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INTRODUCTION

1, The customary axiomatic definition of the system of ordinary complex
numbers may be given as follows : (see Dickson, [1]?)

Let @, b, ¢, d be real numbers. Two couples (a,b) and (c,d) are called
equal if and only if ¢=c¢ and b=d. Addition and multiplication of two
couples are defined by the formulas :

(a,b) + (c,d) = (a+c,b+ d)
(a,b) (c,d) = (ac — bd, ad + bc).

Addition and multiplication are commutative and associative, and the
distributive law holds.

Subtraction is defined as the operation inverse to addition. It is always
possible and unique.

Division is defined as the operation inverse to multiplication. Division,
except by (0,0) is possible and unique :

(e, d) _ (ac+bd ad—bc \
(a, ® a2+ @b )
Now let (a,0) be a, and (0,1) be 2. Then
=001 0D =(-1,0 = -1
(a,b) = (a,0) + (0,5) = (a,0) + (5,0) (0,1) = a-+bi.

Thus the set of all real couples, with the above definitions, becomes the
field of all complex numbers. The theory of complex-valued analytic functions
of a complex variable has been extensively developed.

2. The question next arises as to what occurs if the above definitions are
applied to couples of complex numbers, and the corresponding function theory
investigated. This new system permits the same definition of the four funda-
mental operations, except that division will not be possible by the couple (a, )

1) This paper was written as a Ph.D. thesis at the University of Kansas under the
supervision of Prof. V. Wolontis and many of the problems and numerous changes have
been suggested by him. The author wishes to express his appreciation. The project
was originally proposed by Prof. G. B. Price, and a preliminary investigation was made
by him.

2) Numbers in brackets refer to the bibliography at the end of the paper,
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if a® + b =0, This occurs if b = Fa7, and the system is therefore not a field.
Furthermore, the product of the couples (@, @) and (a,—ai) is (@*—a? —a*+
a’t) = (0,0). Thus nil-factors or divisors of zero occur. However, the system
is a linear algebra.

Futagawa, [2] and [3], has published two articles on the theory of func-
tions of quadruples, which are equivalent to the couples of complex numbers.
Scorza [4] and Spampinato [5] each have presented results concerning a
system equivalent to these couples of complex numbers except for notation.
From the extensive literature concerning analytic functions on linear algebras
in general, mention is made here only of the papers by Scheffers [6] and
Ringleb [7] and several sections in a book by Hille [8]. Takasu [9] has
presented a theory of functions on an algebra which is a generalization of,
and includes as a special case, the algebra presently being discussed- An
article by Ward [10] includes an extensive bibliography which eliminates the
necessity of including a complete set of references here.

3. A simplified notation is obtained by introducing a new unit j = (0, 1).
Then
=0, O, =(-10=-1
The couple (a,b) = (a,0) + (0,8) = (a,0) + (5,0) (0,1) = a+bj will be termed
a bicomplex number. This number may also be written as a real linear
combination of the four units 1,7, j, Zj. A geometric interpretatien is afforded
" by the four-dimensional Euclidean space. ‘

4. By squaring the numbers %—(l—l—ij) and —;(l—z‘j) it is found that they
are idempotent elements. A result of Scheffers (seeDickson [1] p. 26-27)
then states th:it this system is reducible. In fact the numbers e = ; 1+,
ex = ier, s = 5 (1—ij), e, = ies form a basis if real coefficients are used, and
€103 = e16; = €63 = €6, = 0. Then if complex coefficients are permitted, ex and
es alone form the basis. The bicomplex number a+&j is uniquely represented
as (a—b)e+(a+bi)es.

Now consider the bicomplex variable z=x+jy, ¥ and ¥ complex- Then
z=(x—iy)a+(x+iy)es. For convenience let x—iy=z and x+iy=z:. Then
z=ze,+23¢3. A fundamental result of Ringleb [7] (which he proves for
reducible linear algebras in general) then states that an analytic function f(2)
(the analyticity of a function of a bicomplex variable will be defined in section
I.) can be decomposed uniquely into the sum of functions analytic in the
separate sub-algebras, i.e., f(2) = g(21)e1 + #(z3)es, where g(z1) 'i$8 an analytic
functon of 21 and #(z:) is an analytic function of z:;, and that conversely if
g(z)) is an analytic function fof 21 and A(zs) is an analytic function of zs,
then f(2) = g(z1)e + #(z3)es is an analytic function of z. Here f(2) takes
bicomplex values, while g(z1) and %(z:) take only complex values. A proof
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of this directly based on the definition of an analytic function and not using
differentials, as Ringleb’s proof does, will be given in section I. This provides
a powerful method for the study of analytic functions of a bicomplex variable.
This decomposition actually occurs in Futagawa’s work for the special case
where f(2) is sinz or cosz, but he makes no use of the decomposition.

5. Let z=zeitzes and w=wrer+wses. Since ees=0, ei?=e, and es*=es,
zw=zwurer+zswses. Thus zw=0 if and only if zun=0 and zws=0. Thus
the product of two non-zero numbers is zero if and only if one of them is a
complex multiple of e» and the other is a complex multiple of e;. Note also
that zex=2z16; and zes=z:ses. Thus it will suffice to say multiple instead of
complex multiple. The set of numbers which are multiples of e will be
termed the first nil-plane. Similarly the set of numbers which are multiples
of es will be termed the second nil-plane®. A non-zero number which is a
multiple of e1 will be termed a first nil-factor and a non-zero number which is
a multiple of e will be termed a second nil-factor. By these conventions, the
origin belongs to both nil-planes, but is not a nil-factor.

6. The elementary functions have been discussed by Futagawa. However
they may well be defined by the formula f(2) = f(z1)e1 + f(z3)es, where, in the
right member, f denotes the elementary function whose generalization to
bicomplex values is desired, since for z complex, 2=zei1+zes, and thus z1=2z3=2.
In fact, this formula provides a natural way of extending every complex-valued
function of a complex variable into the bicomplex space.

7. Two immediate generalizations to the bicomplex case of the concept of
absolute value of a complex number will be employed extensively. They are
the norm of z=x-+jy, denoted by ||zl|, and defined as ilz!I=V |22+ ¥ and
the absolute value of z, denoted by lz|, and defined as lz|=V [x*+¥*|. The
norm of z is readily seen to be the Euclidean distance norm, and thus satisfies
the properties required of a norm. The absolute value of z does not satisfy
the triangle inequality and is zero for the class of numbers by which division
is not permitted, i.e.,, when z is zero or a nil-factor. (This absolute value is
the first modulus in Futagawa’s polar representation of z.) It is frequently
convenient to express |z| and [|z|| in terms of |z1| and |z:3|. Thus

Izl =V 122 9% =VI(x—) (x+iy)l = V |zizs| = Vz1l-z3] .
Then |z| 540 and division by z is possible if and only if z1 and zs; are both

non-zero. In the representation of the bicomplex number system based on its
reducibility, division by z takes a particularly simple form, since

3) See Futagawa [2] for a geometric interpretation of the nil-planes,
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The identity
1 —_—
Mzl =;/7_w/ |22+ |23;®
is easily verified by expressing both members in terms of the four real com-
ponents of 2z, or somewhat more conveniently by employing polar coordinates
in the z1- and z:- planes.

1
Note that if z is in a nil-plane, say the first, then |zl =V3 |21}, so that

distance in a nil-plane, if measured by the absolute value of the complex
number zi1, differs from distance in the bicomplex space by a constant factor.

Note also that if z = ¥ + jy is a complex number, so that y =0 and z = x,
then both |z| and |lz]l are equal to |x].

I. ANALYTIC FUNCTIONS-DECOMPOSITION

8. Analyticity will now be defined and the decomposition theorem proved.
The definition and the first part of the proof bear considerable similarity to
the corresponding definition and the derivation of the Cauchy-Riemann equa-
tions in the theory of functions of a complex variable. It will also be
discovered that differentiation of an analytic function with respect to z will be
equivalent to differentiation of the separate components with respect to their
respective variables, z1 and zs.

9. Throughout this paper, the topological concepts employed for sets of
bicomplex numbers will be those of four-dimensional Euclidean space. For
example, a set of points S will be called open if for every 20 in S there exists
a K > 0 such that every z for which |lz—z || <K is also in S. An open
connected set will be called a region. The set of all bicomplex numbers with
this topology will be called the bicomplex space. If T is a region, and if each
z in T is written in the form z = zie1 + 2363, (where e = —.i—(l-%—ij), e3=——;—(1—z'j),
see Introduction, parts 4 and 5), then the set 7 of values of z1 is a region in
the zi-plane (in the topology of that plane) and the set 7'z of values of z: is a
region in the z;-plane. These regions Th and 7's will be termed the com-
ponent regions of 7. If the regions 71 and T's are given, the largest region
T whose component regions are 71 and 7’3 will be termed the product-region
of T1 and Ts.

It should be observed that for convenience the regions 7% and 7 have
been chosen in the complex z1- and z3-planes, which are not planes of “the
bicomplex space. If component-regions in the space itself are desii'ed,. the
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components zie1 and z:¢; of the number z, located in the first and second nil-
planes, respectively, should be considered.

10. Let zp = x + j¥o be a bicomplex number. The bicomplex variable
2z = x + jy will be said to approach zo, and 2, will be termed the limit of z if
llz—2o || approaches zero. It may be verified that z approaches 2o if and only
if x approaches xy and ¥ approaches yo.

DerFINITION. Let f(z2) be a bicomplex-valued function of the bicomplex
variable z=x+jy, defined in a region 7. Let 2 be a point in 7. Then f(2)
will be termed analytic at zy if and only if there exists a bicomplex number
f'(2) such that for any & > 0 there exists a d. > 0 such that

17952 - e || <
whenever ||z—z 1| < 0. and lz—z)| # 0.
DEFINITION. A function f(z) will be termed analytic in a region T if it is

analytic at each point of 7.

THEOREM. (Decomposition theorem of Ringleb). Let f(2) be analytic in a
region T, and let T and Ts be the component regions of T, in the z1- and z;-
planes, respectively. Then there exists a wunique pair of complex-valued
analytic functions, g(21) and h(zs), defined in Ty and Ts, respectively, such that

(7)) D) = g(z) e + h(zs)es
for all z in T. Conversely, if g(z1) is any complex-valued analytic function in
a region Tiand h(z3) any complex-valued analytic function in a region Ts,then
the bicomplex-valued function f(2) defined by the formula (A) is an analytic
functon of the bicomplex variable z in the product-region T of T\ and Ts.

Proor. Let f(2) = u(x,y) + ju(x,y). Let 20 = x + j¥ be an arbitrary
point in 7, and let 2z approach z in such a way that » is always equal to o,
ie., 2= x+jv. Then z—z0=x—2, hence the assumption that |z—z0/£0 is
satisfied for all x # xv, and

f@D—f) _ [ulx,y0)+jv(x,y0)] — [uCx,y0)+jv(%0,50) ]
2—20 X— Xo
u(x,90) — u(x0,0) . v(x,30) — v(x0,0)
T— o +J x—xl; E—

This tends to a limit if and only if each term tends separately to a limit. But
this means simply that the complex-valued functions # and » of the two
complex variables x and ¥ possess partial derivatives with respect to x, 0u/0x
and 0v/0x, at x=2x0, y=y0, and that

ou , .0v
(@) = (54745 .
0x 0x )x=xo,y=yo
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Similarly if z approaches zy so that z—zo=(y—30)j, i-e, z2=x+jy, it is
found that 0z/dy and 0v/0y exist at x=xo, ¥y =y and
ov .au\
f2) = (=75
09 0 pe o,y
Comparison of the two expressions for f/(z0) gives
0w ov . 0v_ Ou

ox T oy’ oz oy
for any point zy=x0+jy0 of 7. These are the generalized Cauchy-Riemann
equations. Now, using the representation mentioned in the introduction
w=f2)=u+jv=(u—iv)a+ (ut+iv)es
z=x+7jy=(x—)a+ (x+iy)es
and with the notation '
w = u—iv, ws = u+tiv,
21 = x—-1y, 23 = X+,
then w = wheit+wses and 2 = 21 e1-+23 es.
Then since the partial derivatives of # and » with respect to x and ¥ exist
in T, the partial derivatives of w1 and ws with respect to x and y exist in T and
3w1 u 6u 0w, 0u .0v

ox ‘ox’ oy oy oy’
6qu 0w .0v Qws O0um . .0v
x-o0x T ox oy oy Tloye

Using the generalized Cauchy-Riemann equations

Owr _ _ Oun,  Ows_ . 0ws
oy Yox° oy T 'ox

1
Also, since ¥ = —5~ (z1+23) and y = LZ— (21—23),

0x _0x_ 1 0y _ i 9y ¢

Pz 0z 2 0z 2 0z 2"

Since wr and ws are analytic functions of x and ¥, and x and ¥ are analytic
functions of z1 and zs, for any point z0=x0+jy0 of 7, urn and ws are analytic
functions of 21 and z3. Further

0w Oun 0x 0w, 0Oy 0un 1 .0un ] ow,

9z~ 0x 0z T Oy 0m  ox 2 ‘ox 2 < ox
6w1 8w1 0x ow, 0Oy 62,()1 1 Oun (_z_) -0

0zs ~ 0x 0zs ' 0y 0z  0x
Qws Ows 0x ws 6‘y 0ws 1 Ows 7

bz = ox 0 T Oy 0 — 9x 2 +”ax—'7= 0

Ows _ Ows 0x | Ows Oy _ Ows 1 , Bws ( aws
Pz = 0x 0z T Oy 0z - ox 2 oz ( )

Since these equations hold at all points of the region 7, it foIIows that un
is an analytic function of z1 alone and ws is an analytic function of z: alone,
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in the region 7. Then placing wi1(z1) = g(z1) for z1 in 71 and ws(z:) = A(z:)
for 23 in T3,

(@) = g(a)e + h(zs)es
and the representation is unique, since wn is uniquely determined as #—iv and
ws is uniquely determined as #-+1iv.

Conversely if g(z1) is an analytic function of z1 in a region 7: of the zi-
plane and %#(z3) is an analytic function of 23 in a region T: of the zs-plane,
then g(z1)er + h(z3)es is defined as a function of z=ze1+2z3¢3 in the product-
region of the bicomplex space having the components 732 and 73  Denoting
this function by f(2) then, if 20=2z"e1+2%¢; is a point of 7, and z a point of
T for which |z2—20|#£0,

fD)—fla) &a)—g@) h(zs) —h(z)
-2 a-z @ B
Since the right side approaches a limit as z1—2%, z1£2%, and 23—2%, 2:7#2%,
then the left side approaches a limit as z—20 and |z—z| 0, since |z—z| =0 if
and only if 21=2% or z;3=20s.

11. CoroLLARY 1. Let f(2) be analytic in a region T which intersects
the complex plane. Let S be a set of points in the intersection of T and the
complex plane and let S have a limit point in this intersection. Suppose that
for all z in S, f(2) assumes complex values. Then f(2) assumes complex values
for every z in the intersection of T and the complex plane and f(2) may be
defined for every value z in the components T, and Ts of T so that the
Ringleb decomposition formula becomes

(@) = flader + f(z3)es

for all z=ze,+z3e3 in T.

Proor. By the Ringleb decomposition theorem f(z)=g(z1)e+xA(23)es for
zin T. For z=x+jyin S, z is complex and y =0. Then 21 = x—iy = %,
z3=x+iy=2x, and 2=21=23=f, where { /s a new complex variable introduced
for convenience. For each z in S, f(2) is a complex number, and thus g(z1)
=f(2) and 2(2:)=f(2), or f({)=g()=h(). Now S has a limit point in the
complex plane. Thus g(¢) = A(#). Thus g£(2) = #(z:) whenever z1=2:. But
z2=2z3 for all z in the complex plane. Thus if z has a value ¢ in the intersec-
tion of 7 and the complex plane, f()=g(Ha+g(es=g(#) or f(2)=f(Da+
f(2)es, and f(2) assumes complex values there.

Now for every value of 21 in 71 for which f(z) is not already defined
(recall that the complex values for which f(2) is defined are those of 7°; compare
Section I, part 9), define f(21)=g(z1); and for every value of 23 in 7Ts for
which f(z:) is not already defined, define f(z:)=#A(zs). Then f(z) is an
analytic function of 21 in 71 and f(2s) is an analytic fuuction of 2z in 7.
Thus f(2)=f(a1)es+f(2s)es for z in 7. :
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COROLLARY 2.

Proor. By direct substitution of results obtained in the course of proving
the theorem »
G g Ou, 0v _ (Ou Ov~N | (0w .0v
dz = @O=5, %755 =\x Loz ,2 T\ oz Tiox /o
_Ow Ows _Ow = Ows _dg  dh
=Jx e+ ox &= '5261 +373€3 =z e +d2363.

REMARK. If f(2) is analytic in a region 7, then the decomposition formula
(@) =g(z)ei+nh(zs)es; will automatically define an analytic function, coinciding
with f(2) in T, at all points of the product region of 71 and 73, which in
general will include points not in 7. This trait of the bicomplex function
theory has no counterpart in the theory of functions of a complex variable.

12. The decomposability of a function is in itself a rather strong
requirement, as shown by the following.

REMARK. Let f(z) be any bicomplex-valued function of a complex
variable, i.e., a bicomplex-valued function defined if and only if z is in the
complex plane. Then if it be required that f(2) be extended into the bicom-
plex space in such a way that f(z) is decomposable as f(2)=g(z)e+h(z:)ee,
then the extension is already uniquely determined. This follows from the fact
that for z in the complex plane, z=z1=2z; and the definition of f(z) for these
values determines g(z1) and /%(z:) in their entire domains of definition, the
complex z;- and zs-planes, respectively. Thus f(z) is determined in the entire
bicomplex space. Of course if f(2) is analytic the continuation will be analytic.

COROLLARY. If f(2) and F(2) are two analytic function of the bicomplex
variable z which arve equal for all complex values of z, the functions are equal
Sfor all bicomplex valves of z.

The above remark and its corollary could be generalized in various ways.

II. POWER SERIES AND TAYLOR’S THEOREM

13. DEerINITION. Let Z a» be a series of bicomplex terms, and let si=

n=0

k
Z a.. The series will be said to converge if for & > 0 there exists an integer

n=0
N such that for all m, 72> N, ||Su—sall <é&.
Let an=0bner+cnes, where b. and c» are complex. It will be useful to show

that Z an converges if and only if 2 b. and Z ¢» converge in the ordinary

n=0 n=0 n=0
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sense. Therefore let Z an converge. Let si=pre,+qres. Since an="brer+cnes,

=0
k k k k k
Sk == z: an =(2 bn>ex+< E:Crn e;. Thus pr =Z b and qr= E: ¢cne NOW  Sm—Sn
n=0 n=0 n=0 n=0 n=0

=(pn—po)er+(ga—gudes and ||Su—5all =71§= pn— pu?+ lgn—gn|* < & for m,
3
n>N. Thus Ipu—pu|<Ev2 and |gn—gsl < EV2. Therefore 2 b. and
n=0

o
2, ¢» converge.

n=0

©

Conversely let Z bx and >, cn converge. Then for &> 0, there exists
n=0

n=0
N1 such that 1pa—pa| <& for m, > N1 and N: such that |gn—gs| <& for
m, n> N2 Then for N = max(Ni, N2), these inequalities both hold for

m,n>N. Thus |isn—s:|| <& for m,n> N and Z an converges.

n=0

© k
N . . S
DEFINITION.  Let 2, an be a series of bicomplex terms, and let S/c-‘:Z‘ an.

n=0 n=0
The series will be said to converge to the sum S if for &€ >0 there exists an
integer N such that for 2> N, ||st+—S |l <&

It is easily verified that a series is convergent if and only if the series

converges to a sum S, and that S=Pei+ Qes, where P=Z bn, Q=Z Cne
n=0 =0

Now Ietz an.2" denote a power series. It converges if and only if
n=0

00 o0

| . .
E: b21® and 2, cnzs™ converge, from the above analysis, since @«.2"= (bre1+cres)
n=0

n:=0
X (z181+ 2363)" = (crny™)er + (cnzs™) €.
DerFINITION. The set of all interior points of the set of points at which
a power series is convergent will be termed the 7egion of convergence of the
power series.

It follows from the Ringleb decomposition theorem that a convergent power
series represents an analytic function in its region of convergence.

0 0
14. SinceZ bnza™ and Z cn2s" are complex power series they will have
n=0 n=0
radii of convergence, which may be zero or infinite. Let the radius of

convergence of anzﬂ‘ be R: and the radius of convergence of ZC’H«%"' be R:s.

n=0 n=0

If R1=0 then the set of points of convergence of Z a.z" is restricted to the

n=0
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second nil-plane, and if R3=0 to the first nil-plane. In these two cases the
region of convergence as defined above will be empty. If R, Rs > 0 however,
then the set of points of convergence contains a hypersphere, ||z1| < £ for some
k> 0, centered at the origin, and the region of convergence is not empty. Let
or &= _KT_F%};) z = %e; +—1%3;- e = & et Eses

z = (Rei+ Rszes)é = Ri&rei+Rséses.

Then the series Z an2® = Z an(R\"er+ R3"es) £ converges for [£61]<1 and
n=0

n=0
|31 < 1. Thus a power series may be normalized to unit radii of convergence
of both component power series.

15. It seems desirable to be able to describe the region of convergence in
terms of z itself, particularly in terms of a norm such that the series converges
when the norm is less than some constant and diverges when the norm is

greater than this constant. Since ||z]| =—l;\/ lz12+ |23{? , it is seen that

V2

this norm fails to describe the region of convergence for the normalized power
series. For if |z1| <1 and Jzs| <1, then liz|l<1, and if |z = |zs| = 1, then
Izl =1 Butif |zsj=0 and 1<l|z|<y2, then (lz/|<1l  The problem is
solved by the following theorem, which is applicable when Ri= R:;=R, which
is the case when the power series has been normalized, and which is in
particular the case whenever the series represents a function which is complex
whenever z is complex, for then f(2)=f(z1)ei+f(2:)es and an=bn=c. for all z.
This refers, of course, to the generalization of any function studied in classical
complex variable theory.

THEOREM. Let

N@=V |lz|2*+v Tzl = |zt

©
Plansa NI A\ 20 o mavrue ond if' ; .97 ic a pnmov copies anhogo anwvshonsnt cawiac

. — I — -

R >0, then Z anz" converzes for N(2)<R and diverges for N(z2)>R.

n=0

1 - o
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Hence, if N(2) <R, both |21/ <R and 1z <R andz a2z converges, whereas

n=0
if N(2) > R, either |z1| or l|zs| will be greater than R, hence the series must
diverge.

Using the above representation of N(z), it is immediately verified that
N(2) is a norm and also that N(zw) = N@)N(w). Also the following
inequalities may be verified

HzlI=N(@=11zl1v2 and 1zl =N(2).
Each of the equations ||zl| =N(2) and |z| = N(2) is satisfied if and only if
|21] = lz;| (which is then also equal to |z|), hence in particular when 2z is
complex. The equation N(2) =1|z|/1/2 is satisfied if and only if z is a nil-
factor (i.e., 21=0 or z:=0), or if z=0.

16. The existence of a Taylor series is demonstrated by Futagawa [3],
without the use of the Ringleb decomposition. His conclusion is that the
Series is absolutely convergent in the hypersphere of radius one-fourth the
distance from the point of expansion (the center of the hypersphere) to the
boundary of the region T of analyticity of the function. Taylor series in
more general systems are discussed by several authors. With the use of the
decomposition theorem and the above norm, N(2), it is possible to show that
the region of convergence not only contains the hypersphere of radius equal to
the distance from the point of expansion to the boundary of the region 7" but
actually extends outside of this hypersphere in certain directions.

The actual process of expanding an analytic function as a power series
may be carried out without employing the decomposition directly, as is
evidenced by

TAYLOR’S THEOREM. Let f(2) be analylic in a four-dimensional region
T, and let o« be a point of T. Then f(2) may be expanded as a generalized
Taylor series about the point o :

@) = f(a)+~z—igff’(a)+ (E%!g)jf”(a)—'r---+(Z—T!Clyhf<""(a)+"',

wherever f(2) is defined and the series is convergent. If d is the greatest lower
bound of ||z—al| for z a boundary point of T, then the above series for f(z)
converges for N(2) <dy2. In particular this implies convergence in the
hypersphere ||z—al| < d.

ProOF. By the Ringleb decomposition theorem
f(2) = g(@z)er + h(zs)es

f(2) = g'(z)er + h'(23)es

and also

in 7. Then
f(2) = g™ (a)e + A (z3)es
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in T. Let a=oe+ases be a point in 7. Then, by Taylor’s theorem for the
complex case,

(z1~a1)

(A)  g@)=gla)+2 7% gl(a)+ -+ 20 g -

and n
(B)  hz)=h(as) +22=% k'(a3)+---+ﬁ’%)- P (ts) -4+

for |zi—ai) < R1 and |zs—as| < Rs, where the radii of convergence, K1 and R,
are not zero because of the openness of 7. There exists a point 51 in the z1-
plane such that |fi—an| = R and g(z) has a singularity for z1=§.  Then
f(2) is singular for z=fei+azes. Thus || (Bra+ases)—all=d or |I(fi—ar)el|
=d. But [|(fi—aeal =171*~2: Br—an| = ‘% Therefore 5—;;} dor Riz=
dV2. By similar reasoning, R:=dV'2.

Now consider the series

©  fla)+EE (et O iy

The series (C) has the component series (A) and (B), and thus (C) converges
for z=z1e1-+23¢3 if and only if (A) and (B) both converge. Then (A), (B), and
hence (C), certainly converge for N(2) < dy/2, and for those points of the
set N(2) < dy/2 which belong to T, the sum of the series (C) is g(z)e+
h(zs)es=f(2z). Moreover, since N(2)=1|z!|y/2, the inequality N(2) <dy2
holds in particular for ||zl| <d.

REMARKS, This conclusion does not mean that (C) diverges for N(z2)>
dy'2. This is the case, however, if Ri=Rs;=dy2, which shows that no
better general conclusion is possible. Convergence for |/zl|<d is not the
best possible conclusion, which brings out the fact that a power series with a
bounded region of convergence, hence representing a function which cannot be
analytic for all values of z, always converges for some points which are more
distant from the point of expansion than the nearest singularity, if distance is
measured in the sense of the Euclidean norm.

=]
17, DEFINITION, The series E a», where the a. are bicomplex numbers,

n=0

is termed absolutely convergent if Z lan|] is convergent.

n=0

It may be verified that a necessary and sufficient condition for absolute

00
. u .
convergence of the series z,an is the absolute convergence of the component

n=0

series, an and ZC!&, since
=0
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16| =V 182 F lcal 2= llan11V/2 and lea| =< Vibal? + lz|2=1llanl|V2, and
conversely

Han ! = 1bnl 2+ lcal 2= |Bal + lcal .
A power series is absolutely convergent in its region of convergence.

18. DEFINITION, Let Zdn be a series of bicomplex terms. The series

n=0

will be said to be quasi-absolutely convergent if Z |lan| converges.

n=()
If for some integer N all a. for #»>N are nil-factors, then the series Zan
n=0

will be quasi-absolutely convergent even though the series itself may diverge.
However, if for some N there exists £= 0 such that |l a.||= klau| for n> N,
then the quasi-absolute convergence will imply absolute convergence. This
condition will be shown to hold if the a- are in a plane through the origin
(for definition of a plane see Section IV, part 36) which does not have any
other point in common with a nil-plane. Of course if the plane intersects a
nil-plane in a line, then the @ may lie along the line and quasi-absolute
convergence will not imply convergence.

The proof will use the following:

LemMA. Let a,b,c,d be complex numbers and let cx+dy be different from
zero for all real (x,9) + (0,0). Then F(x,y)=(ax+by)/(cx+dy) is bounded for
all real (x,5) = (0,0).

Proor. If x=0, F=b/d. For 10, let y/x=4. Then F=(a+bi)/(c+dA),
where 4 is real. Consider 4 as a complex variablee Then F is a linear
fractional transformation which takes the real axis into a straight line or a
circle. Since ¢+ dA=+0 for real A, the real axis transforms into a circle.
Thus F is bounded for (x,y) = (0,0).

Now let the points a» lie in a plane through the origin which has no other
point in common with a nil-plane. Then each a. may be expressed in the
form ma + nB, where m and # are real, « and B are fixed bicomplex numbers
which are not zero or a nil-factor, and ma + #f is not zero or a nil-factor
except for m =n=0, Let a=aea+ases and B = Prey + Bses.  Then

lima + npl| = ‘—/—‘;{glm— VvV lmay + nBy 1% + \mas + nPs|?

and

Imae + nf) =V |may+ 0Pl - lmas+nps| .
Then

: 1
Uma+nBl  z=V |me+ b l*+ mots + nfs|?
lma + ”Bl VvV lmoy + np| - lmaiz + n,/5’31 °
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This will be bounded if and only if
|meoty + ] Imats + nf3s)

|mos + nf;) lmot + 7|
is bounded. Since ma-+#zB is never a nil-factor or zero except when m=n=0,
each term is bounded by the lemma for either m or # different from zero. Let
the bound be 2 If me= =0, then llma + #B1! = ma + nB|=0. Thus in
all cases |ima + nBl| = klma + »f| and quasi-absolute convergence implies
absolute convergence, which in turn implies convergence.

19. DEfFINITION. A series of the form Zanz" will be termed a Laurent

n==0
series.
w_‘ 00 o0
Under the previous notation, Zanz" = anzl":]e; + [ E cnza"]& will be
7="=00 “m==—co n="00

convergent if and only if anzl" and chzsn are convergent. If the series re-

presents the extension of a complex-valued function of a complex variable to
the bicomplex space, then b&. will equal ¢. for all #, and the series in
brackets will converge for 7 <lz,3| < R. Then the region of convergence of
the series may be represented by N(1/2) < 1/ and N(2) < R, since N(1/2) =
max [1/!z],1/lz! ] = 1/min[ |z, 23] ] < 1/7 if and only if min [ lzl,lz:] 1 > 7.
This, of course, bounds z away from the nil-planes.

III. SINGULARITIES AND ZEROS

20. DEFINITION, A point z will be called a singularity of a function
f(2) if z is a boundary point of a region T in which f(2) is analytic and if
there does not exist a region 7" including 7" and containing 20 and a function
g(2) analytic in 7/ and coinciding with f(2) in 7. The point 20 will be called
a removable singularity if the described T’ and g(z) do exist.

Note that a removable singularity is not a sirgularity.

The decomposition theorem of Ringleb leads at once to the result that f(2)
= g(z1)e -+ h(zs)es can have a singularity at z = 20 = 2% + 23%; if and only if
2(21) has a singularity at z1 = 2,° or %(z) has a singularity at z; = z°% But
then it follows that f(2) has a singularity at every point of the intersection of
the closure of the region of analyticity of f(2z) and one of the nii-planes with
respect to zo, ie., the set of points which are of the form z-+a for « in a nil-
plane.

Thus there are no isolated singularities.

Since a functon f(2) with a singularity at the origin can have no point of
analyticity in one of the nil-planes, f(2) will be said to be singular in that nil-
plane, even though all points of the nil-plane may not be boundary points of
the region 7" in which f(2) is analytic,
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21. DEFINITION, A hypersphere i1z—zll <<k, for some k>0, will be
referred to as a neighborhood P’ of the point z. B

DEFINITION, A neighborhood P’ of a point minus the nil-planes with
respect to the point will be called a deleted neighborhood P of the point. The
neighborhood P’ will be called the associated neighborhood of P.

DEFINITION, Let f(z) be analytic in a deleted neighborhood of z=z=2"a
+2z;";. Then f(2) will be said to have a pole of order at most n, where z is a
non-negative integer, in the nil-planes with respect to 2 if both g(z) has a
pole of order at most # at za=2z° and %(z;) has a pole of order at most » at
23=230, If both g(z1) and 4(2;) have a pole of order n at these points, then
f(2) will be said to have a pole of order .

Here a point of analyticity in the complex planes, and hence also in the
bicomplex space, has been referred to as a pole of order zero.

22, In the theory of functions of a complex variable, the inequalities
(D<M, If(2)!-1z2»<M, and |f(2)|<M/z|* holding in a neighborhood of the
origin were shown to imply that f(2) has at the origin a removable singularity,
a pole, and a zero, respectively.

These results motivate using the norm and the absolute value in assuming
similar inequalities in the bicomplex space to hold in a deleted neighborhood
of the origin and investigating the effect on the function. Because ||z!|= N(z2)=
llzll /2, the norm N(2) may be substituted in any of these inequalities for
l1zll and the conclusion will be unchanged. This of course includes sub-
stituting N[f(2)] for 1f(2)1].

23. The first step might be to assume that f(2) is analytic in a deleted
neighborhood P of the origin and that |1f(2)!| <M in P, then prove that g(z1)
and #(z;) have removable singularities at their respective origins, and that
therefore f(z) has a removable singularity at all points of the intersection of the
nil-planes with the associated neighborhood P. This can be done. However
it is included in the following perhaps unexpected more general theorem, since
for llzll <1, then lIf()II-llzlI*<|If(2) ]I < M,

THEOREM. Let f(2) be analytic in a deleted neighborhood P of the origin
and let
N -llzli"< M
in P for a positive integer n, where M is a positive constant. Then f(2) has
a removable singularity at all points of the intersection of the nil-planes with
the associated mneig hborhood P’.

This theorem may be proved directly, but will be proved as a corollary of
the next theorem
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24. Since the boundedress of 11f(2)Ii-/1z{|™ in a deleted neighborhood of
the origin is too strong a restriction on f(2) to permit singularities, the next
step might be to weaken this assumption by replacing one of the norms or
both by the absolute value, first checking the restriction on f(2) of the
boundedness of |f(z)| in a deleted neighborhood of the origin. Again this is
included in a more general

THEOREM. Let f(2) be analytic in a deleted neighborhood P of the origin

and let
f(Dl-hzll» <M

in P, where n is a positive integer and M is a positive constant. Then there are
two cases:

Case 1. |f(2)|=0 in P, but f(2) may be singular in a nil-plane.

Case 2. f(2) has a removable singularity at all points of the intersection
of the nil-planes with the associated neighborhood P’.

Proor. If I1f(2)|#%0 in P, then there exists a point z = ae1 + be; in P such

that @ £0, 50, 2(b) = ¢ # 0. Then for z; = b and 0 < |z1| <la|,

DIl 1" =V IgGITel |7V T+ 6] <M
or Mzzn M22n

8@ < G 6 = a6
for 0 <<|z1|<la|. Therefore g(z1) has a removable singularity at z = 0.
Similarly %#(z3) has a removable singularity at zz = 0. Therefore f(z) has a
removable singularity at all points of the intersection of the nil-planes with the
associated neighborhood P’.

Proof of the preceding theorem: Since [f(2)|-!l1zl|*<11A2)II-11ziI* <M,
either the conclusion is already proved or else |f(z)|=0 in P. But then f(2)
=g(21)e or f(2) = h(z3)es, say g(z1)es. Then for z; = 5£0,

lgCOl-11611" = v2 I f(DI-11blI"<My2
gz < My2 /11bl|™
Therefore g(z1) has a removable singularity at the origin and the conclusion is
proved in any case.

25. THEOREM. Let f(2) be analytic in a deleted neighborhood P of the

origin and let

or

N1 lzj» <M
in P, where n is a positive integer and M is a positive constant. Then f(2)
has a pole of order at most [n/2] in the nil-planes, where [n/2]= n/2 if n is
even and [n/2] = (n—1)/2 if n is odd. Further, if n is odd,
HfR) Izt

is also bounded in some neighborhood of the origin.
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PROOF.
NIzl = A/v2 )V Ig@) 2+ [Alz) 12V |21 z3 1" < M

[1gCz) 12+ | A(zs) 2] [2al™ |23 I < 2D2
for zin P. Let z = aex + be; be a point in P. Then a0 and b£0. Let z3=b
and 0< |z |< |a| /2, then z=2zie1+25¢; is in P. Then
[g) Pl lz11"= lg(a) 12 |2 [*<[ Ig (1) 12+ |A(D) 12] |2 |"<<2M?/ |B |

for 0 <l|z| <la|/2. Thus [g(2)]* has a pole of order at most # at z1 = 0.
Therefore g(z1) has a pole of order at most [#/2] at z21=0. Similarly %(z;) has
a pole of order at most [#/2] at 23 = 0. Thus f(2) has a pole of order at
most [#/2] in the nil-planes.

Further if # = 27+ 1, where 7 is an integer, then [#/2]=7 and Ig(2)!-
lzi|" <N and |A(z3)|-lz;|"<R in some neighborhood of their respective
origins, where IV and R are positive constants. Let |z1| <1 and lz3|<1. Then

@ 11 lz "= [If() ||+ 121> =(1/v2 3V 1g@)I*+ h(zs) F[V Iz - 123 | I

= A/V2)V 1g(z) Plaz [+ [h(z) P 2123 [
<AV2)Vg@) Pla P+ 1h(zs) Plasl < (1/V 2V N+ R
This last part of the proof also serves to show that the conclusion of the
theorem is the best possible.

or

26. THEOREM. Let f(2) be analytic in a deleted neighborhood P of the

origin and let
f(2)|-lzir<M

in P, where n is a positive integer and M is a pesitive constant. Then there
are two cases.

Case 1. 1f(2)| =0 in P, but f(2) may be singular in one nil-plane.

Case 2. f(2) has a pole of order at most n in the nil-planes in the
associated neig hborhood P'.

Proor., If If(2)|=0, then |f(2)|-lz|"=0<M.

If If(2)|s£0, then g(21) %0, and %#(23) 0. Then there exists z=aei+bes
in P such that ¢ #0, 50, and A(b)=c+O0. Let z:=b and 0< |z| <la| /2,
then z=z1e:+23¢3 is in P. Now

(|- lzi"=v/1g ()| - 1h(z3)| - |21 |™ |zs|* < M

for z in P, or
lg(z)|« lzi® < M?/Clel- 161 ™),

0 <l|a1l < lal /2. Thus g(21) has a pole of order at most # at z21=0, Similarly
h(z3) has a pole of order at most »# at zs=0. Therefore f(z) has a pole of
order at most # in the nil-planes.

REMARK. If f(2)=1/z", then |f(2)|-1z|*=1 for all z in the deleted neigh-
borhood of the origin. Thus the conclusion of the theorem 1is the bhest
possible,
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27. THEOREM., Let f(2) be analytic in a deleted neighborhood P of the
origin. Then f(2) has a pole of order n in the nil-planes if and only if
\f(2)z"| approaches a limit K+ 0 as z approaches the origin through points of P.

Proof. In P, 1f(2)z"|=v Ig(a)|-| 2™ | h(23)|- |zs|" . As 2z approaches
zero, 21 and 23 approach zero independently. Thus |f(2)z"| approaches a finite
non-zero limit if and only if Ig(21)|-1z1;® and |%#(z:)|-123|” approach finite non-
zero limits. This means g(z) has a pole of order # at 21=0 and %(z;) has a
pole of order # at z:=0, or f(2) has a pole of order # in the nil-planes.

27. DEfFINITION, Let f(2) be analytic in a neighborhood of the origin.
Then f(z) will be said to have a zero of order at least n, where n is a positive
integer, at the origin if and only if both g(z1) has a zero of order at least #
at 2=0 and %(z3) has a zero of order at least # at z;=0.

THEOREM. Let f(z) be analytic in a deleted neighborhood P of the origin
and let
HfDN<Mlzl"
in P, where n is a positive integer and M is a positive constant. Then f(2)
has a zero of order at least n af the origin.

Proor. Since for [lzll<1, If(DII=<MI zl|l*<M, f(2) has a removable
singularity in the nil-planes. @ As z approaches zero, f(z) approaches zero.
Therefore redefine f(0)=g(0)=#(0)=0, ard f(z) is then analytic in the
associated neighborhood P’. Let 2:=0 and z=2ze be in P. Then f(2)=g(z1)e,
and ||z1|=(1/y/2) |a1|. Therefore ||f(2)||=(1/y2)lg(za)| =< Ml|z!" = 2- M-
211" or 1g(a)|=<2-"D2M|zj*, Thus g(z) has a zero of order at least #
at 21=0, Similarly #(zs) has a zero of order at least » at 25=0. Thus f(2)
has a zero of order at least # at z=0.

The conclusion is best possible, for if f(2)=2", then ||f(2)!l=(1/V2)
VialP+ lzs ™ <Ml zli"= M[(/v2)V 2"+ z° * for M=(/2)*", since
|21]2+ 23122 [ |21 |2+ |23 ]

28, THEOREM. Let f(2) be analytic in a neighborhood P of the origin
and let
NHADN=Mlz
in P, where n is a positive integer and M is a positive constant. Then f(2)
=0 for z in P.

ProofF. Let zs=0 and ze be in P, then |z21=0 and thus ||f(2)!l =0.
Therefore #(0)=0 and g(2)=0 for zie1 in P. Similarly £(z:)=0 for ze; in P.
Thus f(2)=0 for z in P.

29. THEOREM. Let f(2) be analytic in a neighborhood P of the origin
and let
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FfDI=Mlz
in P, where n is a positive integer and M is a positive constant. Then there
are two cases :
Case 1. 1f(2)|=0
Case 2. f(2) has a zero of order at least n at the origin.
Proor, If |f(2)| =0, then |f(2)|=MIz".
If 1f(2)| %0, then g(21) #0 and 4(z:) #=0. Then for some z=ae+ces in
P,a+0,c+#0,g(@)=5b+0 and A(c) =d+#0. Since for zin P
() =V g2 1h(z)| =MV |1[™ |2z
lg (2| - 1h(z)| = M2 |z " Lz |™
Now let zz=c¢ and |z11<la|/2, then z=zie1+z¢; is in P and lg(2)|-1dI=
M|z lc* or lg(z2)|=<[M?|c|*/|d|]|z1|". Thus g(z1) has a zero of order at
least # at 22=0. Similarly %(z;) has a zero of order at least #» at zz=0. Then

the conclusion follows.
The conclusion is best possible, for if f(z)=2z", then

@D =V a™lz*=[V lal-lz| "=z~
30. THEOREM. Let f(2) be analytic in a neighborhood P of the origin
and let

or

, f(DI=Mlz"
in P, where n is a positive integer and M is a positive constant. Then |f(0)|
= 0 and the sum of the orders of the zeros of the component functions at their
respective origins is at least 2n.

PRrROOF. Suppose first that g(0) =5+0. Let 21=0 and z=2ze; be in P.
Then
(Dl =v glz)|- @I =M[(1/v2) V &>+ |22 ]

or 2
h(z)| = —Qi—lllr 257"

Thus %2(z3) has a zero of order at least 2z at z;=0,
Now suppose g(z1) has a zero of order m<2x  Then lim |g(z1)/2™| =b

zl—'ﬂ

>0. Now let z1=2; for z=z16;-+23¢; in P. Then Iirrul g (23)/z5m| = b >0, and
23—>

there exists a 0>0 such that for |z;] <0, |g(23)/z:m = b/2. Since
V 1g@h(z:)| = M[(A/V2)V Tzl+ 2P "= Mz ",

then \h(2s)| <M/ 1g(2)/z| 1} | zal 7 = @MP/D) 2o ™
for |zs}<d. Thus 4(z;) has a zero of order at least 2z—m at z21=0. In any
case the sum of the orders is at least 2.

The conclusion is best possible, for if f(2)=z1"e1+2z:*"™e;, then |f(2)| =
Vial ™z m=V[ [iz|lV2 ][ ||zl V2 "= [y/2 |lzII ]*f, since |z =
llzlly2 and |21 <|1z11y/2,
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31. ReEmARK. A function f(z) which has a zero at the origin has the
further interesting property that for z in the intersection of the first nil-
plane and the region of analyticity of f(z), the function f(2) has a value which
is a first nil-factor, and correspondingly for the second nil-plane. For if f(0)
=0, then g(0)=%(0)=0 and for z in the first nil-plane 2;=0, so that f(z)=
g (21)81.

Iv. INTEGRATION

32, Let C be a rectifiable curve connecting the two distinct points ¢ and
b of the bicomplex space. Let Ci be the set of values which z1 takes for ali
z on C, and let Cs; be the set of values which z; takes for z on C. Ci will be
called the projection of C on the zi-plane. If C is contained in a region 7,
then C: is contained in the component region 71 and C; in the component
region Ts.

A straight line in the bicomplex space is defined as the set of points
z=ka+(1—k)B, where % is real and « and f are two distinct points. Decom-
posing the defining formula into its components, one verifies that a straight
line projects into a straight line or a point. Therefore if C is a rectifiable
curve, C1 and C; are also rectifiable curves.

Let further z;, =0, 1, 2, -, » be »n+1 distinct points on the curve C,
where zy=a, z»=50 and z: is situated on C between z;_, and z;,, as C is traced
from a to b; finally, let f(2) be a function analytic at all points of C, including
its end points @ and b.

DEerFINITION. Consider the expression

Sn = Z fED(zi—zi1)

where &: is an arbitrary point on the section of C which connects z:-1 and z:
and denote by 4» the max |[zi—=zi-1!|. Let the number of points z: on C tend

i=1,n

to infinity in such a way that 4. tends to zero. Then lim S», (shown below
00

to exist and be the same for all sequences of subdivisions) will be called the

integral of f(2) along C from a to b and denoted by EC f(2)da.
Let §i=&er+Es%es; zi=2z17e+ 23%¢; 4L"‘=mlax lz1P =287 ; 45" = max |25t — 25t~ |;
by bt

Sn=Si1"e1+Ss"es. Then
Su= [Z g(s;)(zg—zi-lﬂ e+ [Z‘ h(fg)(zg—z";l)] es
i=1 - =1

and n a . . . 7 * . . .
S = 2, 2EDGE 2™, S =25 MEDE—2™.
z=1 i

i=1
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4n tends to zero if and only if 4" and 45" tend to zero. From the theory of
functions of a complex variable,

lim S = j g(z)dz; lim S = j h(z)dz.

n>% 1 01 n—>0 3 03
Since these limits exist, lim S» exists and

[f@az=[ [, gGoda]e+[ [, neddz] s

A number of elementary properties of the integral may be verified from
the definition. Among them that if C is divided at a point of C into two

curves C’' and C”, then jcf(z)dz = §c, H(2)dz + fc,, f(2)dz. Then the integral

over a closed rectifiable curve in a given direction may be defined by taking
two distinct points on C and combining the integrals over the separate parts of
C in the given direction. If the closed curve is traced in the opposite direction,
the value of the integral will of coursz be the negative of the previous.

33. CAucHY'S INTEGRAL THEOREM, Let C be a closed rectifiable curve in
a simply connected region T, and let f(2) be analytic in T. Then

Sc f(2)dz = 0.

Proor. Let Ci and Cs be the projections of C on the zi-and zs-planes,
respactively. Since 7 is simply connected the component regions 71 and T
are simply connectel. Now

§ Lf(z)dz = [S clg(zo dm] a + [S ¢ h(23)d23] ;.

The quantities in brackets are zero. (See Bieberbach [11], page 108, for an
argument showing that Cauchy’s theorem holds for rectifiable curves which, as
Ci and GC;, may intersect themszlves.)

34. DEerFINITION. Let C be a rectifiable curve in the bicomplex space
whose projections C, and C; in the z- and z;-planes, respectively, are simple
closed curves, and such that C, and C; are traced once as C is traced once.
A curve C in this class will be called a P-curve.

Since C, and C; are simple closed curves, a P-curve is a simple closed
curve.

DEFINITION.® Let C be a P-curve and let z=ze +2:¢; be a point such
that z; is in the interior of Ci and z; is in the interior of Cs. Define the
interior I of the P-curve C as the totality of all points z satisfying this condi-
tion,

3) This definition has been given by Prof. Price.



CONTRIBUTIONS TO THE THEORY ETC. 153

DerFINITION, Let C be a P-curve. As GCs is traced in the positive direc-
tion in the z;-plane, which is an ordinary complex plane, C will be traced in a
certain direction. Designate this direction as the principal divection on C.

DEeFINITION, Let Cbe a P-curve. As Cis traced in the principal direction,
C, will be traced in a certain direction in the z-plane. Ifthis direction is positive,
designate C as a P-plus curve. If it is negative, designate C as a P-minus curve.

35. The proof of the next theorem requires the following

LEMMA. ijz=2z6-2;€s.

Proog. ijz=ij(x+jy) = —iy+ixj=[ —iy—i(ix)]a+[ —iy+i(ix)]e;

=(x—y)e—(x+iy)es=z1e,— 2305

Then, of course, jf{2)=g(z2)ei—h(z)e;.

THEOREM. (Cauchy’s Integral Formula). Let C be a P-curve and let
f(2) be analytic in its interior I and continuous on the closure of I. Let z be
any point in the interior I of C. Then

Case 1. If C is a P-plus curve,

1 S flw)dw
c

) = e | L

2ni
where C is traced in the principal direction.
Case 2. If Cis a P-minus curve

fa = i [ fidw

2rj w—z

where C is traced in the principal direction.

ProoF. f(z)=g(a)e+h(zs)es in I. By Cauchy’s integral formula in the
complex case

1 g(w)dw, . 1 h(ws)dws
gla) = 55 gcJI w—z2 W) = 53 Scs ws—2zs °
Case 1.

1 SC flw)dw  _ [ Zii fc‘} g(zm)dwx]e +I: 1 _h(ws)dws ]es

2t JCy ws—2zs

2mt w—2z w—21
=g(a)a+h(z)e=1(2).

Case 2.

1 fw)dw 1 ( gCw)dw 1 h(ws)dws

2nj gc w—z [ 27j SCI w—2z :!61 + [27] SC‘E ws—23 ]es
-1 g (w)dun 1 ¢ Alws)dws
- [271-]' XCJ{ wi—21 ]e + [271] SC‘“ ws—23 ]e:’
_ _L _;I; g(m)dun 1 hCW3)le)3
7 Qm § T wi—z1 /[ L J [271'2 § 3 W3—zg_] és

= — ; g(z)e + Th(Zs)e:s: _T[g(21)el—h(23)e3 I= —%z]f(z) =f(2).

36. In order to apply Cauchy’s integral formula, a criterion is needed to
determine if the curve is a P-plus curve or a P-minus curve. The
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remainder of this section will be devoted to establishing such a criterion for
plane curves. A plane is defined as the set of points of the form z=ma
+ nB + (1—m)(L—n)r where m and % are real and «, B, and 7 are three
distinct points not on a line. For convenience the point z about which the
integration is performed will be translated to the origin. Then the question
asked becomes the following:

Let P be plane through the origin, and let C be a simple closed rectifiable
curve in P, For which planes P will the curve be a P-curve, and in which of
those will the curve be a P-plus curve and in which will ‘the curve be a P-
minus curve?

It appears at once that a simple closed rectifiable curve in the complex
plane is a P-plus curve, for there the result in case 1 holds. By analogy it
would be expected that the plane determined by the line 2z =% and the line
z=Fkj (% real) contains P-minus curves. This is correct, as can be verified by

the promised criterion.

37. For the proof of the validity of this criterion, a few elementary results
from the geometry of four-dimensional Euclidean space will be needed. They
are undoubtedly well-known. For the sake of completeness, these results will
be formulated and proved.

For the remainder of this section, advantage will be taken of the isomor-
phisms z¢,«—z: and z,e,——2, to estabish results in the nil-planes by actually
performing the computation for the z1- and zs-planes.

The first and second nil-planes will bz referrd to as conjugate to each
other.

LEMMA 1. Let P be plane throwugh the origin which intersecls one of the
nil-planes in a straight line. Then every point of P projects into the same
straight line in the conjugate nil-plane.

Proor. In the defining formula of a plane, let 7 be the origin and B a
point on the line of intersection, thus a nil-factor, say fiei.  Then a point in P
is of the form ma + nfiei. The projection in the z;-plane is of the form
moas.  The set of such points lie on a line through the origin of the z;-plane.

LEMMA 2, Let P be a plane through the origin which has no other point
in common with a nil-plane. Let C be a simple closed curve in P, Then the
projection of C in the conjugate nil-plane is also a simple closed curve.

ProoF. The projections Ci: and C; of the curve C in the first and second
nil-planes, respectively, are clearly closed. Suppose the second nil-plane is the
one with which P is assumed to have only the origin in common, and that Ci
is not simple. Then for two different points @ and # on C, ai=fi. Therefore
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as;#Ps. But then a—f is in P and is a second nil-factor. This is a contradic-
tion, and the lemma follows.

38. In the remainder of this section there wiil be a change of notation.
A bicomplex point z will sometimes bz represented as x+iy-+jz+iju, where
X, ¥, 2, # are real. It willalways be clear which interpretation is meant. This
will be useful in referring to the geometry of the four-dimensional space.

By separating the defining equation of a plane into its four components in
this notation, letting 7 be the origin, and eliminating » and # in the resulting
four equations, it is verified that a plane P through the origin may be represented
by two homogeneous independent real linear equations :

P { Ax+ By + Cz+ Du =0
‘Ll ax+by +cz+du=0.
The equation of a line may bz represented by three independent real linear
equations and a point by four such equations. The intersection of two planes
may be a line or a point.

LEmMMA 3. Let P be a plane through the origin, other than a nil-plane.

Let P be represented by the system of ejuations:

. { Ax+ By +Cz+ Du=0

“l ax+ by +cz+ du = 0.
Then P intersects the first nil-plane in a line if and only if
A+D B-C
a-+d b—c
P intersects the second nil-plane in a line if and only if
A-D B+ C
a—d b+ ¢

4L(P) = ’ =0,

Az(P) = = O.

ProOF., The equations of the first nil-plane may be taken as

A x—u=0, y+2z2=0.
The equations of the second nil-plane may be taken as
(@) x+u=0 y—2z=0.

The intersection of P and the first nil-plane is determined by solving the equa-
tions (A) with the equations 2. These equations can have solutions other
than (0,0,0,0) if and only if the determinant of the system vanishes. This
determinant is

and is easily reduced to the determinant 41(P). Similarly if the system
consisting of equations P and (B) are solved simultaneously, the resulting
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determinant of the system reduces to 4:(P).

LEMMA 4. Let P be a plane through the origin which does not intersect
a nil-plane except at the origin. Let C be a circle in P with center at 0. Then
the projection of C into the conjugate nil-plane in an ellipse. Here a circle is
considered an ellipse, but a straight line segment is not.

ProOF. Let P be represented by the pair of linear equations :

P {Ax+By-—i— Cz+Du =0
ax +by+ cz+du =0,
Then the circle will be the intersection of this plane with the hyper-sphere
x*+y*+2°+u’=7.  The projection of a point x+2y+jz+iju in the zi-plane is
2a=(x+u)+i(y—2z) and in the z;-plane the projection is z;=(x—u)+i(y+2).
Then if in the 2z1- and z;-planes, the usual rectangular cartesian coordinates
are denoted here by X1, Y1 and X, Y.
a) 2+u=2X, y—z="*,
(B) x—wu=X;, y+z=Y; .

The System of the four equations (A) and (P) may be solved for x,¥,2,# as
linear combinations of Xi,Y1 if and only if the determinant of the system is
non-zero. By comparing equations (A) with equations (B) of lemma 3, it is
seen that this determinant is 4:(P). Then if P does not intersect the second
nil-plane in a line, the linear combinations of X1 and Y1 may be substituted in
the equation of the hypersphere to obtain the equation of the projection of C in
the zi-plane. This eqution is quadratic. The curve is bounded. @By lemma 2
it is not degenerate. Therefore it is an ellipes.

Similarly if P does not intersect the first nil-plane in a line the projection
of C in the z;-plane is an ellipse.

and

39. THEOREM. Let a plane P through the origin be represented by the
system of equations:
fAx+By+Cz+Du=0
“lax +8 +cz+du=0,

Let
A+D B-C A—-D B+C

a+d b—c a—d b+c
Let C be a simple closed rectifiable curve in P containing the origin in itls
interior (in the topology of the plane P). C is a P-curve if and only if
NH(P)F#0 and 4;(P)F#0. Further Cis a P-plus curve if 4H(P) and 4.(P)
are of the same sign, and C is a P-minus curve if 4(P) and 4:(P) are of
different signs.

PrOOF, If P is a nil-plane, then one of the determinants is zero, and the
curve C is not a P-curve, Otherwise, by lemmas 2 and 3, C is a P-curve if
4H(P)#0 and 4:(P)#0. By lemmas1land 3, C is not a P-curve if either

4H(P) = » 4o(P)=
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4,(P) or 4:(P) is zero.

Now let 41(P) and 4:(P) be different from zero. Since C is a simple closed
curve in P containing the origin in its interior (in the topology of the plane P),
the curve C contains in its interior a circle ¢ in P with center at the origin.
The projections of C will contain in their respective interiors the respective
projections of ¢. The curve C will bz a P-plus curve if and only if C is a
P-plus curve. Thus without Ioss of generality it may be assumed that C is a
circle.

Because the projections Ci and C; of the circle C are ellipses by lemma 4,
it will be found sufficient to consider only two points on C which are distinct
and not at opposite ends of a diameter. From the relative positions of these
two points and their respzctive projections, it is possible to determine the
directions in which Ci and C; are traced when C is traced in its principal
direction. This will then determine if C is a P-plus or a P-minus curve,

Let a: (a1, b, a,d) and B : (as, bs, ¢z, d2) be two distinct points on the circle
C not at opposite ends of a diameter. Then

a=a+bi+cj+dij=[(a+d)+b—c)ila+] (@ —d)+bi+a)iles

B =ay+bat +ca3j +daij =[ (CZz—*-dz)-l-(bz—Cz)i la+[(az—d2)+ (b2t+c2)i les .

Since 4;(P) and 4:(P) are not zero, & and 8 cannot be nil-factors. = Therefore
let
(a1+d1)+~(61—cl)z'=7‘1e’:"1 ; (av—ad)+(b+d))i =75 ;
(az+d)+ (b2—c2)i =Ry ; (as—ds)+(ba+c2)i = Rse®s ;
then aw=ne't, as=re'¥;, [fi=R.e'd, B;=Rse¢;. Now the direction from a; to
Br on Ci, not passing through —ay or —f,, will be positive if
n<b,—3,<2r or 0<d—0,<m
and negative if
0<0,—d<m or n<d —0,<2m.
(Because of the symmetry of the projections and the assumption that ¢ and B
are distinct and not at opposite ends of a diameter, ¢ — 0, cannot bz an integral
multiple of #.) Thus the direction will possess the same sign as sin(¢:1—6,).
Now
- u=arg g =ar EZi?f%i‘“%f—if%i

a [(m+d)(a+d2)+(h—c) (b2 —C'“’)_]i[ (dl—f-d})(bz —c2)—(as+d:) (b —cx)l
T8 (a+d) F(bi—c)? .

Thus
sign [sin(gi — 01) ] =sign’ (@1-+4,)(b2—c2) — (@2 +dz)(bi—c1) ]=sign [
Similarly

ia+dy hh—al]
as ‘l‘dz bz

I

ol

(av—d ax—d,

sign | direction on = sign [sin(@3-03)] = sign Ut +a bt co

corresponding j
G
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Now by multiplication of determinants, using the fact that the points Satisfy
the equations of P

ABCD| |@ma10] | 0 0 A-D B+C
abcd |bbb01 | 0 0 a—d b+c
100-1"laa ez 01| a—diae—da 1 0
0 110 |dhdoa—10| | biter botes O 1

By reducing the determinants on the left to the second order and making the
obvious Laplace expansion by second order minors on the right

A+D B-C . a+ds hh—a _ A—-D B+C . a—d as—ds
at+d b—c (lz+‘d2 bz"‘Cz “la—d b+c¢ b]. + ¢ bz+'02
or '
a+d h—a am—di az—da
4(P)x as+ds ba—c =4(P)X bi+c batea|”
Thus

sign 4,(P)xsign| HrEHON] — sign 4,(P) x sign [ dregtion ],

Thus if 41(P) and 4,(P) have like signs, Cis a P-plus curve; and if 4,(P)
and 4.(P) have unlike signs, C is a P-minus curve.

V. ANALYTIC CONTINUATION

40. DEerFINITION. Let f(2) be analytic in a region 7. If there exists a
region 7" such that T7C T’ and a function g(2) such that g(2) is analytic in 7~
and f(2) = g(2) for z in T, then the function g(2) will be said to continue the
function f(2) analytically into the region T'.

If f(2) is a complex-valued function analytic in a region S of the complex
plane (considered as a subset of the bicomplex space), it has previously been
pointed out in the introduction, part 6, that the expression f(z1)e + f(23)es
defines a bicomplex-valued analytic function of a bicomplex variable in the
product region T of the component regions of S. Any analytic continuation of
this function will also be referred to as an analytic continuation of f(2).

It has also been pointed out previously that if f(z) is analytic in 7 and
the component-regions are 77 and T, then f(2) is automatically continued
analytically into the product region of 71 and T's by the formula f(2) = g(z1)er
+h(2s)es for z1 in 71 and z; in T.

The usual method of analyticl continuation by power series is applicable
to the bicomplex space (see Futagawa [3]), and theorems similar to those in
the complex case can be established.

41, The following question has been raised by Futagawa [3]:

Given a complex-valued function f(z) of a complex variable z, and a simple
closed curve I' in the complex plane. Suppose that f(z) is analytic in the
interior of I', but that singularities of f(2) are everywhere dense on I'. In other
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words, I' is a natural boundary of f(z). Is it ever possible to continue f(2) into
the bicomplex space along a continuous path which intersects the complex plane
outside of I'?

Futagawa appears to answer this question in the affirmative (Futagawa [3],
pages 80-120). However if f(z) is continued into the bicomplex space, then
f@=f(a)e+f(z35)es, and since for z complex, z1=2z;=2, the projections I"n and
I's of the curve in the z-and z;-planes, respectively, are curves congruent to I,
and are hence the natural boundaries of the component functions f(z) and
f(2z3), respectively. The projections of a continuous curve z in the bicomplex
space joining a point inside I" in the complex plane to a point outside I' in the
complex plane are continuous curves joining pairs of points Similarly situated
with respect to I'; and I's, hence crossing I and I's, respectively. Hence
analytic continuation along C is impossible and the above question is answered
in the negative.

VL. EXTENSION OF VARIOUS THEOREMS TO THE BICOMPLEX SPACE

42, Many theorems from the theory of analytic functions of a complex
variable can be extended with little or no change to the bicomplex space and
proved by the Ringleb decomposition. Some examples chosen rather arbitrarily
will be presented here. The maximum-minimum principle will be found to
hold for |If(2) 1, If(2)] and N[f(2)]. Schwarz’s lemma holds if the norm,
[Tz, is used. The condition for equality has a modification, however.

In theorems where the assumptions involve the behavior of an analytic
function on a set of points S having a limit point interior to the region 7' of
analyticity, such as Vitali’s theorem and the uniqueness theorem for power
series, the additional assumption must be made in the bicomplex case that the
set of points does not lie in the nil-planes with respect to a finite number of
points, and also some assumption such as that the closure of the set of points
is in 7. The purpose of this last assumption is to prevent S from consisting
of the sum of two sets A and B such that A is contained in the nil-planes
with respect to a finite number of points and yet has a limit point in 7, while
B is not contained in the nil-planes with respect to a finite number of points
but has all its limit points on the boundary of 7.

Periodic functions generalize immediately. If the pariod is not a nil-factor,
then the component functions are both periodic.

The property of conformal mapping in the complex plane can of course not
be expected to extend to the bicomplex case, as an example will confirm.

43. MAXIMUM-MINIMUM PRINCIPLE, Lef f(2) be analytic in a region T.
Then none of the expressions | f(2)|l, NIf(2)], or |f(2)| can assume a
maximum or @ non-zero minimum at a point zo0 interior to T,
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Proof. 1. Suppose |1f(2) 1| =(1/v/2)1 \g(z) >+ |h(zs) | assumes a max-
imum at an interior point z,=2z%+2:"¢; of 7. Then |g(z1) >+ |A(25%)|? assumes
a maximum at z:1=z° an interior point of the component region Ti. This
contradicts the maximum modulus principle in the complex theory. Thus
I1f(2) 1 cannot assume a maximum at an interior point of 7.

Suppose now that ||f(2) |l assumes a minimum at z=z,.. Then Ig(a)[*+
| A(25") 12, and therefore |g(z1)!, assumes a mimimum at z21=2° Thus Ig(2%)|
=0. Similarly 14(z;")] =0. Therefore |if(z)!| is zero at z=zo.

2. Let N[f(2)] have a maximum at z=z0=2ze+2;%; interior to 7". Recall
that N[f(2)]= max [ Ig(21) |, 14(z5)|]. Suppose, for instance, that g(z10)|=
12(259)|.  Then Ig(z1)| has a maximum at z=z°%  This cannot happen.
Therefore N[f(2)] cannot have a maximum at an interor point of 7. Now
suppose N[ f(z)] has a minimum other than zero at zo=z1%1+230%s in 7 and
lg(219)| > 1A(2:") |. Then again lg(z:1)| has a non-zero minimum, which cannot
happen. If |g(2,9)| = |2(250)| then either lg(21)| or 14#(zs:)| has a non-zero minimum,
which cannot happen. Thus N[f(2)] cannot have a non-zero minimum.

3. Suppose If(2)| has a maximum at z=zo=z%+2,%; interior to 7. Since
If(2)I =V 1g(z)i-1h(25)|, then |g(z)|-1#(2:")| has a maximum at z1=z0 This
cannot happen. Similarly !f(z)| cannot have a non-zero minimum.

44. SCHWARZ’'S LEMMA., Let f(2) be analytic in the hypersphere ||z |l <R.

Let [\f(2)1<<M for |zl <R, and let f(0)=0. Then
e )H<Mllz|¥

for ||z|| <R, where equality can hold if and only if f(2)= (M/R) Kz, where K
is a bicomplex constant such that |\ K|| = K| =

PrOOF. Since f(0)=0, g(0)=%(0)=0. Let || <Kky2 and 2z;=0. Then
llzl| <R, and |{f(2) || <M, by hypothesis. Therefore |g(z1)| <My/2 for |z1| <
Ry2., By Schwarz's lemma for the complex case

g(a) = Ig 2]

for |z1] <RV/2 and equality holds only if g(z1) = (M/R) Kz, where |Ki| =

Similarly
)| =212

for |zs) <RvZ and equality holds only if %(zs)=(M/R) Ksz; where |K; =1.
Then for |1zl <R,
. 2
A1 =)y B P W@ T =/VE) o e P2

M
R yZ

\/|21| +123\2—M|'Z||/R’
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and equality holds only if

M
R & K=
where K=Kiei+Kie; with |Ki| =1 and | K3 =1. This is the case if and only
if |KI||l=I|K|=L1

&) = ‘%“ Kizes + M Kszse5 =

45. DerFiNiTION, Let f.(2) be an infinite sequence of bicomplex-valued
functions, defined on a set S. The sequence will be termed wuniformly con-
vergent if for every €>0 there exists an integer N(&)>0 such that |fn(2)—
f(2) 1] <& for every m,n>N(E) and for every z in S.

If the fu.(2) are analytic for all # it is easily verified that a necessary and
sufficient condition for f.(2) to converge uniformly on S is that g«(z1) converge
uniformly on S: and %#.(z;) converge uniformly on S.

VITALI’S CONVERGENCE THEOREM. Let fu(2) be a sequence of functions, each
analytic in a region T. Let

W)l =M
for every n and for every z in T, and let f.(2) tend to a limit as n—>>° al a
set S of points that is not contained in the nil-planes with respect to a finile
number of points, and such that the closure of S is in T. Then fu(2) tends
uniformly to a limit on any closed sutset of T, the limit being therefore an
analytic function of z in T.

PrOOF. Since || fu(2) || =M, |g(21)| =M+/2 and 1h(zs)|=<My/2. The projec-
tions Si and S; of the set S are infinite point sets having a limit point in 7h
and T, respectively, since the closure of S is in 7, and S is not contained in
the nil-planes with respect to a finite number of points. Therefore Vitali’s
convergence theorem applies to the gn(z,) and #.(z;), which are uniformly
convergent in every closed subset of 73 and 7%, respectively. Thus the
sequence fx(2) is uniformly convergent in every closed subset of 7.

46. This section will be concluded by an example to show that even if an
analytic function f(z) is assumed to have a derivative different from zero or a
nil-factor at a point, the mapping performed by f(z) need not preserve angles
in the bicomplex space. The example will be based on the following :

LemMMmA,  The transformation w=az+b, where a is not equal to zero or a
nil-factor, takes every straight line into a straight line.

Proor. Let « and f be two distinct points on the line. Then ac-+b
af+b. On the line, z is of the form ka-+(1—k)B, where k is real. Then
azt+b=alka+(1—-Fk)B]+b=k(aa+b)+(1—-kE)(af+b), which is a straight line
through the distinct points aa-+5 and aB+8.

ExamMPLE, Consider the transformation w=2ei+e;)z. This function is
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analytic in the entire space. The derivative has the constant value 2e -te;,
which is not zero or a nil-factor. Now let the bicomplex variable zbe x+iy+jz+iju
where x,%,z, » are real. In the plane x=0, =0, consider the lines y=0 and
y=2z. These lines intersect at the origin at an angle of /4. By the lemma
the transformation takes these lines into lines again. But a point on the line
Y=z is a nil-factor and the transformation leaves the line fixed; while a point
on the line y=0 if on the form %j, where % is real. Then
ertedkj = — - kit ki
which determines the line x=0, #=90, 3y+2z=0 and this line does not make an

angle of n/4 with the line y=z.

VII. TAKASU'S ALGEBRA

47. Takasu [9] has considered the theory of functions of a generalized

bicomplex variable

z=x1+j%+7 (X3+721)
where j?=p+vj, j2=p'+v'j and u,v, p’,v’, are real constants and X, Xs, X3, Xs
are real variables. The fundamental operations are defined by requiring the
usual formal laws of operation to hold. The system of such numbers z is seen
to be an associative commutative linear algebra with the modulus 1+0j-+j'(0+
07), denoted by 1 (see Dickson [1], pages 4-7).

In view of Ringleb’s decomposition theorem one might ask: For what
values of u,V, p/,v/ is this system reducible? Scheffers has given the following
criterion: (See Dickson [1], page 27).

A linear associative algebra 4 with a modulus is reducible if and only if it
contains an element x =~ 0,1 such that #?=x and xz=2zx for every element z of
A. An equivalent condition is that there exist in 4 an element y % +1 such
that y*=1 and yz=2zy for every z in A.

Proof of equivalence: Assume that there exists x 0,1 such that x* = x,
Then (2x-1)2=4x?—-4x+1=4(x?—x)+1=1. Since x+#0, then 2x—1+—1; since
x51, then 2x—1=£1.

Conversely, assume that there exists ¥ such that y?=1, and ¥#+1. Then
[G+D/2] = (+2+1)/4 = (A+2y+1) /4 = (2y+2) /4 =(y+1)/2. Since y+£+1,
then (¥+1)/2+1; since ¥y —1, then (¥y+1)/2=£0.

Clearly ¥y commutes with every element z of A if and only if ¥ commutes
with z.

Further [(1-»)/2]? =(»*-2y+1)/4 =2—-2y)/4 =(1-»)/2. And [(1+¥)/2]
[1-»/2]=1A-y¥/2=0. Thus (14+py)/2 and (1-y)/2 are idempotent
divisors of zero (nil-factors).
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48. To simplify the ccmputation through which it will be determined for
what values of u, v, ¢/, v/ the system is reducible, the definitions of j* and j’*
will be transformed in the following way.

Since j*=vj+u, then (2j—v)*=42—dvj+1?=4dvj+4p—4Avj+vi=4u+r’ If
v244/1>0 then v/ v*+4y is real, and

(if;L_> -1
VrR+4p ’
If v®+4u<0 then v/ — (»*+44) is real, and
i _21;”__..> -1
vV — @ +4u)
If »®2+44=0 then
(2j—v)*=0.
Similarly from the equation defining j'?,
B el >2=1 if v dp’> 0
V4! ’
2]"—-‘/’
25’ —v/)2=0 if v/2+4u'=0,

These relations divide the algebra into nine cases, which may be reduced
to five by isomorphisms. If the relations are represented briefly as K?=1,
K*= -1, K*=0, and K?=1, K= —1, K'?=0, then the cases may be tabulated
as follows:

2
) = —1if v 44u/<0,

S 1/-1 0
1[Aﬂch
-1|D E F

|

The cases B and D are seen to be isomorphic simply by interchanging K
and K’. Case E is seen to be isomorphic to cases B and D, since (KK’)?*=1,
and the elements K and KK’ of case E can be made to correspond to the
elements K and K’ of case B. By interchanging K and K’ it is also seen that
cases C and G are isomorphic and that cases H and F are isomorphic. These
facts summarized in tabular form become:

M 110
EREEE L
1| IOV

o |m |V

Cases I, II, and IIl are reducible since they contain an element whose
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square is unity, and the system is commutative. Case II is, of course, that of
the ordinary bicomplex variable discussed in the previous sections of this paper.

Inc ase IV, let K= —1, and K?=0. The elements ei.=1,e;=K,e;=K', e,=KK’
form a basis with the multiplication table

6 62’63‘64

ez - el 34 - es
ea 84 O O
e.; —e.'i 0 0

Then if a,b,c,d are real,
(aey+ bes+ces+dey)? = (a>— b¥)er+2abes+2(ac— bd)es+2(ad+ be)es .
This is equal to one if and only if
a@—b =1
ab =0
ac—bd=0
ad+bc=0.
This system of equations has only two solutions, a¢=+I, b=c=d=0. Thus
the algebra in case IV is irreducible.
In case V, K2=0 and K'?=0, The elements e,=1, e:=K, e;=K’, e,=KK’ form
a basis with the multiplication table

é (2] [Z] €4
e | 0 | e 0
e | e 0
e« | 000

Then if a, b, ¢, d are real
(aer+bes+ces+des): = a’e, +2abes+2aces+2(ad+be)es .
This is equal to one if and only if
a*=1
ab=0
ac =0
\ad+bc=0.
This system of equations has only two solutions, ¢=+1, b=c=d=0. Thus
the algebra in case V is irreducible.

49, Many questions about the function theory in the separate cases can be
raised. Case I decomposes into four separate subalgebras, which are each
isomorphic to the algebra of real numbers. Then to what extent will the
theory of functions in case I resemble that of a complex or ordinary bicomplex
variable ? ‘

Cases IV and V have nil-potent elements, for which all power series would
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terminate. Case IV contains the complex number system as a subalgebra,
Then is it possible, or again impossible (see section V), to continue a complex-
valued analytic fur.ction of a comlpex variable in this space beyond its natural
boundary in the complex plane?

[13
2]

(31

(43

5]

(6]

71
(8]
9]
f10]

[11]
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