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1. Introduction. The connection between the algebraic isomorphism of
W^-algebras and the group isomorphism of their unitary groups was studied
by H. A. Dye [1] under the restriction of the weak bicontinuity of the group
isomorphism. However as his restriction is strong in some part, it seems
that an analogous study under another restriction is necessary.

The purpose of this paper is to study the group isomorphism of unitary
groups in factors of all types under the assumption of the one-sided uniform
continuity. Since the uniform topology is free from a underlying Hubert
space, it is meaningful that we extend our objects to APT*-algebras. Therfore
we shall always consider APT -algebras. Then our main assertion in this
paper is as follows : Any (one-sided) uniformly continuous group isomorphism
between the unitary groups of two AW*-factors is implemented by a (linear
or conjugate linear) ^-isomorphism of the factors themselves.

2. Group isomorphisms. Let M and N be two AW*-algebras in the
sense of Kaplansky [cf. 3], Mu and Nu their unitary groups. We shall prove
the following theorem.

THEOREM. Any {one-sided) uniformly continuous group isomorphism between
the unitary groups in two AW*-factors is implemented by a linear or conjugate
linear) ^-isomorphism of the factors themselves.

The proof will follow from the following considerations and lemmas.
Let M be an AW*-algebra, Mu the unitary group of all unitary elements

in M and Ms the real vector space of all self-adjoint elements of M.
Then exp {ith) ( — oo < £ < oo} h 6 Ms) is a uniformly continuous one-

parameter subgroup in Mu conversely, if U(t) { — oo < £ < oo) is a uniformly
continuous one-parameter subgroup in Mu, then there exists an element //
(€ Ms) such that U{t) = exp {ith) [cf. 2]. Moreover if exp{ithi) = exρ(#/z2) ( — oo
< t < oo), then hi = hΛ. Therfore there exists a one-to-one correspondence

between self-adjoint elements of M and uniformly continuous one-parameter
subgroups in Mw, in which we have

exp (*/,)-
ί->0 I t

Next, let M and N be two AίF*-algebras, Mu and Nu their unitary
groups, and Ms and Ns the real vector spaces of all self-adjoint elements
of M and N respectively, and suppose that there exists a uniformly continuous
group isomorphism p of Mu onto Nu. Then by an analogous method as in
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the case of a compact linear group [cf. 4, p. 177, Satz 1], we can easily
show that there exists a fixed positive number K such that

II p(u) — ρ(v) \\<LK\\u — v I) for u, v € Mu.

If h belongs to Ms, ρ{exp(ith)) is uniformly continuous and p(exp
ψKf) = exp {UK) {K € Ns). If we define f(h) = K, then / is a mapping of Ms

into Ns, and it is easily shown that the mapping / satisfies the following
relations: (1) \\f(h) \\^K\\h ||, (2) f(ahι + /%) = α/ζftO + β/(fe), where α: and
β are real numbers, (3) f(u*hu) = ρ(u)*f{k) p{u) where ^ is any unitary
element of Λf«, and (4) /(ί[Λι, AJ) = *[/(Aι), /(Aa)], where [hi, h2] = Ajfe — fefe.

Now we shall extend the mapping / to a mapping of M into N by f(hτ

+ ίfe) =/(Ai) + z/(fe), where ^L and fe are elements of Λf«.
It is easily shown that the extended mapping / satisfies the following

relations: (1/ \\f{a) \\ ^2K\\a ||, (2)r /(λ^ + μa^ = λ/^O + //(βa), where λ and
/A are complex numbers, (3)r f(u*au) = p(u)Y(u)ρ(u), where w is any unitary
element of Λf, (4y/([αι,αJ) = [R<h)t A<h)l and (5yΛ«*) =Λ«)*

We shall find the properties of the mapping / and characterise the group
isomorphism p. Henceforward we shall assume that the APF^-algebras M
and N are factors, that is, their centers are the scalar multiples of the
identity /; however, certains of the following discussions are extended to
general ATF*-algebras under suitable restrictions.

We shall, at first, show that if e is a projection of M, then either f{e)
is a projection of N, or — f(e) is a projection of N (Lemma 5). It is shown
that / or — / preserves the power structure of normal elements (Lemma 7),
and finally we shall give the proof of the theorem.

Let e be a projection of M, then exp {ite) and p{exp{Ue)) are uniformly
continuous representations of the one-dimensional torus group, since
exp {ite) = (/ — e) + exp (#) £. Therefore by the complete reducibility of
representation we have

where p'n are mutually orthogonal projections of N, 2 Pn — I
W=-co

/(β) = 2 *Φή I t : i s c l e a r t h a t ίή = 0 if 1721 is large. We shall denote p'n

as f(e)n in notation.

LEMMA 1. Iff{e)P Φ 0, /(e)n = 0 for all n (|» - ^ | > 2).

PROOF. NOW suppose that f{e)n Φ 0 for some n{\n—p\ > 2). Then, by the
comparability of projections in AW*-f actors, one of three relations f{e)n ^
/(β)p holds. Suppose that f(e)n >:f(e)P, then there exists a projection e' ~f(e)P.
Let v be a partially isometric operator of iV which gives the equivalence
e' ~ / ( ^ , that is, v*v = β' and zw* = /(β)?,, and define an operator u by

u — v -V υ* Λ- {I — er — flβ)p). At first, we say that u is a unitary operator of
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N. In fact, since e' and f(e)P are mutually orthogonal, v** = ϋL = v*{I — e? —
Λe)P) = f<7 - e' - /(e)*) = (/ - e! - /(e)p> = (7 - e' - /[*)*)** = 0. Hence we
shall have u*u = uu% = #*# + tw* + (7 - e' - /(£)*) = ^ + /te)* + (7 - ef - /(*)„)

= 7, so that u is a unitary operator of N. Next, we shall show that f(e)
and u*f{e)u are mutually commutative. In fact, we have

I u = u*(pf(β)P + ne' +

)u = ̂  + n/fc)* + ̂ (/*(^)Λ ~ ef) +

Therefore we have

(5) f{e) -

Since /(β)D, £', (/"(̂ )Λ — e'), and /fe)m (m Φp and w) are mutually orthogonal,
/"(#) and u*f(e)u are mutually commutative. Hence/([β, p" 1 ^)*^" 1 ^)] ) = \f(e),
f{ρ~ι{uYeρ~ι{u))\ = 0 and so, by the isomorphism of/, [#,ρ~ι(u)*e p~ι(u)~\ = 0.
Therefore £ and p-ι(u)*ep~ι{u) are mutually commutative.

Put g — p~\u)*ep~ι(u) = £i — £•!, where ^ and ea are mutually orthogonal
projections, then exρ(#(£L — eΛ)) = I — eL — eΛ + exρ(it)eι + exp( — it)e>z, so that

7 a n d ^ ( e x p

On the other hand, by the above relation (5),

This contradicts to the preceding relation. The case that f(e)n -ζf(e)P is
quite analogous, and the lemma is proved.

Since /(7)n are central projections, /(I) =/(7)i = 7 or /(7) = —/(7)_i.

LEMMA 2. /(e) zs positive or negative for any projection e(Φθ) of M.

PROOF. Suppose that f(e)m Φ 0 for some positive integer rn, then \m — n\
> 2 for all negative integers n, so that, by the lemma 1, f(e)m = 0 for all

negative integers n and we have/(e) > 0.

Next suppose that f{e)m> Φ 0 for some negative integer rn', then | rή — nr\
^ 2 for all positive integers n\ so that, by the same reason, we have

f(e)n, = 0. Since/(β) Φ 0, there exists an integer m"{\m"\ > 1) such that f(e)m"
Φ 0. Hence we complete the proof of the lemma.

LEMMA 3. If e ( Φ 0) is a projection of M and there exist mutually ortho-
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gΰnal projections {βi \ i = 1, 2, 3, .., [K] -f 1) each of which is equivalent to e and
βι = e, then fie) =f(e)i or —f(e)-ι, where K is the positive number in (1) and
[K] denotes the integral part of K.

PROOF. Let vι be a partially isometric operator which gives the equiva-
lence e~eι, and put ut = vt-\- v* + (/— e — ̂ ). Then, analogously as in the
lemma 1, we can easily show that ut is a unitary operator, and ufeut = £*
and #fβίUi = £. Therefore we have

Suppose that /(β)0 = 0. Then 2 /(*)»» = ^ and /(β) > 0 or /(β) < 0 (Lemma

2). If /(β) > 0, then /(^) > 0 and f[et) - 2 ^/(^0^ ̂  /. Hence

[ΛΊ+1

so that we have

\f
[AΊ+l

Since (β£) are mutually orthogonal, we get

have

[A'l +

et = 1. Therefore we

This contradicts the relation (1), and f(e) > 0 is impossible. Analogously, we
can find that f{e) < 0 is impossible. Hence it must be f(e)0 Φ 0. Therefore
by the lemma 1, we have/(£) =/(e)i or —f(e)-ι. This completes the proof
of the lemma.

LEMMA 4. ££ί ^ be a projection of M and e~I — e, then fie) —f(e)u if f(I)
= /, and fie) = -Ae)^ if AD = - / .

PROOF. Let 2/bea partially isometric operator which gives the equiva-
lence e~I — £, that is, v¥v — e and zw* = / — e. Putting u = v + #* and by
the analogous discussion as in the lemma 1, we can easily show that u is
a unitary operator, and u*eu = / — e and u*(I — #)& = e. On the other hand,

By the lemma 2, /(β) is positive or negative. If /(#) is negative, then /(/ — e)
is also negative, and this is impossible by the above equality. Hence f(e) > 0.
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Moreover if f(e)m0 Φ O ( ^ > 1), then j|/(/)|| ^ \f(e)|| > m^. This is also impos-
sible. Therefore f(e) ~ f(e\. The case /(/) = —/ is analogous. This completes
the proof.

LEMMA 5. f(e) = f(e\ for any projection e of M, if AT) = /, and f(e) = —

PROOF. We shall prove the lemma only for the case /(/) = /, since our
discussion is analogous in the case /(/) = —/.

CASE (1). Suppose that M is of type In (n < oo) and e0 is a minimal pro-
jection of M. Then there exist mutually orthogonal projections (et\i = 1,2, 3,

n

, n), each of which is equivalent to e0 and 2 ^ ~ ^ Since the equi-
ϊ = l

valence relation is equivalent to the unitary equivalence in the AW*-algebras
of a finite class, we see that if f(e0) < 0, then ftet) < 0 (i == 1, 2, . . . . , n), and

n n n

f[ 2 d) = ΣΛft) < ° τ h i s contradicts to /( 2 * ) = 7 Hence y(̂ 0) > 0.
V {αl ^ i-1 M-Γ 7

Next let ^ be a projection of M, then there exist mutually orthogonal

projections (ft | ί = 1, 2,3, . . . ., s) such that ft—£0 (/ = 1, 2, . . . . , s) and 2 Pi = *•

Therefore /(ft) > 0, so that /(β) = 2/(A) > °

Moreover,

= 2 ™f(e)m + 2 nAl - e)n.
TO SO WSϋ

Therefore from the above equality, f(e)m = 0 (m > 2). Hence /(£) =/[e)ι.
CASE (2). Suppose that Λf is of type Ilτ.
Let ^ be a projection satisfying the assumption of the lemma 3, then f(e)

= /(e)i or —f(e)-ι. Let (βi\i = 1, 2, ,r) be a maximal family of mutually
»•

orthogonal projections which are equivalent to e, then £ >- / — 2 ^ There-
ί = l

r

fore, there exists a projection £' such that ef < e and β'—/ — 2 ^ Since βr

ί = l

satisfies the assumption of the lemma 3 and by the same reason as mentioned
above,

V V T

Ad)ι or -Ad)-ι aoάfίl- 2«v ) = / ( / - 2 « ) i o r -

Now suppose that/(e) < 0, then/fa) < 0, so t h a t / ( 2 ^ ) = 2/fa) < 0.
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= 2 «/(Σ e<)» + /(7 - Σ

Since / ( 2 * 0 T O ( r e s p ^i1" Σ β i ) n ) a r e m u t u a l l y orthogonal, and

A 2^^)» a n d / ( ^ ~~ 2^< ) « ( m ' w = 1>2^ ) a r e mutually commutative, from

the above equality, we have f[I— 2 β * ) =*=/(^ "~ Σ e ί j 1 a n d Λ ^ "" Σ β ί )

φ — / ( / — 2 eu-ι This is a contradiction. Hence /(β) > 0 and so/(e) =/(e)ι.
^ ί = l '

Next let ^ be any projection of Λf, then it is easily shown that there

exists a family of orthogonal projections (βι\i = 1,2, ,5) such that each e*
s

satisfies the assumption of the lemma 3 and e = 2 ^' Then we have

Finally, by the same method with the last part of the proof of the case (1),
we can show that/O) ~f(β\.

CASE (3). Suppose that M is of type /«,, type //«> or type ///. Let e be
a projection such that e < I — e, then / — e is an infinite projection. Therefore
there exist mutually orthogonal projections (βt \ i = 1, 2,3, , [ϋC] + 1) such

[K\+l

that £i ̂  / — e (i = 1,2, , [K\ + 1) and ^j? e>: <L I — e. Hence e satisfies the
ί = l

assumption of the lemma 3, so that f(e) =f(e\ or —f{e)-λ. Now suppose
that f(e) = —/(e)-!. Then we shall choose mutually orthogonal, equivalent,
infinite projections {pi \ i = 1,2, 3) of M such that p 1 + ̂ 2 + Pz = / — £• Then
pi~ I — pι,P>~ I — pi and PxΛ pi~ I — pi— p2. Hence by the lemma 4,

Λ£ + Λ) /ζft + #) /(£) +/fe) /(^) +/(&)
By the above equality, f(pι)ι and /(p2)ι are mutually orthogonal. On the other
hand, e + pi^I—e— px and e Λ pz~ I — e — pz. Hence

Therefore

Analogously we have

Hence by the orthogonality of f{px)x and f(pΛ)ι we have /(β)-i = 0. This
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contradicts to our assumption. Therefore/^) =f(e\.
Next let e be a projection such that e >- / — e, then /(/ — e) = /(/ — 0)1,

so that/(£) = I—f(I—e)ι = /(<0i Therefore for any projection e, f{e) =f(e\.
This completes the proof of the lemma.

LEMMA 6. All unitary elements of Mu are expressible in the form exp
(ih\h e Ms).

PROOF. At first let u be a unitary element such that ί; /— u] < 1, then

it is well known that there exists log u = — 2 a n <^ M = e χ P K~~*

log u) and moreover we can easily show that — i log^ G Ms. Next let u
be a general unitary element and A be a self-adjoint maximal abelian
subalgebra of Λf which contains u. Then A is considered to be composed
of all continuous functions on a compact Haudorff space Ω, we shall denote
the value of an element a of A at a point λ ( € Ω) by a(X), and put
G = {λ[ [/- u(X)\ < 1 - δ>(δ > 0 and 1 - δ > 0). Then G is an open set of Ω.
Moreover since Ω is a Stonean space, the closure G of G is open and closed.
Therefore the characteristic function e(X) of G is a projection β of A, and
moreover |] e — w£ [j <; 1 — δ.

Hence putting z'ft = — 2 » w e have ŵ  = £ +

(6) ( / - e) + ue = / + 2 ^ = e χ P (*)
W = l

Next we shall define a function 0(λ) on Ω — 75 as follows: «(λ) = exp ί
<9(λ) and 0 ^ Θ(X) < 2τt.

Then since |1 — «(λ)| > 1 — δ > 0 on Ω — G, (9(λ) is a continuous function

on Ω — G, we shall extend 0(λ) to a continuous function #i(λ) on Ω as

follows : 0i(λ) = Θ(X) on Ω - G and θι(X) = 0 on G.
It is clear that

(exp (/ (90) (λ) = (exp (* (90) (λ) = (exp (/ (9))(λ) = «(λ) on Ω - G
= 1 on G.

Hence

(7) exp(fft) = β + «(/-β)

By (6) and (7), we have

(exp (i θι)) (exp (iti)) = {e + u(I - e)} {(/ - e) + ŵ }
= 2*2 + «(1 — β) = u = exp (ί(ίi + h)).

This completes the proof of the lemma 6.

LEMMA 7. If /(/) = / ( r ^ . = — /), the mapping f (resp. — f) preserves
the power structure of normal elements, that is, f(an) = f(a)n {a normal).

PROOF. We shall prove the lemma for the case /(/) = /.
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Let βι and e* be mutually orthogonal projections of \M, then by the
lemma 6,f(eι), f{e«) and /(^i)+/fe) are projections, so that /(e,) and f(e2)
are mutually orthogonal. Let (β<|£=l,2, ,wί) be mutually orthogonal
projections and let (Λf |£ = 1,2, , w) be complex numbers, then (/"(#*) I * =
1,2, — , m) are mutually orthogonal projections of N. We have

ίίm \ n \ y w \ m

Λ (2 ***) ) = A 2 «"*) = 2 * w*
f o r a n y

On the other hand, since M is an AW*-algebra, the above elements

are everywhere dense in all normal elements of M. Therefore for any

2 ^ fe^^ I s u c n that

Tϊlfc

unif. lim 2 ^ Λ β«,fc = β» s 0 tha^ w e have

ί - 1

2 ^ί^.fcj j =unif. Km/^2
Hence / preserves the power structure of normal elements. This completes
the proof of the lemma.

PROOF OF THE THEOREM. Suppose that /(/) = /, then by the lemma 7,
/ preserves the power structure of normal elements. Hence for air**
element h £ Ms,

»(»p(,w») = 2

Moreover, by the lemma 6, any unitary element u is expressed by the
form u = exp(*70, so that

p(u) = /(«) for any u € M«.
If u and y belong to Mu,

μ(u)ρ(v) = f(uY(υ) = ρ(«ι;) = /(wz;).

Since any element of a C "-algebra with the identity is expressed by a finite
linear combination of unitary elements, we obtain

f(ab) = /(«/(&) for a,beM,

Moreover since p(Mtt) = Nu belongs to f(M), f{M) = N. By the above conside-
ration, we can conclude that / is a linear ^-isomorphism of M onto N and
the group isomorphism p is uniquely extended to the linear ^-isomorphism /.
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With a slight modification of the above proof, we can show that if f(T)
= — 7, p is uniquely extended to a conjugate linear ^-isomorphism of M

onto JV. This completes the proof of the theorem.
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