point of K infinitely often, with two possible exceptions.

(iii) Next suppose that Δ is of finite connectivity and suppose that F_{ρ} covers two points α , β of K finite times and let N be the number of zero points of $(w(z) - \alpha)(w(z) - \beta)$ in Δ . If we take α , β instead of α , β , γ in the proof of (ii), then $\rho(F_0) = 1$ and

$$\rho(F_r) \leq \rho(\Delta) + N,$$

so that by (10),

$$\rho(\Delta) + N \ge S(r) - hL(r), \text{ or}$$

$$S(r) \le hL(r) + \rho(\Delta) + N,$$

which contradicts (9). Hence F_{ρ} covers any point of K infinitely often, with one possible exception.

Hence the theorem is completely proved.

We remark that by modifying the proof slightly, the same result holds, when w(z) is one-valued and meromorphic in a neighbourhood of M.

REMARK. Let G(x, y) be an integral function of x and y and y(x) be an analytic function defined by G(x, y) = 0 and F be its Riemann surface spread over the x-plane. Let E be the set of x, which is not covered by F. Then Julia⁷ proved that E does not contain a continuum. Generalizing this Julia's theorem, I have proved that if y(x) is not an algebroid function, then F covers any point of the x-plane infinitely often, except a set of logarithmic capacity zero.⁸ This can be deduced from the following theorem by means of a lemma analogous to the lemma proved in (i) (b).

THEOREM. Let $K: |x - a_0| < \rho$ be a disc and F_{ρ} be a connected piece of F, which lies above K. Then F_{ρ} covers any point of K at least once, except a set of logarithmic capacity zero.

PROOF. We map F_{ρ} on |z| < 1 by x = x(z). Then by Fatou's theorem,

⁷⁾ G. Julia: Sur le domaine d'existence d'une fonction implicite définie par une relation entière G(x, y) = 0. Bull. Soc. Math. (1926).

⁸⁾ M. Tsuji, 1. c. (1).

 $\lim_{z \to e^{i\theta}} x(z) = x_0 \text{ exists almost everywhere on } |z| = 1, \text{ when } z \to e^{i\theta} \text{ non-tangentially to } |z| = 1. \text{ If } |x_0 - a_0| < \rho, \text{ then } x_0 \text{ is an accessible boundary point of } F. Since, as Julia proved, if x tends to an accessible boundary point <math>x_0$ of F, then $\lim_{x \to 0} y(x) = \infty$, we have

$$\lim_{z\to a^{i\theta}}y(x(z))=\infty,$$

so that if we denote the set of such $e^{i\theta}$ by E, then by Lusin-Privaloff's theorem, ⁹) mE = 0, hence almost all points of |z| = 1 are mapped on $|x - a_0| = \rho$, so that x(z) belongs to the U-class in Seidel's sense, hence by Frostman's theorem, F_{ρ} covers any point of K at least once, except a set of logarithmic capacity zero.

MATHEMATICAL INSTITUTE, TOKYO UNIVERSITY.

 $x \rightarrow x_0$

⁹⁾ Lusin-Privaloff: Sur l'unicité et multiplicité des fonctions analytiques. Ann. Sci. Nor. Sup. 42(1925).