ON THE DIRECT-PRODUCT OF OPERATOR ALGEBRAS II

TAKASI TURUMARU

(Received September 2, 1952)

1. Introduction. R. Schatten-J. von Neumann [4] introduced the idea of direct-product of Banach spaces, and the author modified this considerations to C^* -algebras in the previous paper [7], and defined the direct-product of C^* -algebras.

Let A_1 and A_2 be any C^* -algebras with unit, and following R. Schatten-J. von Neumann. construct $A_1 \times A_2$ as the set of all expressions $\sum x_i \times y_i$ with the equivalence relation \cong , as A_1 , A_2 to be Banach spaces; and finally define the multiplication, involution and norm of expressions as follows:

product:
$$\left(\sum_{i=1}^{n} x_i \times y_i\right) \left(\sum_{j=1}^{m} s_j \times t_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i s_j \times y_i t_j,$$

involution: $\left(\sum_{i=1}^{n} x_{i} \times y_{i}\right)^{*} = \sum_{i=1}^{n} x_{i}^{*} \times y_{i}^{*},$

norm:
$$\alpha\left(\sum_{i=1}^{n}x_{i}\times y_{i}\right)=\sup\left[\Phi\left(\left(\sum_{i=1}^{n}x_{i}\times y_{i}\right)\left(\sum_{i=1}^{n}x_{i}\times y_{i}\right)^{*}\right)^{1/2}:\Phi\in\mathfrak{S}\right],$$

where Θ denotes the set of positive type functional Φ's such that

$$\Phi\left(\sum_{j=1}^{m} s_{j} \times t_{j}\right) = \frac{\varphi \times \psi\left(\left(\sum_{i=1}^{n} x_{i} \times y_{i}\right)\left(\sum_{i=1}^{m} s_{j} \times t_{j}\right)\left(\sum_{i=1}^{n} x_{i} \times y_{i}\right)^{*}\right)}{\varphi \times \psi\left(\left(\sum_{i=1}^{n} x_{i} \times y_{i}\right)\left(\sum_{i=1}^{n} x_{i} \times y_{i}\right)^{*}\right)}$$

 φ and ψ are pure states on A_1 and A_2 respectively, and $\sum_{i=1} x_i \times y_i$ is an arbitrary element of $A_1 \times A_2$; then α becomes a cross-norm on $A_1 \times A_2$ and $A_1 \times A_2$, is a non-complete C^* -algebra [7].

Now, let A_1 and A_2 be C^* -algebras on the Hilbert spaces H_1 and H_2 respectively. Then by [3,4], $\sum_{i=1}^n x_i \times y_i$ can be considered as bounded operator on $H=H_1\times_{\sigma}H_2$. In this paper, we consider the relation between C^* -algebra generated by $\sum_{i=1}^n x_i \times y_i$ as operator on H with operator bound as norm, and direct-product $A_1\times_{\sigma}A_2$ (§2); and we give more detailed discussions in the case where A_i are C^* -algebras of completely continuous operators on H_i (§3); and finally in §4 we prove some algebraic properties of $A_1\times_{\sigma}A_2$.

2. Relation between the direct-product as operators and as algebras.¹⁾

Suppose that H_1 and H_2 are Hilbert spaces. Then, F. J. Murray-J. von Neumann's construction [3] of direct-product gives us $H = H_1 \times_{\sigma} H_2$ as Hilbert space. If x and y are operators on H_1 and H_2 respectively, then

$$\left(\sum_{i=1}^n \xi_i \times \eta_i\right)(x \times y) = \sum_{i=1}^n \xi_i x \times \eta_i y$$

gives a linear operator $x \times y$ on H, and the operator bound of $x \times y$ on H satisfies the cross-property of Schatten $[4]: ||x \times y|| = ||x|| \cdot ||y||^2$.

If A_1 and A_2 are C^* -algebras on H_1 and H_2 respectively, then the set $\{x \times y : x \in A_1, y \in A_2\}$

generates a C^* -algebra A.

On the other hand, we can consider the direct-product $A_1 \times_{\alpha} A_2$ as in [7], in this case, we define the norm $\alpha(\cdot)$ as follows:

$$\alpha\left(\sum_{i=1}^{n} x_{i} \times y_{i}\right) = \sup \left[\Phi\left(\left(\sum_{i=1}^{n} x_{i} \times y_{i}\right)\left(\sum_{i=1}^{n} x_{i} \times y_{i}\right)^{*}\right)^{1/2} : \Phi \in \mathfrak{S}'\right],$$

where \mathfrak{S}' denotes the set of positive type functional Φ 's on $A_1 \times A_2$ such that $\Phi = \sum_{i,j=1}^n \varphi_{ij} \times \psi_{ij}$, $\Phi(1 \times 1) = 1$, and $\varphi_{ij}(x)$, $\psi_{ij}(y)$ have the form $\varphi_{ij}(x) = \langle \xi_i x, \xi_j \rangle$, and $\psi_{ij}(y) = \langle \eta_i y, \eta_j \rangle$

respectively where $\xi_i \in H_1$, $\eta_j \in H_2$ and $|\sum_{i=1}^n \xi_i \times \eta_j| = 1$. Then the following theorem holds:

THEOREM 1. A is isometrically isomorphic to the direct-product $A_1 \times_{\alpha} A_2$

LEMMA 1. If the expression $\sum_{i=1}^{n} x_i \times y_i$ is equivalent to 0×0 as element of direct product $A_1 \times {}_{\alpha} A_2$ of algebras, then it is zero operator on H.

PROOF. By the definition of the norm in $A_1 \times \alpha A_2$,

$$0 = \sum_{i,j=1}^{n} \langle \xi x_{i} x_{j}^{*}, \xi \rangle \langle \eta y_{i} y_{j}^{*}, \eta \rangle$$

$$= \sum_{i,j=1}^{n} \langle \xi x_{i}, \xi x_{j} \rangle \langle \eta y_{i}, \eta y_{j} \rangle$$

$$= \langle \sum_{i=1}^{n} \xi x_{i} \times \eta y_{i}, \sum_{j=1}^{n} \xi x_{j} \times \eta y_{j} \rangle$$

for any elements $\xi \in H_1$, $\eta \in H_2$, $\|\xi\| = \|\eta\| = 1$. Then, $\sum_{i=1}^n \xi x_i \times \eta y_i = 0$ for any $\xi \in H_1$, $\eta \in H_2$, so $\sum_{i=1}^n x_i \times y_i = 0$ as operator on H.

¹⁾ The author expresses his hearty thanks for many discussions of Prof. M. Nakamura; he has pointed out the incompleteness of author's original proof of present and next sections.

^{2) ||| • |||} denotes the operator bound.

LEMMA 2. The converse statement of Lemma 1 holds.

PROOF. Let $\sum_{i=1}^{n_1} x_i \times y_i = 0$ as operator on H. First we remark that we can assume, without loss of generality, the linear independency of $\{x_i\}$. Indeed, if $x_1 = \sum_{i=2}^{n} a_i x_i$ holds, then for any $\xi \times \eta \in H$,

$$(\xi \times \eta) \sum_{i=1}^{n} x_{i} \times y_{i} = (\xi \times \eta) \left(\left(\sum_{i=2}^{n} a_{i} x_{i} \right) \times y_{1} + \sum_{i=2}^{n} x_{i} \times y_{i} \right)$$

$$\cong \sum_{i=2}^{n} a_{i} \xi x_{i} \times \eta y_{1} + \sum_{i=2}^{n} \xi x_{i} \times \eta y_{i}$$

$$\cong \sum_{i=2}^{n} \xi x_{i} \times \eta (a_{i} y_{1}) + \sum_{i=2}^{n} \xi x_{i} \times \eta y_{i}$$

$$\cong (\xi \times \eta) \left(\sum_{i=2}^{n} x_{i} \times (a_{i} y_{1} + y_{i}) \right),$$

so
$$\sum_{i=1}^n x_i \times y_i \cong \sum_{i=2}^n x_i \times (a_i y_1 + y_i).$$

Now, assume that $\sum_{i=1}^{n} x_i \times y_i = 0$ as operator on H, and $\{x_i\}$ are linearly independent, then for any ξ , $\xi' \in H_1$ and η , $\eta' \in H_2$

$$0 = \langle (\xi \times \eta) \sum_{i=1}^{n} x_{i} \times y_{i}, \ \xi' \times \eta' >$$

$$= \langle \sum_{i=1}^{n} \xi x_{i} \times \eta y_{i}, \ \xi' \times \eta' >$$

$$= \sum_{i=1}^{n} \langle \xi x_{i}, \ \xi' > \langle \eta y_{i}, \ \eta' >$$

$$= \sum_{i=1}^{n} \langle \langle \eta y_{i}, \ \eta' > \xi x_{i}, \ \xi' >$$

$$= \langle \sum_{i=1}^{n} \langle \langle \eta y_{i}, \ \eta' > \xi x_{i}, \ \xi' >$$

$$= \langle \sum_{i=1}^{n} \langle \langle \eta y_{i}, \ \eta' > \xi x_{i}, \ \xi' >$$

Since ξ' is any element of H_1 , $\Sigma < \eta y_i$, $\eta' > \xi x_i = \xi (\Sigma < \eta y_i, \eta > x_i) = 0$, and furthermore, by the arbitrariness of $\xi \in H_1$, $\Sigma < \eta y_i$, $\eta' > x_i = 0$ as operator on H_1 . While $\{x_i\}$ are linearly independent, so $\{x_i\}$ are $\{x_i\}$ are linearly independent, so $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ and $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$ are $\{x_i\}$ and $\{x_i\}$ and $\{x_i\}$ are $\{x_i\}$

LEMMA 3.
$$\alpha\left(\sum_{i=1}^{n} x_{i} \times y_{i}\right) = \left\|\sum_{i=1}^{n} x_{i} \times y_{i}\right\|.$$

PROOF.

$$\left\| \sum_{i=1}^{n} x_{i} \times y_{i} \right\|^{2} = \sup \left[\left\| \left(\sum_{i=1}^{n'} \xi_{j} \times \eta_{j} \right) \left(\sum_{i=1}^{n} x_{i} \times y_{i} \right) \right\|^{2} \left\| \sum_{j=1}^{n'} \xi_{j} \times \eta_{j} \right\| = 1 \right]$$

$$= \sup \left[\left\| \sum_{i,j,k,m} \xi_{j} x_{i} \times \eta_{j} y_{i} \right\|^{2} : \left\| \sum_{j} \xi_{j} \times \eta_{j} \right\| = 1 \right]$$

$$= \sup \left[\sum_{i,j,k,m} \langle \xi_{j} x_{i}, \xi_{k} x_{m} \rangle \langle \eta_{j} y_{i}, \eta_{k} y_{m} \rangle : \left\| \sum_{j} \xi_{j} \times \eta_{j} \right\| = 1 \right]$$

$$= \sup \left[\sum_{i,j,k,m} \varphi_{jk}(x_{i}x_{m}^{*}) \psi_{jk}(y_{i}y_{m}^{*}) : \left\| \sum_{j} \xi_{j} \times \eta_{j} \right\| = 1 \right],$$
where $\varphi_{jk}(x) = \langle \xi_{j}x, \xi_{k} \rangle$ and $\psi_{jk}(y) = \langle \eta_{j}y, \eta_{k} \rangle$

$$= \sup \left[\Phi\left(\left(\sum_{i=1}^{n} x_{i} \times y_{i} \right) \left(\sum_{j=1}^{n} x_{j}^{*} \times y_{j}^{*} \right) \right) : \Phi \in \mathfrak{S}' \right]$$

$$= \alpha \left(\sum_{i=1}^{n} x_{i} \times y_{i} \right)^{2}.$$

PROOF OF THEOREM 1. By Lemmas 1 and 2, A is algebraically isomorphic to $A_1 \times_{\alpha} A_2$, and by Lemma 3, this isomorphism is also isometric. This completes the proof.

3. Direct-product of completely continuous operators. Our principal aim of this section is to show

THEOREM 2. If A_1 and A_2 are C^* -algebras of completely continuous operators on H_1 and H_2 respectively, then $A = A_1 \times_{\alpha} A_2$ is also a C^* -algebra of completely continuous operators on $H = H_1 \times_{\sigma} H_2$.

To prove the statement, we shall begin by proving

LEMMA 4. For any
$$\xi_1$$
, $\xi_2 \in H_1$ and η_1 , $\eta_2 \in H_2$,
$$(\xi_1 \times \eta_1) \times (\xi_2 \times \eta_2) = (\xi_1 \times \xi_2) \times (\eta_1 \times \eta_2)$$
 where $\zeta(\zeta_1 \times \zeta_2) = \langle \zeta, \zeta_2 \rangle \zeta_1$ for $\zeta, \zeta_1, \zeta_2 \in H$.

PROOF. Let
$$\xi \in H_1$$
 and $\eta \in H_2$, we have, for $\xi = \xi \times \eta$,
$$(\xi \times \eta) ((\xi_1 \times \eta_1) \times (\xi_2 \times \eta_2))$$

$$= \langle \xi \times \eta, \ \xi_2 \times \eta_2 > \xi_1 \times \eta_1$$

$$= \langle \xi, \xi_2 \rangle \langle \eta, \eta_2 \rangle \langle \xi_2 \rangle \langle \eta, \eta_2 \rangle$$

$$= \xi (\xi_1 \times \xi_2) \times \eta (\eta_1 \times \eta_2)$$

$$= (\boldsymbol{\xi} \times \boldsymbol{\eta}) [(\boldsymbol{\xi}_1 \times \boldsymbol{\xi}_2) \times (\boldsymbol{\eta}_1 \times \boldsymbol{\eta}_2)].$$

To prove the theore n, it is sufficient to show that each $x \times y$ is completely continuous, since $A_1 \times_{\alpha} A_2$ is generated by such $x \times y$'s. If $x = \sum_{i=1}^{\infty} \xi_i \times \xi_i$ and $y = \sum_{i=1}^{\infty} \eta_i \times \eta_i'$ are the canonical form of J. Dixmier [1], then it is also sufficient to show for

$$x = \sum_{i=1}^{n} \xi_i \times \xi'_i$$
 and $y = \sum_{j=1}^{m} \eta_j \times \eta'_j$,

since such $x \times y$ are dense in $A_1 \times_{\alpha} A_2$. Therefore by Lemma 4,

$$x \times y = \left(\sum_{i=1}^{n} \xi_{i} \times \xi_{i}^{\prime}\right) \times \left(\sum_{j=1}^{m} \eta_{j} \times \eta_{j}^{\prime}\right)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} (\xi_{i} \times \eta_{j}) \times (\xi_{i}^{\prime} \times \eta^{\prime})$$

shows that $x \times y$ is a completely continuous operator on $H_1 \times_{\sigma} H_2$. This proves Theorem 2.

Theorem 3. If A_i of the previous theorem are the algebra $C(H_i)$ of all completely continuous operators on H_i , then A is the algebra C(H) of all completely continuous operators on H: i.e.,

$$C(H_1) \times_{\alpha} C(H_2) = C(H_1 \times_{\alpha} H_2).$$

PROOF. By the previous theorem, it is sufficient to show that A contains all one-dimensional projections of H. This is proved when $\left(\sum_{i=1}^{\infty} \xi_i \times \eta_i\right)$ $\times \left(\sum_{i=1}^{\infty} \xi_i \times \eta_i\right)$ is contained in A, if $\sum_{i=1}^{\infty} \xi_i \times \eta_i$ exists and is of norm unity. Since, for each n,

$$\frac{\sum_{i=1}^{n} \xi_{i} \times \eta_{i}}{\left\|\sum_{i=1}^{n} \xi_{i} \times \eta_{i}\right\|} \times \frac{\sum_{i=1}^{n} \xi_{i} \times \eta_{i}}{\left\|\sum_{i=1}^{n} \xi_{i} \times \eta_{i}\right\|}$$

exists in A and converges uniformly to $(\Sigma \xi_i \times \eta_i) \times (\Sigma \xi_i \times \eta_i)$, the latter is contained in A.

Following Corollary is an immediate consequence of our Theorem 3 and I. Kaplansky [2].

COROLLARY. If two C*-algebras of completely continuous operators are simple, then their direct-product is simple too.

REMARK. This corollary is not yet decided when the condition of "completely continuous operators" is replaced by "operators."

4. Some algebraic properties of $A_1 \times_{\alpha} A_2$.

THEOREM 4. If A_i are C^* -algebra with unit, and if $A_1 \times_{\alpha} A_2$ is simple, in the sense of non-existence of proper two-sided closed ideals, then each A_i is simple

PROOF. We prove this theorem by an indirect argument. If A_1 were not simple, then there exists a proper closed ideal I_1 . Then $I_1 \times_{\alpha} A_2$ is a closed proper ideal in $A_1 \times_{\alpha} A_2$, so by assumption, $I_1 \times_{\alpha} A_2 = A_1 \times_{\alpha} A_2$. Then for every positive real number \mathcal{E} , there exists $\sum_{i=1}^{n} x_i \times y_i \in I_1 \times A_2$ such that

$$\alpha\left(\sum_{i=1}^n x_i \times y_i - 1 \times 1\right) < \varepsilon.$$

Then, by the definition of $\alpha(\cdot)$ [7],

$$\Big|\sum_{i=1}^n \varphi(x_i)\,\psi(y_i)-1\Big|<\varepsilon,$$

for any pure states φ and ψ on A_1 and A_2 respectively.

On the other hand, by I. E. Segal's result [6], there exists a pure state φ_0 of A_1 which vanishes on I_1 . For a such state φ_0 ,

$$\varphi_0(x_i) = 0, i = 1, 2, \dots n.$$

Then the above inequality implies the contradiction : $|1| < \varepsilon$.

THEOREM 5. If A_i are C^* -algebras with unit, and if $A_1 \times_{\alpha} A_2$ is factorial (that is, the center is a multiple of unit), then each A_i is so.

PROOF. If x is in the center of A_1 , $x \times 1$ is in the center of $A_1 \times_{\alpha} A_2$, so by assumption $x \times 1 = a(1 \times 1) = (a1) \times 1$ for some scalar a. Thus x = a1, this is desired.

THEOREM 6. If $A_1 = I + J$ (direct sum), then $A_1 \times_{\alpha} A_2 = I \times_{\alpha} A_2 + J \times_{\alpha} A_2$ (direct sum).

PROOF. By assumption, if $x \in A_1$, there exists a unique expression

$$x = x' + x'', \ x' \in I, \ x'' \in J.$$

Then for any $y \in A_2$,

 $x \times y = x' \times y + x'' \times y, \quad x' \times y \in I \times_{\alpha} A_{2}, \quad x'' \times y \in J \times_{\alpha} A_{2}.$ The second of the

Thus $(I+J) \times_{\alpha} A_2 \subseteq I \times_{\alpha} A_2 + J \times_{\alpha} A_2$ (right-hand side is not necessarily direct). On the other hand, since $I+J \supseteq I$, J,

$$(I+J) \times_{\alpha} A_2 \supseteq I \times_{\alpha} A_2, J \times_{\alpha} A_2$$

so

$$(I+J) \times_{\alpha} A_2 \supseteq I \times A_2 + J \times_{\alpha} A_2$$

Thus, to prove the theorem it is sufficient to show

$$(I\times_{\alpha}A_2)\cap(J\times_{\alpha}A_2)=0.$$

Now if $x' \in I$, $x'' \in J$, then for any y', $y'' \in A_{2}$,

$$(x' \times y')(x'' \times y'') = (x'x'') \times (y'y'') = 0 \times (y'y'') = 0.$$

Since $I \times_{\alpha} A_2$ and $J \times_{\alpha} A_2$ are generated from

$$\{x' \times y' : x' \in I, y' \in A_2\}$$
 and $\{x'' \times y'' : x'' \in J, y'' \in A_2\}$

respectively, $(I \times_{\alpha} A_2)(J \times_{\alpha} A_2) = 0$, by the above relation.

On the other hand, $I \times_{\alpha} A_2$ and $J \times_{\alpha} A_2$ are closed two-sided ideals in C^* -algebra $A_1 \times_{\alpha} A_2$, so of course self-adjoint, then if $u \in I \times_{\alpha} A_2 \cap J \times_{\alpha} A_2$, $uu^* \in (I \times_{\alpha} A_2)(J \times_{\alpha} A_2) = 0$, that is $uu^* = 0$, u = 0. This completes the proof.

BIBLIOGRAPHY

- J. DIXMIER, Les fonctionnelles linéaires sur l'ensemble des opérateurs bornés d'un espace de Hilbert, Ann. of Math., 51(1950), pp. 387-408.
- 2. I. KAPLANSKY, Dual Rings, Ann. of Math., 49(1948), pp. 689-701.
- F. J. MURRAY-J. von NEUMANN, On rings of operators, Ann. of Math., 37 (1936), pp. 116-229.
- 4. R. SCHATTEN, A theory of cross-space, Princeton (1950).
- 5. I.E. SEGAL, Irreducible representations of operator algebras, Bull. Amer. Math. Soc., 53(1947), pp. 73-88.
- I. E. SEGAL, Two-sided ideals in operator algebras, Ann. of Math., 50(1949), pp. 856-865.
- 7. T. TURUMARU, On the direct-product of operator algebra I, Tôhoku Math. Journ., 4(1953), pp. 242-251.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY, SENDAI.