
NOTE ON DIBICHLET SERIES (T)

ON THE INTEGRAL FUNCTIONS DEFINED

BY DIBICHLET SERIES (I)

CHUJI TANAKA

(Received March 2?, I05?)

1. Introduction. Let us put

(1.1) F(s) = 2 an exρ( — XnS) (s = σ + it, 0 < λi < λ2 < •. . < λ» -» + oo).

Let (1.1) be uniformly convergent in the whole plane, i. e. for any given σ
( — oo < σ < +00), (1.1) be uniformly convergent for σ <i 9ί(s). Then (1.1)
defines the integral function, and for any given σ, Sup \F(σ + it)\ has

-co<f < + co

the finite value M(σ). After J. Ritt ([11, pp. 18-19) we can define the order
and type of (1.1) as follows:

DEFINITION. The order 0/(1.1) is defined by

(1.2) p - finf( - σ)-1- log+log+M(cr),

where M(σ) = Sup \F(a°+it)\, log+* == Max(0, log x). If 0 < p < + 00, the

type k 0/(1.1) £s defined by

(1.3) ^ =~ϊim l/exp(( - σ)p) - Iog+M(σ).

J. Ritt C2], S.Izumi [3D and K.Sugimura [4] have given formulas
determining p and k in terms of {an} (n = 1,2, ) under some additional
conditions imposed upon {λn} (w •-= 1,2, ). In this note, we shall establish
more general formulas determining p and k in terms of ζany (n— 1, 2, . . . . ) .

2. Theorem. The main theorem reads as follows:

MAIN THEOREM. Let (1.1) be uniformly convergent in the whole plane.
Then we have

(2.1) lϊπΓ(*log xΓ' log Tx = -p- 1 ,

where (i) Tx = Sup ^ n exρ( - i λ» ί) I ,

(ii) Mtt(σ) = Sup
-oo<ί<+c

2 ?̂» e^P( - λ?» (σ + ίί)),
n = l I

(iii) pM = lim ( - σ)"1 log+log+M«(σ) ( > 0).

O ] means the greatest integer contained in x.
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If furthermore 0 < pu < + 00, then we get

(2. 2) lim (x-1 log JΓ* + p'1- log *) *= p-1 log (e pu *„),

« Λ ^ #M = ίϊrn 1/exp (( - σ)ρu) log+ Λftt(σ).

REMARK. (1) By M. Kuniyeda's theorem ([5], pp. 8-9), the uniform con-
vergence-abscissa σu of (1.1) is given by

—- 00 ~ σu = l i m x~Ύ - log Tec.

(2) Since M{σ)^Mu{σ), this main theorem can not give the exact value of
p and k in terms of {an} (n = 1, 2, . . . . ) .

From this main theorem follow next theorems, whose proof we shall
give later.

THEOREM I. Let (1.1) be uniformly convergent in the whole plane. Then
we have

(2. 3) - l/pe s - 1/p < - IIpu ^ - 1/pc
X-J>+oo

f (i) - l/pΰ •= hm(λn log λr*)"1 log I αΛ I,

1 (ii) N(x) = 2 l

REMARK. By a lemma ([6Ί,p. 50) we have

(2. 4) 0 < σ , - C ̂  lim λ"1 log n,

where r (i) σs: simple convergence-absciss a of (1.1),

I (ii) C = linΐ λ"1 log \aa\.

Therefore, by (2.4) and <rs = —00, we get C = — 00, so that we can put

PcSO.

THEOREM II. Let (1.1) with$ϊ(an)^0 (n=*l,2, . . . . ) fe uniformly
convergent in the whole plane. Then we get

(2. 5) - IIpu + Δi S - 1/p ^ -l/p«,
ivhere Δi = lim (λn log λn)"1 log (cos 0Λ), θn = arg(«w).

THEOREM III. Z#ί (1.1) δ^ uniformly convergent in the ivhole plane. If

fim (tflog*)-1 Iog+N(tf) = 0, and 0 < p < +oo;

(2. 6) fc<^SfcSfe e χ P {p lim x~τ Iog+Λf(#)},

where ^ ^ - i . j o g ̂  ^c) == ϋ n χ ^ - 1 . \Og \a%\ 4- p - i . iOg \ n } f

(2 7) \ n^+o°
I (ii) p" 1 log (e p ku) = l im^- 1 log Ta; -f- ρ~ι log Λ:}.

REMARK. On account of Theorem 1, we obtain pc = pu = p, so that we
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can define kG and ku by (2.7).

THEOREM IV. Let (1.1) with 9ΐ (#„);> 0 ( » = 1 , 2 , . . . . ) fo uniformly
convergent in the ivhole plane. If Δi = 0, dwd 0 < p < +oo, ί/κ?w

(2.8) ku expfpΔ,) <:k<ku,

lohere Δ2 - lim λ - 1 -log (cos θ»), θn - arg {an\

REMARK. By Theorem 2, we have pw = p. Hence we can define ktι by
(2.7), (ii).

3. Lemmas. To prove these theorems, we need some lemmas.

LEMMA I. Let (1.1) be uniformly convergent in the tυhole plane. Suppose that

(3.1) Mu{σ) < A exp {β exp (( - σ)a)},

for sufficiently large — σ(σ < 0), zυhere
fc

(i) Mu(σ) = Sup 2 a*> e x P ( "" λ.» (σ + lϊ))

(ii) A<cc,β: positive constants.

Then we have

{ lim (# log)"1 log Tx rg — #~\

lim 0*r] log To? + o r 1 log #) < Λ"1 log (α β e).

PROOF. Let us denote by {λj ,m} (wι = 1 , 2 , . . . . , r(x)) λM

?s contained in
[_x~} — j ^ λ« < Λ:, and by {aJim} its coefficients. Setting

by Abel's transformation we get

Σ . ,
O1j in ^ X P \ ~~~ *•*' λjj)tϊb)

= 2 Si.™ (θ"»

+ Sj,r (σ, ί) exp(σλj,r) — Sj,o(σ, t) exp(σλj.i),

where Sj)()(σ,t) = 2 β ) l e x p ̂  ~~ λ ^ σ + f ' ^

Hence j 2 a» e χ P ( " ~ itx^ ^ 2 M " ( σ ) e χ P ( σ ^ . i ) ^ 2 Λ ί w

Since the right-hand side is independent of ί,we get

Tx S 2Mu(σ) exp(σCΛ Ί),
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so that, by (3.1), for sufficiently large — σ {σ < 0),

(3.3) Tx < 2 A exp {β exp(( - σ)a) + [«>},

If we let the righ-hand side of (3.3) take its minimum, we get easily

Tx < 2 A exp{ - Zxl/a - log(M/α β e)}9

from which (3.2) immediately follows.

LEMMA II. Let (1.1) be uniformly convergent in the whole plane. Assume
that

(3.4) Tx < exp { - (!XJ + 1)1 a log( ([*] + 1)1 a β e)}

for sufficiently large x( > 0), where a and β are positive constants. Then,
for sufficiently largs — σ(σ < 0) we get

(3.5) Mu(σ) S A exp {β exp (( - σ)a) + ( - σ)a},

where A is a suitable constant.

PROOF. On account of (3. 4), we have

(3. 6) ^ Tx < exp{ - ( M + Dloc log((LΛr: 4- D/7)}

for arbitrary t ( — 00 < t < -\ -00) and [>] > ^ where 7 = aβe and X are
sufficiently large constants. Let us denote by {\j,m} (in =1,2, r(j)) λM's
contained in j<z\n<j+ 1, a n d by flJiίΛ its coefficients. Put

m

Si,»(ί) = 2 °J ' e χp( - * λ,lfc), s,,o(ί) = 0.
fc = l

Then, by (3.6)

(3.7) I SJf»(0 [ < exp { - (/ 4- l)/α log((; + D/7)}

for m = 1,2,, ... .r(j)J > X.

Putting [ λ j = AT, λ̂  = XΛV,, and Γλ^] = M? \μ = λj/,..2, (v < μ), by Abel's
transformation, we obtain

2 «n exp ( — χn ( σ + ί/)) = 2 Sx,m(t) {exp ( - σλx.ni) - exp ( - σλy.m+i)}

N)(t) expί — σλλvw) ~ S.v,ii-i(0 exp( — σXx^-i)
l

Si,»»(ί){expί - σλj.m) - exp ( - <rλJ|Wi+])} + SKr0)(t) exp( -

+ 2 Sjf,wi(ίKexp ( — σλjf.m) — exp ( — σλjf.m+i) 4- S.v^(t) exp( — σλv.ί
m = i

Hence, by (3.7) and simple computations, we have

(3. 8) 2 dn e x P l - λn ίσ + Λ))
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< 3 2 exp( - jlcc log(//7) - jσ) < 3 2 exp( - .//« log(//y) - jσ)

for σ- < 0 and [λ,Ί > X

Now we can easily prove that for σ < 0,

r (i) Max exp( — j/ct log(j/y) — y<τ) < exp (exp(( —

I (ii)(ii) exp( — j/a log (j/y) - /σ ) < exp( — i/

for j > j{σ) = exp(( - σ)α + 2).

Accordingly, putting

/= Σexp(-//α.logOV7)-/σ)= 2 + 2 = 7 l + ̂ ,

we get

/i < j(σ) exp{exp(( - σ)a)} = a exp {exp (( - σ)a) 4- ( - σ)a 4- 2},

so that, for sufficiently large — σ(σ < 0),

I <2a exp {exp (( - σ)a) + ( - σ ) α -1- 2}.

Hence, (3. 8) yields

(3.9) I 2 Onexp( - λ«(σ 4- it)) <6a exp{exp(( - σ)a) + ( — σ)a + 2},

for μ > v, Dwj > X, where /Λ is arbitrary, but v is fixed.
On the other hand, for sufficiently large — σ(σ < 0), we have evidently

(3.10) J>, an exp( — λ»*(σ + //)) ι < ^ |ύrM]exp ( — \nσ)

< exp {exp(( - σ)a) + ( - σ ) α } .

Hence, by (3.9) and (3.10)

•] «„ exp( - χ»(σ + ίί)) < {6 a e2 4-1} exp {exp(( - σ)a) + ( - σ)a},

for arbitrary ^ ( l g ^ < +°o), /( — oo < ί < -foo) and sufficiently large — σ
(σ < 0), so that immediately follows

Mu(σ) ^ A exp {exp(( — σ)a) -f ( — σ)ci}, A = (6 ocβ2 + 1),

for sufficiently large — σ(<r < 0), which proves Lemma 2.

4. Proof of Theorems.

PROOF OF MAIN THEOREM. By definition of pu, for any given €( > 0),

there exist constants A and B depending only on £ such that

Mu(σ) < A exp {exp ((pu 4- c)( — σ))>
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for σ < B < 0. Hence, applying Lemma 1, in which β ~ l 7 α = ριt + £, we
get

where - 1/P; = lim (x) log tf)"1 log Tx ( p ; > 0). Letting £ ->0,

(4.1) Pi," g p , .

Since - l / p ; = lϊin {CM + 1) log(M + I)}"1 log T., for any given

£( > 0), we have

Γ, < exp { - ([>] + D/(p; + £) log ( M + 1)}

for M >X(£). Accordingly, by Lemma 2, in which α = p* 4- £, aβe = 1,

we get
M»(σ) S A exp {l/β(P; + θ) exp (( - σ) ( p ; + f))}

for sufficiently large — σ- (σ < 0). Therefore, pw ̂  p*u •+• <?. Letting θ->0,

(4.2) P u < p ; .

Combining (4.1) with (4 2), we obtain pu = p^, which proves the first part

of main theorem.
Arguing quite similarly, the second part of main theorem is also

proved.

PROOF OF THEOREM I. Since M(σ) <Ξ Mu(σ), we get immediately

(4.3) p g pu.

By definition of pc, for any given €( > 0), there exists X(£) such that

\an\ < exp ( - χn log \n/(pc + θ)) for

Hence

Lx]gλn<*

for M > X(€). Accordingly, by (2.1)

- I/pi* S - l/(pc + <?) + lim (AT log ΛΓ)-1

Letting 6 -> 0,

(4.4) - l/p t t S - 1/pc + ϊϊm (Λ; log x)~ι lo

Taking account of Hadamard's theorem ([T],p.l5) a n ^ the uniform

convergence in the whole plane of (1.1),

-1 /
J
r

an = lim T-1 / F(σ + fί) expOuO + ι/))Λ w = 1,2, . . . . ,0

so that

(4. 5) I an I S M(σ) exp(crλn) (w = 1, 2, . . . . ) .

By definition of p, we have, for any given £( > 0),



DIRICHLET SERIES 73

M(σ) < exp {

for sufficiently large — σ{σ < 0). Therefore, by (4.5),

(4. 6) \an\ < exp{exp((p + θ)( - σ) - ( - σ)λ,J ίw = 1,2, . . . . )
for sufficiently large — σ. If we make minimum the right-hand side of
(4.6), we get easily

I <*n I ^ exp { - \n/(p + £) log (λ,,/

for sufficiently large n, so that

Letting 8 -> 0,

(4.7) — Vpc <; — lip.

On account of (4. 3), (4. 4) and (4. 7), we get (2. 3).

PROOF OF THEOREM II. Let us put

(4.8) f(s) - 2 9* (*») e χ P( - λ»«), ®(fln) ^ 0,

which is evidently absolutely convergent in the whole plane. Since

M(σ) = Sup \F(σ + # ) | > \F(σ)\ >/(<r) = Sup|/(σ + ίί)|

we have

(4.9) p > pr,

where p r = lim( - σ)"Λ log+log+M,(σ). Since, by ϊ\{an) > 0,
σ->co

Sup 2 3*^) e χ P ( - λ ^ σ + *)) = M^σ),

applying main theorem to f(s), we obtain

(4.10) — IIpr = fiϊn (Λ: log ΛΓ)-J logs Sup 2 9t(β») exp( — A

= lim (Λ logΛΓ)"1 -logI 2 ^(^n)}-

On the other band, we get easily

2 9ί(β») = 2 \a" I c o s »̂ = c o s ^G;> * 2 \a» I = c o s »̂c

where cos #„<» = Min{cos θn}, T* = Sup 2 Λ»* e χ P ( ~~ ^

Hence, by (4.10) and (2.1), we obtain

— l/pr ^ — IIpa 4- lim (x log x)~ι log {cos θn^}

^ — l/p t t + lim (λ» log λn)~] log {cos θn},
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so that, by (4.9)

(4.11) - 1/p > - IIpr S - l/p» + Δi.

By (4. 3) and (4.11), we have (2. 5).

PROOF OF THEOREM III. Taking account of lim (x log x)-1 Iog+N(x) = 0

and Theorem 1, we have

1/p = — l/pc = —l/p» = lϊmΓ(λ»logλΛ)-1 log|α n | .

Hence, by (2.2), we can define £c and ktι by (2.7). Since M(σ) <: M»(σ), p —
Pu, we get immediately

(4.12) £ ^ *».

By definition of kc, there exists X(£) for any given £( > 0), such that

\θn\ < exp { - Xjp - log(\n/ep(kc + a))} for \n > X(6).

Accordingly

exp { — DC/p log(£x~2/ep (kc -

for 1x2 > X(S), so that

ίίin (V 1 - log Tx + p" 1 log jΛ = p^Ίogiepku)

<: p-J log(ep (kc + ε)) + ϊim x~ι log+iV(#).

Letting £ -> 0,

p" 1 logfβ p fc) <Ξ p" 1 log(^p fe) + lim ΛΓ1. log+iV(^)? i.e.

{4.13) ku g kc exp {p lϊm Λ;~J log+iV(#)}.

By definition of k, we have, for any given £( > 0),

M(σ) < exp {(k -f £) exp(( - σ)ρ)}

for sufficiently large — σ(σ < 0). Therefore, by (4. 5)

(4.14) 1 «n | < exp {(£ + £) exp ( ( - σ ) p ) - ( - σ)\n} ( « = 1 , 2 , . . . . )

for sufficiently large — σ. If we make minimum the right-hand side of

(4.14), we have

I an I < exp { — Xnjp - log (\n/e p(k + £))}

for sufficiently large #, so that

liϊn'ίλ-1 log\an| + p-1 logλn) = p" 1 logOpfc> ^ p~ι log{ep{k + £)).

Letting 8 -> 0, p" 1 log(^ p Ac) ^ p"1 log(# p A). Hence,

(4.15) kG^k

By virtue of (4.12), (4.13) and (4.15), we obtain (2. 6).
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PROOF OF THEOREM IV. On account of Δi = 0 and Theorem 2, we get

- 1/p = —1/p* = lim (x log x)~' log T9.

Hence, by (2. 2), we can put

(4.16) p" 1 log(e p **) *= lίm?*"1 log Γ* + p- 1 log *),

where ku = lim 1/exp (( — σ)p) Iog+Mi6(σ ). Accordingly, on account of

M(σ) <i Mrt(σ), p = pa, we have easily

(4.17) £ ^ Af«.

Using the same notations as in the proof of Theorem 2, and Δi ~ 0 and
(4.11), we have p — pu~ pr. Therefore, applying the main theorem to f(s)

an) exp( - λ»s) with 3ί(βM) > 0, we get

(4.18) p" 1 log(e p h) - lim ( x~Λ logf 2 9*(*»)) + P

where (i) &• = Tiϊn 1/exp (( - σ)ρ) Iog+M, (σ-),

(ii) Mr(<r) = Supl/( σ 4- fί) | = /(<r).
- o o ^ + co

Hence, by Mr(o-) g M{σ), p = p r ? we have

(4.19) & ^ k.

In the proof of Theorem 2, we have proved that

S cos θnw T,?

where cos θnw = Min {cos #„}. Hence, by (4.18) and (4.16),

p- 1 log(^ p ftr) ^ Γim (Λ;-1 log Tx + p- 1 log *) + lim Λ;"1 . log{cos θnw}

g p- 1 log {e P ku) Λ- limλ,-1 log {cos Θ*}

= p- 1 logiepku) + Δu,
so that

(4.20) K ^ ft*exp (pΔ,).

By virtue of (4.17) (4.19) and (4.20), the required question (2. 8) is completely

established.

5. Corollaries. From Theorem 1, we get immediately

COROLLARY I. Let (1.1) be uniformly convergent in the whole plane. If

lim (x log x)-1 - log+ N(x) = 0, N(x) = 2 *> ' ^ w z ί s orίfer p is

(5.1) — 1/ρ = lim (\n log λ,,)"3 log | /7rt | .
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As its special case, we obtain

COROLLARY II. (J. Ritt. [2]) Let (1.1) be simply convergent in the whole

plane. If lim λ"1 log n < + oo, then (5.1) holds.

REMARK. J. Ritt supposed the absolute convergence in the whole plane,

but it is a consequence of er< — — oo and ίim λ~3 log n < -f-oo.
>1~> + CO

PROOF. By the similar arguments as a lemma in ΪI6"_] p. 50, we get

(5.2) O ^ σ α - σ8 ^ lim ΛΓ1 log+N(x) <; ϊίm λ Uog ?ί,

where ^(cr,.) is the absolute (simple) convergence-abscissa of (1.1). Hence,

on account of σs = — oo and lim \~ι Ίogn< -f oo, <τα = — oo. A fortiori,

(1.1) is uniformly convergent in the whole plane. By (5. 2) and lim λ~J log

n< +oo, we get evidently lim (x log x)'1 - log+N(x) = 0, so that Corollary 2

is a special case of Corollary 1.

COROLLARY III. (K. Sugimura L4Ί) Let (1.1) be simply convergent in the

ivhole plane. // 2 1 - O(#δΛ) /or ΛΛV ̂ /^W 8 > 0, ΛWJ 0 <; po. < +oo? where
λn<x

— l/p c = ί i m ( λ j o g λ j " j log \an\, then (5.1) holds.
n-ϊ + oo

REMARK. K. Sugimura have not assumed 0 :£ pc < + oo explicitly, but
he assumed it implicitly.

PROOF. By hypothesis, we get easily

(5.3)
λ n

Hence 0 <"lim (x log x)~" log+N(x) ̂  S. Letting δ -> 0,

(5.4) lim (tflogx)~Ύ log+iV(#) = 0.
ίC->+co

On account of hypothesis, we can determine X(β) for any given 8 ( > 0).
such that, for λ»

i an I < exp { - λ» log λ̂ /ί/̂ c -f
Hence, by (5. 3),

2 K l < M^) exp { - (M + 1) log((M 4- l)/(pc + €))}

< 0( (M + l)δ(Cc]+1)) exp{ - (M + 1) log((M + VI(pc +
for M > X(θ). Therefore,

Tim x-1 log j 2 l**l 1 S lim log (M + 1) - {δ - l/(pe + θ)}
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Since 0 <: pc < -j- 00, taking sufficiently small δ( > 0), we can assume that
8 - l/(pc -f £ ) < 0. Hence,

lim^ logf 2 Kl ]s

which proves σ>ι — — 00. A fortiori, (1.1) is uniformly convergent in the
whole plane. Thus, by (5. 4) and Corollary 1, Corollary 3 is established.

From Theorem 2 immediately follows

COROLLARY IV. Let (1.1) be uniformly convergent in the whole plane. If
9l(#n) ^ 0 and lim (\n logλ»)"J log (cos On) = 0, θn = arg(<zrt),

— 1/p = lim (Λ: log Λ:)"J log 7V.

As a corollary of Theorem 3, we get a generalization of S. Izumi's
theorem L3J.

COROLLARY V. (S.Izumi) Let (1.1) with"ΰmχ-1Ίog+N(x)-0 be simply

(necessary absolutely) convergent in the whole plane. If 0 < p < +00, ί/zβ z /is
type k is given by

p- J log(e p k) = lim {λ~J log | ύrnI + P~3 * log λn}

PROOF. By (5.2) and hypothesis, we have σrt = σ., = - 00. A fortiori,

(1.1) converges uniformly in the whole plane. From limΛ;~J Iog+M#) = 0 we

get evidently lim (x\ogx)~l- \og+N{x) = 0 . Hence, by Theorem 2, k - k =

kιif which proves Corollary 5.
As a special case of Theorem 4, we have

COROLLARY IV. Z f̂ (1.1) with ξR(βn) S 0, lim λ"1- log (cos βn) = 0, θn-

arg(Λn) be simply (necessarily absolutely) convergent in the whole plane. If
0 < p < +00, then its type k is determined by

p- J logte p k) = ίirn (x~ι - log ^ + p~L logx).
ί +

PROOF. We have easily

<*n l«Λ |cos0n>cos0..or)

where cosft i ( 1 )=: Min{cos&»}. Hence, by T. Kojima^s theorem [8]

(5. 5) — 00 = σ ί =3 lim x~ι - log 2 «»

> lim x~i - log{cos Onto} + lim x'1 log 1 2 Iβ" 1 |
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= H m r 1 log{cos &!<»} + σ«.

On the other hand, from lira λ"1 log(cos θn) = 0, we have easily

lim x~λ log{cos θn(χ\t — 0,

so that, by (5.5), σa = — oo. A fortiori, (1.1) converges uniformly in the
whole plane. Thus, by Theorem 4 and limλ"1 log(cosft,) = 0, we get easily

k = kιh which proves Corollary 4.
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