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1. Introduction. The connection between the algebraic isomorphism of
Walgebras and the group isomorphism of their unitary groups was studied
by H. A Dye [1] under the restriction of the weak bicontinuity of the group
isomorphism. However as his restriction is strong in some part, it seems
that an analogous study under another restriction is necessary.

The purpose of this paper is to study the group isomorphism of unitary
groups in factors of all types under the assumption of the one-sided uniform
continuity. Since the uniform topology is free from a underlying Hilbert
space, it is meaningful that we extend our objects to AW*-algebras. Therfore
we shall always consider AW -algebras. Then our main assertion in this
paper is as follows: Any (one-sided) uniformly continuous group isomorphism
between the unitary groups of two AWH*-factors is implemented by a (linear
or conjugate linear) *-isomorphism of the factors themselves.

2. Group isomorphisms. Let M and IV be two AW+-algebras in the
sense of Kaplansky [cf.3], M. and N, their unitary groups. We shall prove
the following theorem.

THEOREM. Any (one-sided) uniformly continuous group isomorphism between
the unitary groups in two AW*factors is implemented by a (linear or conjugate
linear) x-isomorphism of the factors themselves.

The proof will follow from the following considerations and lemmas.
Let M be an AW+-algebra, M, the unitary group of all unitary elements
in M and M, the real vector space of all self-adjoint elements of M.
Then exp (@th) (— o <t < o, h € M) is a uniformly continuous one-
parameter subgroup in M, ; conversely, if U(t) (— oo < £ < o) is a uniformly
continuous one-parameter subgroup in M, then there exists an element %
(€ M;) such that U(t) = exp (ith) [cf.2]. Moreover if exp(ith,) = exp(iths) ( — oo
< t < ), then A = h,. Therfore there exists a one-to-one correspondence
between self-adjoint elements of M and uniformly continuous one-parameter
subgroups in M,, in which we have
lim ,'LQ‘M = k.
t=>0 iz
Next, let M and N be two AW=-algebras, M, and N, their unitary
groups, and M, and N, the real vector spaces of all self-adjoint elements
of M and IV respectively, and suppose that there exists a uniformly continuous
group isomorphism p of M, onto N,. Then by an analogous method as in
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the case of a compact linear group [cf. 4, p.177, Satz 1], we can easily
show that there exists a fixed positive number K such that

| p(w) — p) | = K|uw—v| for u,v € M.

If % belongs to M, p(exp(ith)) is uniformly continuous and p(exp
(ith)) = exp (itW') (k' € N;). If we define fih) = &/, then f is a mapping of M,
into N;, and it is easily shown that the mapping f satisfies the following
relations: (1) (k) (< K|k, ) Aah. + Bhy) = af(h) + Bf(h,), where a and
B are real numbers, (3) f(u*hu) = p(u)f(h) p(w); where x is any unitary
element of M,, and 4) f(i[h., h.]) = {f(W), f(h))], where [k, h:] = hihs — haba.

Now we shall extend the mapping f to a mapping of M into N by f(l
+ ihy) = f(l) + if(ks), Where h, and B, are elements of M;.

It is easily shown that the extended mapping f satisfies the following
relations: (1Y If(a@) | = 2K\ a|, (2Y fQ\a: + pa:) = M(a) + uf (@), where A and
p are complex numbers, (3) fluraw) = p(u)*(u)p(n), where » is any unitary
element of M, (4) filla, a:]) = [fla1), fla:)], and (5) f(u*) = f(w)*.

We shall find the properties of the mapping / and characterise the group
isomorphism p. Henceforward we shall assume that the AW+-algebras M
and N are factors, that is, their centers are the scalar multiples of the
identity 7; however, certains of the following discussions are extended to
general AWx-algebras under suitable restrictions.

We shall, at first, show that if ¢ is a projection of M, then either f(e)
is a projection of N, or —f(e)is a projection of N (Lemma 5). It is shown
that f or —f preserves the power structure of normal elements (Lemma 7),
and finally we shall give the proof of the theorem.

Let e be a projection of M, then exp (ite) and p(exp(ite)) are uniformly
continuous representations of the one-dimensional torus group, since
exp (ite) = (I — e) + exp (i) e. Therefore by the complete reducibility of
representation we have

oo

plexp(ite)) = >, exp (itn)p),

N=—co
oo

where p, are mutually orthogonal projections of N, 2 P, =1 and

) N=—co

fle) = 2 np,. It is clear that p, =0 if [n] is large. We shall denote p,

N=—oco

as f(e), in notation.

LEMMA 1. If fle)» =0, fle)s =0 for all n (|n —p| =2).

Proor. Now suppose that f(e), = 0 for some % (|7 — p| = 2). Then, by the
comparability of projections in AW#+-factors, one of three relations fle), =
fle)» holds. Suppose that f(e), = f(e)», then there exists a projection & ~ f(e)y.
Let v be a partially isometric operator of NN which gives the equivalence
e ~ fle),, that is, v*v =€ and wv* = fle),, and define an operator x by
u=v+ v+ (I —e —fle)y). At first, we say that » is a unitary operator of
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N. In fact, since ¢ and f(e), are mutually orthogonal, v** = 9% = px(I — & —
fle)s) = v(I—€ — fle)y) = (I —€ — flepyw = (I — & — fle),)v* =0. Hence we
shall have w*u = uu* =0 +vv*+ I —¢€ —fle)y) = € + fle)p + (I — & — fle)y)

= I, so that # is a unitary operator of N. Next, we shall show that f{e)
and #*f(e)u are mutually commutative. In fact, we have

o

u*(fle))u = u*( 2 mf(e)n ) u = u*®fe)p + ne + (nfle), — ne')

M=—oco

+ 2 mf(e)n)u = pe’ + nfe)y + n(fle)s — €') + 2 mf(e)m.

M=p, N m=Ep,n
Therefore we have
B fle) — wfleyu = f(e) — flp~Y(u)ep~'(u)) = fle — p~'(u)*ep~(u))
=@ — nfe) + (n— D).

Since f(e)y, €, (fle)n —¢€'), and fle), (m =p and n) are mutually orthogonal,
f(e) and u*(e)u are mutually commutative. Hence f([e, p~(u)*ep~2()]) = [f(e),
fp~Y(u)*ep~(u))] = 0 and so, by the isomorphism of 1, [e, p~X(u)*e p~*(u)] = 0.
Therefore e and p~X(x)*ep~'(x) are mutually commutative,

Put e — p~%(u)*ep~(u) = e, — e;, where e, and e; are mutually orthogonal
projections, then exp(it(e, —e)) =1 —e — e; + exp(it)el + exp( — it)e;, so that

exp( b= nl(el e..,)) =+ I and p(exp( = I(e1 ez))

=expz(lp lf(e1 ez)):l:I
On the other hand, by the above relation (5),

-1y ep-u)) = 2T ((p —
= oSl —e) = ,p lew — p~u)vep™(u)) = m (@ — @y

P .

IP l
—D )\ _
So ( b — lf(el e,)> =exp? (27: = If(e)p+27rlﬁ nle> =1

This contradicts to the preceding relation. The case that fle), <f(e), is
quite analogous, and the lemma is proved.
Since f(I), are central projections, f(I) =f(I); = I or f(I) = —f(I)-1.

+ (n—p)) = 2z P

LeMMA 2. f(e) is positive or negative for any projection e (£ 0) of M.

Proor. Suppose that f(e), =0 for some positive integer m, then |m — »|
=2 for all negative integers », so that, by the lemma 1, f(e), = 0 for all
negative integers » and we have f(e) > 0.

Next suppose that f(e),  + 0 for some negative integer m’/, then |m' — n'|
=2 for all positive integers #/, so that, by the same reason, we have
fle)w = 0. Since f(e) + 0, there exists an integer »//(|m”| = 1) such that f(e)
+ 0. Hence we complete the proof of the lemma.

LEMMA 3. If e (£ 0) is a projection of M and there exist mutually ortho-
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gonal projections (e:|i =1,2,3,..,[K] + 1) each of which is equivalent to e and
e, =e, then fle) =f(e) or —f(e)-1, where K is lhe positive number in (1) and
[K] denotes the integral part of K.

ProoF. Let v; be a partially isometric operator which gives the equiva-
lence e~e;, and put u; = v; + v¥ + (I — e — e;).. Then, analogously as in the
lemma 1, we can easily show that #; is a unitary operator, and wufew; = e;
and #feu; = e. Therefore we have

fle)n = futen)n = p(u:)f(e)np(uts).

Suppose that f(e), = 0. Then >, f(e). = I and f(e) >0 or f(e) < 0 (Lemma

m=0

2). If f(e) >0, then fle)) >0 and fle) = > mfies)n = I. Hence
m1
[K]+1 . K!'+1

(3 > «) = > fie) = (1 + D1,

so that we have

[K1+1

‘f(Z e)’ (K1+1) I/ =[K]+1>K.

(Kj+1

Since (e;) are mutually orthogonal, we get} 2 | e¢; = 1. Therefore we
i=1 "

have

[Kij+1

ﬂf( > ez)\\ Z (Kl +1)|

(K]+1

zep

This contradicts the relation (1), and f{e) > 0 is impossible. Analogously, we
can find that f(e) < 0 is impossible. Hence it must be f(e), = 0. Therefore
by the lemma 1, we have f(e) =f(e); or —f(e)-;. This completes the proof
of the lemma.

LEMMA 4. Let e be a projection of M and e~I — e, then fle) = fle), i fI)
=1, and fle) = —fle)-1 if (1) = —1I.

PRrROOF. Let » be a partially isometric operator which gives the equiva-
lence e~I — e, that is, v*v = e and vv* = I — e. Putting » = v + v* and by
the analogous discussion as in the lemma 1, we can easily show that # is
a unitary operator, and u*ex = I — e and #*(I — e)u = e. On the other hand,
it A =1,

A =1=fle)+fI—e)=fle) + flureu)
=fle) + p(u)f(e)p(w).
By the lemma 2, f(e) is positive or negative. If f(e) is negative, then f(I — e)
is also negative, and ‘this is impossible by the above equality. Hence f(e) > 0.
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Moreover if f(€)u =0 (my > 1), then |AI)| = |fle)| = m,. This is also impos-
sible. Therefore f(e) = fle)i. The case f(I) = —I is analogous. This completes
the proof.

LEMMA 5. fle) = fle), for any projection e of M, if f(I) =1, and f(e) = —
fle)-, if AI) = —L1.

Proor. We shall prove the lemma only for the case f(I) = I, since our
discussion is analogous in the case f(I) = —1I.

Cast (1). Suppose that M is of type I, (n < o) and ¢, is a minimal pro-
jection of M. Then there exist mutually orthogonal projections (e;[Z =1, 2,3,

n

...,n), each of which is equivalent to ¢, and 2 e; = I. Since the equi-
i=1

valence relation is equivalent to the unitary equivalence in the AW*-algebras
of a finite class. we see that if fle,) <0, then fle)<0 (=12, ....,m), and

f(z ei) = Ef(ez) < 0. This contradicts to f(Z et) = 1. Hence f(g;) > 0.

=1 i=1 i=1
Next let e be a projection of M, then there exist mutually orthogonal

s
projections (9:]7 = 1,2,3, .. ..,s) such that pi~e, (i = 1,2, ....,s) and 2 p; = e.

i=1

Therefore f(p) >0, so that fle) = X f(p:) > 0.

i=1
Moreover,

fD=I=fle+T—e)=fe)+fI—e)
= D mf(ehn + 2 0T — ).

m0 na0
Therefore from the above equality, f(e)., = 0 (s = 2). Hence f(e) = f(e)..
CASE (2). Suppose that M is of type II..
Let e be a projection satisfying the assumption of the lemma 3, then f(e)

=fle) or — fle)-1. Let (&]|i=1,2,....,7) be a maximal family of mutually
r

orthogonal projections which are equivalent to e, then e > I — 2 ¢;. There-
i=1
-

fore, there exists a projection ¢ such that ¢’ < ¢ and e'~7 — 2 ¢;. Since ¢
. i=1

satisfies the assumption of the lemma 3 and by the same reason as mentioned

above,

fe) =fe) o —f(e)-s andf (1~ Ee) =7(1- é:et)l or —/(z~ z‘e)

§=1

Now suppose that f(e) < 0, then f(e;) < 0, so that f (2&) = zf(et) <0.

i=0 i=1
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r

AD=1I =f<éei + 71— geJ =f(§ e;) +f<1— 2&)

i=1 i=1

= %mf(éei>m +J'<I— g&)-

Since f < 2 e,z)m (resp. VA (I — 2 et),. ) are mutually orthogonal, and
i=1

i=1

f( Ze;)m and f (1 — 284),. (m,n=1,2, ....) are mutually commutative, from
i=1 N i=1

the above equality, we have f<1 — Ee,) =i:f(I - Eei)l and f(] — 2&)
i=1 i=1

i=1
* —f <1 - 2 e; )-:. This is a contradiction. Hence f(e) > 0 and so f(e) = f(eh.
i=1
Next let e be any projection of M, then it is easily shown that there

exists a family of orthogonal projections (/|2 = 1,2, ....,s) such that each ¢
S

satisfies the assumption of the lemma 3 and e = Eei. Then we have
i=1
s s
fle) =f<2 ef) = Ef(ez) > 0.

i=1 i=1
Finally, by the same method with the last part of the proof of the case (1),
we can show that f(e) = f(e)..

CAsE (3). Suppose that M is of type I., type II.. or type III. Let e be

a projection such that e < 7 — e, then I — e is an infinite projection. Therefore

there exist mutually orthogonal projections (¢|i=1,2,3,....,[K]+ 1) such
(K]+1
that e ~7I—e (1 =1,2,....,[K]+ 1) and 2 e¢; < I — e. Hence e satisfies the

i=1

assumption of the lemma 3, so that f(e) = f(e), or — f(e)-.. Now suppose
that f(e) = —f(e)-1. Then we shall choose mutually orthogonal, equivalent,
infinite projections (p:|7 =1,2,3) of M such that p, + p, + ps = I —e. Then
bi~I—p,p:~I—p,and p, + ps~1—p, — p.. Hence by the lemma 4,

S(B1 + D2) = f(pr + D2 = Sf(D1) + f(2) = (D) + (D2
By the above equality, f{p:); and f(p.), are mutually orthogonal. On the other
hand, e+ pr~I—e—p, and e+ p, ~ I — e — p,. Hence

fle+ 1) =fle + ph =fle) + /D) = —f(e)-1 + f(b):-
Therefore e =f(bh.
Analogously we have

fe)-r =f(Da).
Hence by the orthogonality of f(p:), and fip.), we have fle)., =0. This
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contradicts to our assumption. Therefore f(e) = f(eh.
Next let e be a projection such that e>>7—e, then f(I —e) =f(I — e),
so that fle) = I — (I — e), = f(e),.. Therefore for any projection e, f(e) = fle).
This completes the proof of the lemma.

LEMMA 6. All unitary elements of M, are expressible in the form exp
(zh)h € My).

Proor. At first let # be a unitary element such that |7 — x| < 1, then

. . (I — )" Lo

it is well known that there exists log u = — > ——— and # = exp i(—i
n=1

log #) and moreover we can easily show that — 7 logu € M;. Next let »

be a general unitary element and A be a self-adjoint maximal abelian
subalgebra of M which contains ». Then A is considered to be composed
of all continuous functions on a compact Haudorff space , we shall denote
the value of an element ¢ of A at a point A (€ Q) by a(\), and put
G={\ |[I—u\)|<1—8@>0and1— 8 >0). Then G is an open set of Q.
Moreover since () is a Stonean space, the closure G of G is open and closed.
Therefore the characteristic function e(A) of G is a projection e of A, and
moreover e —ue| <1 — .

Hence putting lh = — E%, we have ue = e + Z(Zh) and
®) (I—e)+ue=1+ ET = exp (ih)
n=1

Next we shall define a function 6(A) on Q — G as follows: z(\) = exp 7
) and 0 < 6(\) < 2.

Then since |1 —#(\)|=1—8>0 on Q — G, 6(\) is a continuous function
on QO — G, we shall extend 6(A) to a continuous function #,(A) on Q as

follows: 6;(A) = (1) on Q@ — G and 6,(\) =0 on G.
It is clear that

(exp (i 61)) \) = (exp (7 6))(\) = (exp (7 O)A) = #u(\) on Q-G
=1 on G.
Hence

(7) exp (16,) = e + u(l — €)
By (6) and (7), we have

(exp (¢ 6y)) (exp (ih)) = {e + u(I — e)} {({ — ) + ue}
= ue + uw(l — e) = u = exp ({6, + h)).

This completes the proof of the lemma 6.

LEMMA 7. If f(I)=1I (vesp. = — I), the mapping f (rvesp. — f) preserves
the power structure of mormal elements, that is, f(a*) = fla)* (@ normal).

Proor. We shall prove the lemma for the case f(I) = I.
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Let e, and e, be mutually orthogonal projections of \M, then by the
lemma 6,f(e)), f(es) and f(e)) + fle,) are projections, so that f(e;) and fles)
are mutually orthogonal. Let (e]2=1,2,....,m) be mutually orthogonal
projections and let (a:]Z=1,2, ....,m) be complex numbers, then (f(e:)|i =
1,2, ....,m) are mutually orthogonal projections of N. We have

((Zae)) = (Zewe) = B

i=1

= ( 2 ag’(ei)>" = (/(2 ozteL))" for any positive integer z.
i=1 =1

On the other hand, since M is an AW+-algebra, the above elements Sa.e;
are everywhere dense in all normal elements of M. Therefore for any
mp

normal element ¢ of M, there exists a sequence {2 ay, kei,k} such that
i=1
My

unif. lim Eai,k e = a, so that we have
i=1
n.

f(@*) = unif. hm f (2 A 1 k) ) = ynif. lim f S‘at %€ L) = fla)".

i=1 ke Ny

Hence f preserves the power structure of normal elements. This completes
the proof of the lemma.

Proor OF THE THEoREM. Suppose that f(I) = I, then by the lemma 7,
f preserves the power structure of normal elements. Hence for apv
element 2 € M,

plexp(ith)) = (exp(itf(h)) = E(Uf ) 2

n=()

zt)“f (h)"’

= 2 f( PR — fexp (it

Moreover, by the lemma 6, any unitary element # is expressed by the
form # = exp(¢k), so that
p(w) = flu) for any » € M,.
If % and v belong to My,
Pw)p(v) = flu)(v) = p(uv) = fluv).
Since any element of a C*algebra with the identity is expressed by a finite
linear combination of unitary elements, we obtain
f(ab) = fa)(b) for a,b € M,
fa*) = fla)* for a € M.
Moreover since p(Mu) = Nu belongs to AM), (M) = N. By the above conside-

ration, we can conclude that f is a linear *-isomorphism of M onto N and
the group isomorphism p is uniquely extended to the linear x-isomorphism f.
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With a slight modification of the above proof, we can show that if f(2)

= — I, p is uniquely extended to a conjugate linear x-isomorphism of M
onto N. This completes the proof of the theorem.
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