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In Pontrjagin’s theory of duality for compact abelian groups, the following
theorem is known:?®

Let G be a compact abelian group, G* the dual group. Then the topo-
logical dimension of G, in the sense of Lebesgue, is equal to- the rank of
discrete abelian group G*.

It was Prof. T. Tannaka who has called my attention to the lack of corres-
ponding theorem in non-commutative case.

I intend to give, in this note, a theorem of this kind in the following form:

THEOREM A. Let G be an arbitrary compact group, G the aggregate of
continuous finite dimensional representstions of G, C[ G"] the algebra over the
complex numbers C generated by the coefficients of representations in G\, i.e.,
the “representative ring” of G in the sense of C. Chevalley®. Then the topo-
logical dimension of G, in the sense of Lebesgue, is equal to the transcendental
degree of C[G"] over C.

Another form of corresponding theorem, which may be ture, is the follo-
wing : \'

THEOREM B. Let G be the space consisting of conjugate classes of a
compact group G, G* the characters of representations in G, C[G*] the algebra
over C generated by G*. Then the topological dimension of G is equal to the
transcendental degree of C[G*] over C. T

In spite of its natural formulation, I cannot prove this theorem at present
and merely justified it for connected compact Lie groups.
1. Notations. We shall use the following notations for an arbitrary
compact group G:
7n(G) : the topological dimension of G in the sense of Lebesgue; »
#(GMN)=<C[G"]: C> the transcendental degree of “representative ring”
C[G"] over the complex numder field C.
7(G) : the topological dimension of the space G consists of conjugate
classes of G. In case the group G is a connected compact Lie

1) L.PONTRJAGIN, Topological groups (1939), p.148 Example 49.
2) C.CHEVALLEY, Theory of Lie groups I (1946). p. 188.
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group, 7(G) is the rank of G in the sense of H. Hopf i.e., dimen-
sion of a maximal abelian subgroup in G by the well known “princi-
pal axis theorem”.

7(G*)=<C[G*]: C> : the transcendental degree of “characterring” C[G*]
over C.

2. Auxiliary theorems.
TuEOREM 12 2(G)=0  if and only if n(GM)=0.

Proor. Assume #(G)=0, then any D & G" maps G onto a 0-dimensional
Lie group, i.e, a finite group. By a suitable coordinate transformation every
coefficient di;(x) of D tecomes algebraic, therefore #(G")=0. On the other
hand, if # (G") = 0, then every coefficient dij (x) of D & G/ is algebraic ; in
particular its charzcter 2'idi: (x)is algebraic. Hence, by a theorem of Weil®,
D (G) is a finite group. Since G has sufficiently many representations, this means
that » (G) = 0. q.e.d.

THEOREM 2%, G is connected if and only if every element in C [GM] is
constant or transcendental.

ProOF. Assume G be not connected and put G, for the connected component
containing the identity 1. Then G/Gy is a 0-dimensional group and C[(G/Gy)"]
CC[G"]. By preceding theorem there exists a non-constant algebraic element in
C[(G/Gy)"] and a priori in C[G"].

Convesrely, if C[G"] contains a non-constant algebraic element f(x); then
f(x) is a finite valued continuous function on G. Therefore G cannot be
connected. q. e. d.

3. Proof of Theorem A. The proof is accomplished by a series of elementary
lemmas.

LEmMA 1, 2 (G) < n(GM).

PrOOF. Assume first G be a compact Lie group, then G has a faithful
representation D(x) & G". Since G has a neighborhood of the identity homeo-
morphic to the euclidean #z-space R" (#= n(G)), it follows that among the
coefficients dij(x) of C(x) there exist # topologically, hence algebraically inde-
pendent elements. Therefore #(G") > zn(G).

Next G be arbitrary, there exists, for any finite number #* << #(G), a sufficiently
small invariant subgroup Il such that G/l is a Lie group and # (G/N1) = #*®,

3) These theorems 1, 2 are founded independently by Y. KAWADA. His results are published
in Japanese periodical “Shijo-Sugaku-Danwakai”. WEIL’s theorem quoted in the proof is in
C.R. Paris 198, 1739-42; 199, 180-2(1934).

4) e.g.,, CHEVALLEY, l.c.® p.21l.

5) e.g.,, PONTRJAGIN, l.c.®> p.211 F). Separability assumption is not essential in this proof.
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Obviously #(G") = #((G/W)")=>n(G/W)=#»*. This means #(G") = n(G). q.e.d
LeMMA 2. If G is connected C[G"] has no zero-divisors.

PrOOF. Let f1, f: € C[ G"]be A(x) fa(x) = 0 everywhereon G. 'We must show
that at least one of fi,f; is zero everywhere. Since the problem concerns two
elements f1, f: € C[G"] it is sufficient to assume that G is a Lie group. Now
f1, f= are analytic functions on G, hence, by a property of analytic functions, at
least one of fi,f. is zero in a sufficiently small neighborhood of the identity.
Since G is connected this holds everywhere. q.e. d.

LemMA 3. For the proof of n(G)=n(G") it is sufficient to assume that Gis
connected.

PRrOOF. Let Go be the connected component containing 1. At first it holds
obviously #(G) = n(Gv). We show that #(Go) > n(G"). For this we put
#(G")=n and assume # is finite. Take % + 1 arbitrary elements fi,..., far1 & C[G"]
and a sufficiently small invariant subgroup I such that # = G/Ul is a Lie group
and fi,.., far, are functions on H. If H, is the component in H, Hy, = Goll/U
= Go/Gy N U and C[H]C C[G] hence n(H™) < n.

h
If H = siHyis a coset decomposition of H by Hoy, the set of elements

=1
in C[H"]} which vanish on s:H, constitutes an ideal ¥; in C[H"] such that
C[H"]/B:= C[Hv"] has no zero-divisors by Lemma 2 and its transcendental
degree #n(Hv") <7z Hence there exist 4 = [ H:Ho] polynomials P: such that
P, for))ER (G =1, 2, k).
Sinceigh1 Bi =0, z{:Il Pi (i, fan) = 0. This means that fi, -, f.s are alge-
braically dependent i.e., #(G") <#x. q.e.d.
LEMMA 4.  If G is connected n(G) = n(GM).

ProoF. Let #=<#(G") be a finite number, we want to show that #(G) = .

We take Do & G" such that, among the coefficients d:;(x) of Ds, theree xist
»n algebraically independent elements in C[G"]. Put U = {x|Do(x) = 1}. Then
H=G/U is a Lie group with Do as a faithful representation. Hence by Kampen’s
theorem® coefficients of D(x), D(x) generate the algebra C[G"]. Let M(H)"
be the associated algebraic group of H, then by definition the point (d:i(x),
du(x)) in complex 27-space C?, where » = deg D, is a generic point of M(H)
over a suitable field k2. Therefore M(H) is the set of specializations of the point
(dis(%), du(x)) over k and

complex dimension of M(H) = <C[H"]: C>=un.

6) e.g., CHEVALLEY, lLc.®, p.193-4.
7) For the definition and properties of associated algebraic group used in the following see
CHEVALLEY, lc® pp. 194-202,
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On the other band, if 2 = #(H) is the dimension of H, then M(H’) is homeomorphic
to H X R", therefore 22 >=2n, ie., h>=n.

More precisely, any A & Hy = M(H) (1 U(») (unitary restriction) is asso-
ciated with ¢ & H by

A = fla) fe dH"]
(duality theorem). C[H"]< C[G"] and A is a representation of C[H"]. We
shall show that A can be extended continuously on C[G"]; continuity means
that 4 — 1 implies convergency of extension A
AN - £ fECG.
Since H: has a neighborhood of the identity homeomorphic to R*, this continuous
one to one image in G™ = G has dimension %. Hence #(G) = A > »n.

Consider couples (F1,41) consisting of a sub-algebra F1 generated by a set of
representations {Di,Di, Dz, Dz ,+-. } in G* and continuous extensions 4, on Fi of
every A € H,.

(A,4) < (F,A)
means F1 C F, and each A: coincides on Fi with unique A,. Then all couples
(F1,A,) satisfy condition of Zorn’s lemma and there exists a maximal couple
(F.,A.). We must show F,_,= C[G"]. Otherwise there would exists D & G"
such that at least one coefficient of D or D does not belong to F.. Take one
of such coefficient d:;(x) = f and define
1) AL(f) =f(@1) if fis transcendental over F..
2) If fis algebraic over F,, take an irreducible equation satisfied by f
(since C[G"] is without zero-divisors by Lemma 2):
figm 4 frtgmy + - +g0=0 (g:E=F).
By assumption 4 — 1 implies A. (g:) —» g:(1), there exists a root of equation
XA (gn) + X" A (Gu) + - + A, (@) =0

such that A—1 implies @ — f(1). We define then
AL(f) = a.
Thus w2 cin ext2al A_to th? alg2b-a C_F., D, D] a3 an algabra-represantation
with continuity presarved.
Now consider a direct product
& = GL (#{D\)) X GL (#(D))) X -+ X GL (#x{D)) X GL (D))
on F
whare GL(»(D:)) = GL(»{D:),C) m?3113 compdlex g3azral lin=ar group of degree

7(D:) = dag D.. Ia this produzsalgah-a- rap-232151%0a3 of C. F.,,D. D | constitute

a generalizad a'gab-aic group M in th2 s2a32 that its elem?2nts are dxfin2d by an
infinity of alg25:aic 2111013, M = Mimolizs M* =M = Maad th2 sudsz t
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satisfying conjugate condition is precisely M N [U(»(Dy)) X ---]. In particular
above A!/ determines
M= A.(D) X A(Dy) X - X A" (D) x A’ (D)
which is an element in I such that on F,, its components are unitary. Now
decompose M into a unitary matrix M and a positive definite hermitian matrix
M,: M = M - M, continuously. It is easy to verify that M & again. Define
A_ on D by
M, = A (D) x Aw(Dl) X e X A(D) X Am(‘T))’
then A..is an algebra-representation of C[ F..,D,D ] preserving conjugate condition.
This would imply (C|F.,, D,D],A.)=(F., A.) contrary to the hypothesis. q.e.d.
REMARK. After completion of above proof of Theorem A, I found another
proof of Theorem A for separable compact groups by using a result of A. Weil®
which states that, if G is a compact separable group, U an invariant subgroup
such that G/UI is a Lie group, then #(G) = »(G/N). Since #{G/1) = n(G) for
sufficiently small subgroup U, #(G) = lim,,,#(G/I1).  On the other hand #(G")
= limy,,#2((G/W)") is obvious. First part of the proof of Lemma 4 gives a proof
of n(G/I) = n((G/M)N), therefore #n(G) = n(G").
4. Proof of Theorem B for connected compact Lie groups.

Every group considered in this section are assumed to be connected
compact Lie group.

LEMMA 5. If G is a finite sheeted covering group of G, then 7(G) = (G,
7(G*) = 7(G").

ProoF. 7(G) = #(G) is obvious by Hopf’s definition of rank. 7(G*)>7(G*)
is a consequence of G* D G*. Now let D(x) b2 an irreducible representation in
G* and x(x) be the character of D(x). Put G = E/N with IV as a finite cent-
ral subgroup of G. By Schur’s lemma,

D) =12)-1 &EN),
where A(2) is a root of unity such that 4(z)" =1 if »# denotes the order of N.
Hence the representation

D(x) X - X D(x)

n

maps N into 1, i.e., this is a representation of G = E/N. This means x"&G*,
therefore, every character x & G* is algebraic over G¥. Hence (GH =r(GH.
qed.

LEMMA 6. If G is a direct product of Gy and a central subgroup G: of G,
then 7(G)=r(G)+7(G:), r(GH)=r(G*)+r(G:*).

8) Bull. Amer. Math. Soc. 55(1949), pp. 272-3.
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Proor. Let T: be a maximal torus of G;, T:=Gs, then T'X T is a torus
in G; hence 7(G))+7(G2)=r(G). On the other hand if T is a maximal torus
in G, then, since G: is central, Ge:& T. As T/G:is a torus in G = G/Gz,
dimension of 7/G><7(G;). Thus dimension of T =7(G)=<7r(G,)+7(Gq).

Next, every irreducible representation of G is a Kronecker product of
irreducible representations of Gy and G:. Therefore every irreducible character
x of G is a product x==x;x, of characters of G, and G: i.e., 7(G*)=r(G:*)+
7(Gs*). Conversely, if x, -, %y and ¢, -, ¢v, are algebraically independent
characters of G* and Gs:* respectively, then x:¢i(Z=1, -, 0,j=1,---,v5) are
algebraically independent. For if

FQedny ooy 2y, oo, 2y dvy) = 0
is a polynomial in 772 arguments, it can be written in the form :
Z Fovmy (21, -, %) c,/;;”-.-gb:‘:“: 0

Ny Myg

where Fuay.mp. (%1, -+, %,) are polynomials in %y, -+, %,,. If we fix x EG1 then
Fryeoomyy (2,(26), -+, 2, (%)) is @ complex number = 0 by hypothesis on ¢’s. This
implies by hypothesis on x’s.  Fny:-n,,=0. Hence the equation F=0, and
7(G*) > 7(Gy*)+7(G=*). qed.

As is well known, every connected compact Lie group G has a finite sheeted
covering group G such that

5 = G1 X Gz

where G, is a simply connected semi-simple compact Lie group and G: a torus®).
Hence by Lemmas 5,6, it is sufficient to prove 7(G)=7(G*) for simply con-
nected semi-simple compact Lie groups. In the following let G be such a group.

LEMMA 7. 7(G)=7r(G*).

Proor. There exists one to one correspondence between representations of
G and those of its Lie algebra g. Every irreducible representation of g is deter-
mined by a highest weight 4, which can be written uniquely by Cartan basis
Ay, e, Ar, 7 = 7(G), as

A=mMh+ - +mdr (G integers > 0).

Conversely to every such weight A, there exists unique irreducibel representation
of g having 4 as highest weight'. Let D,, -, D- and x,,--,%, be the irredu-
cibl representations of g and characters of G respectively corresponding to the
weights A, -, 4r.

We show that C[G*] = C[x,---,x-]. Take an irreducible character x & G*
such that its weight is

9) e.g. PONTRJAGIN, 1c.1) p. 282 THEOREM 87.
10) For the theory of representations of semi-simplz Liz alg2bra 522 CARTAN: Bujl. Soc.
Math. de Franca 41(1913), p3, 53-93, WgyL: Math. Zzitsch.,, 2471925)p). 323-335.
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A=md + - + mrA (m integers > 0)
and that if 4’< A then the character x’ with highest weight A’ is contained in
C[* ---,%r]. Irreducible representation of G which has 4 as its highest weight
is contained in the Kronecker product

Dy X -« XDy X+ X DrX X Dr

nn mer
as the irreducible representation with highest weight (Cartan composite). Hence
x4 2! A A e = gy gg™a e gy

where x/,z'/, ... are characters with highest weight A4/, 4’/,---,<A. By hypothesis
on x, x/,x -« & Clx, -, %], hence x & C[%y,--, 2] and C[G*] & C[xy, -, %r]
by an inductive argument. q.e.d.

LemMA 8. 7(G) < r(G%).

ProoF. We show that the characters xi, ---,%xr corresponding to a Cartan
basis Ai,---, 4~ of highest weights are algebraically independent. Let F(xy,--,
%) = 0 be a polynomial. If §) is a maximal abelian subalgebra of the Lie
algebra g of G, then

2:(x) = exp Ai(h) + exp A'(h) + - 4! <A, etc. ,
where x = exp 2(AEY). Inserting into the polynomial F = Yan, .. nr ™ «sex,m7,
we see that highest term exists in the sum
Xan .. nr €xp Cﬂ;A;(h)"‘ ""*"nrAr(h)).
Now if A+ ---+2°4- is highest, then @ 0-n) = 0. By repeated application of

this argument we arrive at =0, i.e,, 7(G*) > 7 = 7(G). q.ed.
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