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Let M be a bounded closed set on the z-plane, which is of logarithmic
capacity zero and w — tv(z) be one-valued and meromorphic outside M, every
point of which is an essential singularity of w(z\ Let ω be a transcenden-
tal singularity of the inverse function z = z(w) of w - w(z), whose pro-
jection be aQ. Let K: \w — aϋ\ < p be a disc and Fp be a connected piece
of the Riemann surface of z(w), which has ω on its boundary and lies
above K. Let FP be mapped on a domain Δ on the 2-plane. Δ is multiply
connected in general and the boundary of Δ consists of Jordan curves {ΓV},
Jordan curves or arcs {Γ,',} and a closed sub-set M0 of M, where there are
no points of M on and inside of Tv and if T'v is a Jordan curve, then Γ̂  con-
tains points of M in its inside and if Γ̂  is a Jordan arc, then Tv ends at
two points of Mi>.

Tv is the boundary of a hole in Δ. We add the insides [Γv] of I\ to Δ
and let

( 1) Δ = Δ + 2 [ Γ J

V

Then the following theorem holds.

THEOREM, (i) FP covers any point of K infinitely often, except a set of
logarithmic capacity zero.

(ii) If Δ is of finite connectivity, then F9 covers any point of K infinitely
often, with two possible exceptions.

(iii) If Δ is of finite connectivity, then FP covers any point of K infinitely
often, with one possible exception.

( i ) is proved by the author^, (ii) and (iii) are due to K. Noshiro-}

When M consists of only one point, then Δ is simply connected, so that
(ii) contains Kunugui's theorem^, that if M consists of only one point,
then Fp covers any point of K infinitely often, with two possible exceptions.
I will give a simple proof in the following lines.
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PROOF, (i). (#) First we will prove that Fp covers any point of K at
least once, except a set of logarithmic capacity zero.

Since Mo is a sub-set of M, we have cap MO ~ 0, where capM0 means
the logarithmic capacity of M0.

We map Δ on \ζ\ < ~L by z = z (ζ*), then Mb is mapped on a null set e0

on |ξΊ = 1. Let v(ζ) - w(zζζ)), then 0(ξ*) is regular and !#(£) — aQ\ < p
in |ζΊ < 1 and \v(ξ) — a0\ ~ p on the complementary arcs of e0 on \ζ\ — 1,
so that v(ζ) belongs to the £7-class in SeideΓs sense. Hence by Frostman's
theorenι4), Fp covers any point of K: \ιv — a0\ < p, except a set of logari-
thmic capacity zero.

(£) To prove that FP covers any point of K infinitely often, except a
set of logarithmic capacity zero, we will first prove the following lemma.

LEMMA. // a disc K(} contained in K is covered exactly n-times by FP,
then K is covered exactly n-times by Fp, so that z(w) has only algebraic sin-
gularities in K.

PROOF. Let D be a connected domain, which contains KQ, such that
every point of which is covered exactly ^-times by FP and let E be its
boundary which lies in K. Suppose that D does not coincide with K, then
E =f= 0 and let WQ be a boundary point of D, which lies in K.

From the definition, WQ is covered at most ^-times by FP. If WQ is
covered n-times, then the part of Fp above a small disc K\ about WQ conta-
ins n discs F1} •• -, Fn, consisting of only inner points, where a piece of
the Riemann surface of (w — woy>k is considered as k discs.

If there is no connected piece of Fp above KI other than Fl} ,Fn, then
Kι is covered n-times by Fp, so that KΎ belongs to D, which contradicts
the hypothesis, that wϋ is a boundary point of D. Hence there is another
connected piece F0 above K1} other than FΊ, - , Fn, then FΌ does not cover
the common part D^ of D and Klm This contradicts (a), since cap D0 > 0.
Hence every point of E is covered at most (n — l)-times by Fp. We will
prove that cap £"=0. Let EK ba the sub-set ofΈ, which is covered &-times

n-ι

by Fp, then E = 2 ^ f c Suppose that cap E > 0, then for some k, cap/?* > 0
fc = l

(0<,k^n~I\ Since capE'o = 0 by (a), we have 1 S k < n - 1, Let
EK be a closed sub-set of Efc, such that cap E£ > 0. Then there is a
point wQ € jEfc, such that cap Ek(Kι) > 0, for any small disc Kτ about w0,
where E^K^ is the part of El contained in Kλ.

Since w0 ^Ek, w0 is covered &-times by FP. Hance the part of FP above
Kτ contains k discs Flt •••-, Fk consisting of only inner points. Since
l^k<n — l, there is another connected piece F$ above Kλ other than F1 ?

,Ffc. Since EKKτ) is covered ^-times in FI, -, Ffc, F0 does not cover
Eκ{Kι), which contradicts (a), since cap Ek(K^ > 0. Hence cap E= 0.

Let îCwO, , 2w(wO be w branches of z(w) in Z) and ^ 0 be any point

4~) O. Frostman: Potentiel clequiJibre et capacite des ensembles. Lund (1935).
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of E. We may suppose that Δ is a bounded domain, so that zι(w) are
bounded in a neighbourhood U of WQ. We put

Π(z - Zi(w)) - zn -f fl^wO 2'*-1 + - . . . -f ant w) = 0,
/=!

then dί(w} are one-valued and regular and bounded in £7. Since cap E = 0,
<Ze(w) are regular at M;O, so that U is covered ^-times by Fp, hence Wo
belongs to D, which is absurd. Hence D has no boundary point in K, so
that D coincides with K, q. e. d.

(c) By this lemma, we will prove that Fp covers any point of K infini-
tely often, except a set of logarithmic capacity zero. Let E be the set of

00

points in K, which is covered finite times by FP, then E = 2^*» where
fc = 0

Eic is a sub-set of E, which is covered &-times by Fp.
Suppose that cap E > 07 then for some k, cap E* > 0. Since cap EQ = 0

by («), we have 1<Ξ&< oo. Let El be a closed sub-set of Ek, such that
cap El >0. Then there is a point tv.^Eί, such that cap ElίK^ > 0 for
any small disc /£i about wQ. Since w^Ek, WQ is covered &- times by FP,
hence the part of FP above KΎ contains k discs F3, •••-, Fb consisting of
only inner points. Since by the hypothesis, z (w) has a transcendental
singularity at 00, we see, by the lemma, that there is another connected
piece FQ above K± other than P\, ---- , Fk. Since E* (/TO is covered &-times
inFi,——, Ffc, FO does not cover El(K^), which contradicts (<aO, since
cap Eί(Kι) > 0. Hence we have cap E = 0, so that Fp covers any point
of K infinitely often, except a set of logarithmic capacity zero.

(ii) Next suppose that Δ is of finite connectivity.
Since MQ is a bounded closed set of logarithmic capacity zero, by Evans'
theorem5), we can distribute a positive mass dμ(a) on M0 of total mass 1,
such that

( 2 ) u(z) - [ log -±— dμ(a), ( fdμζa) = l)
j \£ a\ ^J '

J/o -Vo

tends to -f oo ? when z tends to any point of M0.
We put

log _ dμ(a) = u(z)

t =

Let Cr be the niveau curve r(2) = const. — r, then G consists of a
finite number of Jordan curves, which cluster to Mij as r->oo. Since the
total mass is 1, by integrating on the negative sense on Cr, we have

(4) Γ dθ(z)= f ~ds-^ f~ds^2τt1

J J o s J av

cr cr cr

5) G. C. Evans : Potentials and positively infinite singularities of harmonic func-
tions. Monatshefte fur Math. u. Phys. 43(1936).
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where ds is the arc element and v is the inner normal of CY, so that
aθ

> 0. We write r, θ instead of r(z),
OS

Let Cr (Δ) be the part of Cr, which lies in Δ, then by (4) and -?— > 07

( 5 ) dθdz)^ 2τr./
Let Δr be the part of Δ, which lies outside C, .

Suppose that FP covers three points a,β,y of K finite times and zλί ••,
ZN be zero points of (w(z) — αOOXz) — βXw(z) — 7). We take off these
points from Δr and let Δ? be the remaining domain. Then tv(z) =t= a, Φ β,
Φ 7 in Δ? . Let Fr be the image of Δr on the w-piane, then Fr is the cover-
ing surface of the basic domain F0, which is obtained from K by taking
off three points a, β, 7. Let \Fr\ be the area of Fr and L(r) be the
length of the image of C (Δ) and S(r) = |F,-|/τrp1!, then since the number
of closed Γ,', is finite, we have for a suitable A > 0, rΰ > 0,

\Fr\ = A +

( 6 ) L (r) = f \F'(t)\rdθ, (r > r0),

so that by (5),

θ ~ 2 π T J Δ

Since by (i), FP covers any point of K infinitely often, except a set of
logarithmic capacity zero, we have
( 8 ) l'ιmS(r) = oo.

Suppose that L(r) > [S(r)]3 / 4 in a set of intervals /„ = [>,,, r,Π (i; = 1,
2, ---- X then we have by (7),

2 J rflog r ^ 2 ^

/»;

so that there exists r
l
 < r

2
 < - - < r«-> oo, such that Z,(r

re
) S

hence by (8),

(9)

Let p be the Euler's chracteristic, then by Ahlfors' fundamental theorem
on covering surfacesG),

(10) p(Fr) ^ p(F0)S(r ) - ΛLCr), p - Max (p, 0),
where h is a constant depending on F0 only. Since p(F0) = 2 and

6) L. Ahlfors: Zur Theorie (ier tίterlagerung& flachen. Acta Math. 65 (1935).
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p (F,) ^ λ(r) -f N,
where λ(r) is the number of holes in Δr, we have
(12) λ( r) + ΛΓ ^ 2 SO) - ΛL(r ).
Next we will evaluate λ(r).

Let Λζr) be the total length of tha image of the boundary of holes of
Δr, then by Ahlfors' covering theorem,

or

Since λ(r) <; J (r)/2τrp, we have
X O ) g S O )

so that from (12),
SO) S 2fc LO) + AT,

which contradicts (9). Hence Fp covers any point of K infinitely often,
with two possible exceptions.

(iii) Next suppose that Δ is of finite connectivity and suppose that FP

covers two points oί, β of K finite times and let N be the number of zero
points of (w(2) — α) (u ( g) — /3) in Δ. If we take a, β instead of α, β,
7 in the proof of (ii), then p(F0) = 1 and

so that by (10),

AL(r), or

p(Δ) + N,
which contradicts (9). Hence FP covers any point of K infinitely often,
with one possible exception.

Hence the theorem is completely proved.
We remark that by modifying ithe proof slightly, the same result holds,
when w'β) is one-valued and meromorphic in a neighbourhood of M.

REMARK. Let G (x, y) be an integral function of x and y and y (x) be
an analytic function define! by G (x, y) = 0 and F be its Riemann surface
spread over the #-ρlane. Let E ba the set of x, which is not covered by
F. Then Julia7) proved that E does not contain a continuum. Generalizing
this Julia's theorem, I have proved that if y(x) is not an algzbroid function,
then F covers any point of the x-plane infinitely often, except a set of logarith-
mic capacity zero. 8 ) This can ba deduced from the following theorem by
means of a lemma analogous to the lemma proved in (i) (ft).

THEOREM. Let K: \x— aQ\ < p be a disc ani Fp be a connected piece of
F, which lies above K. Then Fp covers any point of K at least once, except
a set of logarithmic capacity zero.

PROOF. We map FP on| z | < 1 by x = x(z). Then by Fatou's theorem,

7) G. Julia: Sur le domaine d'existence d'une function implicite definie par une
relation entiere G'^x,y^) = 0. Bull. Soc. Math. (1926).

8) M.Tsuji, 1. c.C 1).
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lim #(2) = xQ exists almost everywhere on | z \ = 1, when z-+eίθ non-tangen-

tially to j z \ = 1. If \xϋ — # 0 | < p, then x0 is an accessible boundary point
of F. Since, as Julia proved, if x tends to an accessible boundary point
x0 of F, then lim ^ ( ^ = 0 0 , we have

so that if we denote the set of such e'ιθ by E, then by Lusin-Privaloffs
theorem,9) mE = 0, hence almost all points of | z \ = 1 are mapped on
\x— a0\ = p, so that x(z) belongs to the ί/ clasŝ  in SeideΓs sense, hence

by Frostman's theorem, Fp covers any point of K at least once, except a
set of logarithmic capacity zero.
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