ON THE CESÅRO SUMMABILITY OF FOURIER SERIES (II)*)

Kôsi Kanno

(Received September 6, 1955)

1. Introduction. Let $\boldsymbol{\phi}(\boldsymbol{t})$ be an even integrable function with period 2π and let

$$
\begin{gather*}
\varphi(t) \sim \sum_{n=1}^{\infty} a_{n} \cos n t \tag{1.1}\\
\varphi_{\alpha}(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \varphi(u)(t-u)^{\alpha-1} d u \quad(\alpha>0) \tag{1.2}
\end{gather*}
$$

G. H. Hardy and J. E. Littlewood [2] have proved the following theorem :

Theorem A. If $\boldsymbol{\phi}(\boldsymbol{t})$ satisfies

$$
\begin{equation*}
\int_{0}^{t}|\varphi(u)| d u=o\left(t / \log \frac{1}{t}\right), \quad \text { as } t \rightarrow 0 \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{t}\left|d\left\{u^{\Delta} \varphi(u)\right\}\right|=O(t), \quad 0<t \leqq \eta, \Delta>1, \tag{1.4}
\end{equation*}
$$

then the Fourier series of $\varphi(t)$ converges to zero at $t=0$.
If we replace the condition (1.3) by

$$
\begin{equation*}
\int_{0}^{t}|\varphi(u)| d u=o\left(t / \log \frac{1}{t}\right) \tag{1.5}
\end{equation*}
$$

then the theorem does not hold [8].
Concerning the condition (1.5), S. Izumi and G. Sunouchi [4] have proved the following theorem:

Theorem B. If $\beta>0$ and

$$
\begin{equation*}
\varphi_{\beta}(t)=o\left(t^{\beta} / \log \frac{1}{t}\right) \tag{1.6}
\end{equation*}
$$

then the Fourier series of $\varphi(t)$ is summable (C, β) to zero at $t=0$.
Theorem 1 and 2 are concerning with the condition (1.6) and there are many theorems of analogous type. (See the papers of S. Izumi [3], G. Sunouchi [9], M. Kinukawa [6,7] and K. Kanno [8].) In this note we shall give some theorems relating closely with these theorems.

Theorem 1. If

$$
\begin{equation*}
\varphi_{\beta}(t)=o\left(t^{\beta} /\left(\log \frac{1}{t}\right)^{\frac{-1}{\gamma}}\right) \quad(\beta, \gamma>0), \quad \text { as } t \rightarrow 0, \tag{1.7}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\int_{0}^{t}\left|d\left\{\frac{t}{\left(\log \frac{1}{t}\right)^{\Delta}} \boldsymbol{\Delta}(t)\right\}\right|=O(t) \quad(\Delta>0,0<t \leqq \eta \tag{1.8}
\end{equation*}
$$

\]

then the Fourier series of $\varphi(t)$ is summable $\left(C, \frac{\Delta y \beta-1}{1+\Delta \gamma}\right)$ to zero at $t=0$.
From the Theorem 1, we obtain immediately the following corollary:
Corollary. If $\phi_{\beta}(t)=o\left(t^{\beta} /\left(\log \frac{1}{t}\right)^{\frac{1}{\Delta \beta}}\right), \quad(\beta>0) \quad$ as $t \rightarrow 0$,
and

$$
\int_{0}^{t}\left|d\left\{\frac{t \varphi(t)}{\left(\log \frac{1}{t}\right)^{\Delta}}\right\}\right|=O(t) \quad(\Delta>0, \quad 0<t \leqq \eta)
$$

then the Fourier series of $\phi(t)$ converges to zero at $t=0$.
This is a dual of F.T. Wang's Theorem [11].
Theorem 2. If (1.7) and

$$
\begin{equation*}
\varphi(t)=O\left(\left(\log \frac{1}{t}\right)^{\Delta}\right) \quad(\Delta>0), \text { as } t \rightarrow 0 \tag{1.9}
\end{equation*}
$$

then the Fourier series of $\varphi(t)$ is summable $\left(C, \frac{\Delta \gamma \beta}{1+\Delta \gamma}\right)$ to zero at $t=0$.
On the other hand G. Sunouchi [10] has proved the following theorem:
Theorem C. If $\varphi(t)=O\left(t^{-\delta}\right)(1>\delta>0)$, and $\varphi_{\beta}(t)=o\left(t^{\gamma}\right), \gamma>\beta>0$, as $t \rightarrow 0$, then the Fourier series of $\phi(t)$ is summabie (C, α) to zero at $t=0$, where $\alpha=\beta \delta /(\gamma+\delta-\beta)+\varepsilon$.
And he remarked that this theorem would be valid without ε. In fact, this is certainly true. That is, we have the following theorem:

Theorem 3. Under the assumptions of theorem C, the Fouries series of $\phi(t)$ is summable (C, α) to zero at $t=0$, where $\alpha=\beta \delta!(\gamma+\delta-\beta)$.
2. For the proof of theorems we use frequently Bessel summability instead of Cesàro summability. It is well-known that these two methods of summability are equivalent.

Let $J_{\mu}(t)$ be the Bessel function of order μ, and let

$$
\begin{align*}
& \alpha_{\mu}(t)=J_{\mu}(t) / t^{\mu} \tag{2.1}\\
& V_{1+\mu}(t)=\alpha_{\mu+\frac{1}{2}}(t), \tag{2.2}
\end{align*}
$$

then
(2.3) $\quad V_{1+\mu}^{(k)}(t)=O(1) \quad$ as $t \rightarrow 0 \quad$ and $\quad V_{1+\mu}^{(k)}(t)=O\left(t^{-(\mu+1)}\right) \quad$ as $t \rightarrow \infty$, for $k=0,1,2, \ldots \ldots \ldots$, where the index k denotes the k-times differentiation.

Moreover we need some lemmas.
Lemma 1. Let $V(x)$ and $W(x)$ satisfy the next condition:
(i) $V(x)$ is monotone function and there exists a real number $d>0$ such that $x^{l} V(x)$ is non-decreasing,
(ii) $W(x)$ is non-decreasing,
(iii) $W(x) / V(x)=O(1)$ for $x>0$,
then if $\varphi(x)=O\left(x^{\prime} V(x)\right)$, and $\varphi_{a}(x)=o\left(x^{c} W(x)\right)$ for $x>0$, we have

$$
\varphi_{x^{\prime}}(x)=o\left\{x^{\left(a-a^{\prime}\right) b / a+a^{\prime} c / a}(V(x))^{1-\frac{a^{\prime}}{a}}(W(x))^{\frac{a^{\prime}}{a}}\right\} \quad\left(0<a^{\prime}<a\right)
$$

where $V(x), W(x)$ are positive for $x>0$ and $-1<c \leqq a+b$ for $x \rightarrow+\infty$, or $V(x), W(x)$ are positive for $0<x \leqq \eta$ and $-1<c \geqq a+b$ for $x \rightarrow+0$.

Proof runs over similarly as a theorem due to G. Sunouchi [10].
Let $K_{n}^{(\alpha)}(t)$ be the n-th Cesàro mean of order α of the series

$$
\frac{1}{2}+\sum_{k=1}^{\infty} \cos k t
$$

then we have
Lemma 2. If $-1<\alpha \leqq 1$, then

$$
K_{n}^{(\alpha)}(t)=S_{n}^{(\alpha)}(t)+R_{n}^{(\alpha)}(t),
$$

and

$$
\begin{equation*}
S_{n}^{(\alpha)}(t)=\frac{\cos \left(A_{n} t+A\right)}{A_{n}^{(\alpha)}\left(2 \sin \frac{t}{2}\right)^{1+\alpha}} \tag{2.4}
\end{equation*}
$$

where $\quad A_{n}=n+(\alpha+1) / 2, \quad A=-(\alpha+1) \pi / 2, \quad A_{n}^{(\alpha)}=\binom{n+\alpha}{\alpha}$ and

$$
\begin{array}{rlrl}
\left|R_{n}^{(\alpha)}(t)\right|<M l n t^{2}, \quad\left|\frac{d}{d t} R_{n}^{(\alpha)}(t)\right|<M / n t^{3}+M / n t^{4}, & & \\
\left(\frac{d}{d t}\right)^{r} S_{n}^{(\alpha)}(t)= & \left.O_{1}^{\prime} n^{r-\alpha} t^{-(1+\alpha)}\right), & \text { for } n t \geqq 1, \\
\left|\left(\frac{d}{d t}\right)^{r} K_{n}^{(\alpha)}(t)\right| & \leqq M n^{r+1}, & \text { for } h \geqq 0 \tag{2.7}\\
& \leqq M n^{n-\alpha} t^{-(1+\alpha)}, \quad \text { for } n t \geqq 1, \quad h \geqq 0,0<\alpha \leqq 1
\end{array}
$$

(J. J. Gergen [1] and M. Kinukawa [7])

Lemma 3. If $-1<\alpha \leqq 1$ and $\varphi_{1}(t)=o(t)$,
then

$$
\lim _{k \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{0}^{k / n} \varphi(t) K_{n}^{(\alpha)}(t) d t=0
$$

Lemma 4. If $\varphi_{1}(t)=O(t)$, then we have

$$
\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \sup _{k / n} \int^{x+\xi y} \varphi(t) R_{n}^{(\alpha)}(t) d t=0
$$

where ξ is a fixed number and $y=O(k / n)$.
Lemma 3 and 4 are due to J. J. Gergen [1].
3. Proof of Theorem 1. First we consider the case $\alpha=\frac{\Delta y \beta-1}{\Delta \gamma+1}>0$. We denote by σ_{ω}^{α} the α-th Bessel mean of the Fourier series (1.1). Neglecting the constant factor,

$$
\begin{equation*}
\sigma_{\omega}^{\alpha}=\int_{0}^{\infty} \omega \varphi(t) V_{1+\alpha}(\omega t) d t=\left(\int_{0}^{c_{\rho}(\omega)}+\int_{\varphi \rho(\omega)}^{\infty}\right) \omega \varphi(t) V_{1+\alpha}(\omega t) d t=I+J, \tag{3.1}
\end{equation*}
$$ say, where C is a fixed large constant and $\rho(\omega)=(\log \omega)^{\frac{\Delta}{a+1}} / \omega$. If we put $\theta(t)=t \varphi(t) \left\lvert\,\left(\log \frac{1}{t}\right)^{\Delta}\right.$ and $\Theta(t)=\int_{0}^{t}|d \theta(t)|$, then we have by (1.8)

$$
\begin{equation*}
\theta(t)=O(t), \quad \Theta(t)=O(t) \tag{3.2}
\end{equation*}
$$

Now we put

$$
\begin{aligned}
\Lambda(t) & =\int_{t}^{\infty} \frac{\left(\log \frac{1}{u}\right)^{\Delta}}{u} V_{1+\alpha}(\omega u) d u \\
& =\omega^{-\left(\alpha+\frac{1}{2}\right)} \int_{t}^{\infty} \frac{J_{\alpha+\frac{1}{2}}(\omega u)}{u^{\alpha-\frac{1}{2}}} \frac{\left(\log \frac{1}{u}\right)^{\Delta}}{u^{2}} d u \quad \text { for } x \geqq C \rho(\omega) .
\end{aligned}
$$

Then, using the formula

$$
\int_{z}^{\infty} \frac{J_{\nu}(a t)}{t^{\nu-1}} d t=J_{\nu-1}(a z) / a z^{\nu-1} \quad \text { for } \nu>\frac{1}{2}
$$

we get

$$
\begin{aligned}
\left.\omega^{\left(\alpha+\frac{1}{2}\right.}\right)_{\Lambda(t)}= & {\left[-\int_{u}^{\infty} \frac{J_{\alpha+\frac{1}{2}(\omega v)}}{v^{\alpha-\frac{1}{2}}} d v \cdot \frac{\left(\log \frac{1}{u}\right)^{\Delta}}{u^{2}}\right]_{t}^{\infty} } \\
& +\int_{t}^{\infty}\left\{\int_{u}^{\infty} \frac{\left.J_{\alpha+\frac{1}{2}(\omega v)}^{v^{\alpha-\frac{1}{2}}} d v\right\}\left(\frac{\left(\log \frac{1}{u}\right)^{\Delta}}{u^{2}}\right)^{\prime} d u}{=}\right. \\
& \left.-\omega^{-1} J_{\alpha-\frac{1}{2}}(\omega u) u^{-\left(\alpha+\frac{3}{2}\right)}\left(\log \frac{1}{u}\right)^{\Delta}\right]_{t}^{\infty} \\
& -\Delta \omega^{-1} \int_{t}^{\infty} J_{\alpha-\frac{1}{2}(\omega u) u^{-\left(\alpha-\frac{1}{2}+3\right)}}\left(\log \frac{1}{u}\right)^{\Delta-1} d u \\
& -2 \omega^{-1} \int_{t}^{\infty} J_{\alpha-\frac{1}{2}}^{2}(\omega u) u^{-\left(\alpha-\frac{1}{2}+3\right)}\left(\log \frac{1}{u}\right)^{\Delta} d u \\
= & \omega^{-1}\left(\Lambda_{1}+\Lambda_{2}+\Lambda_{3}\right), \text { say. }
\end{aligned}
$$

Since $\omega t \geqq C \omega \rho(\omega)>1$, by (2.3), we have

$$
\Lambda_{\mathrm{l}}=O\left(\omega^{-\frac{1}{2}} t^{-(\alpha+2)}\left(\log \frac{1}{t}\right)^{\Delta}\right)
$$

and

$$
\begin{aligned}
\Lambda_{3}= & O\left\{\int_{t}^{1} \omega^{-\frac{1}{2}} u^{-(\alpha+3)}\left(\log \frac{1}{u}\right)^{\Delta} d u\right\} \\
& +O\left\{\int_{1}^{\infty} \omega^{-\frac{1}{2}} u^{-(\alpha+3)}(\log u)^{\Delta} d u\right\} \\
= & O\left\{\omega^{-\frac{1}{2}}\left(\log \frac{1}{t}\right)^{\Delta} t^{-(\alpha+2)}\right\}+O\left(\omega^{-\frac{1}{2}}\right) \\
= & O\left\{\omega^{-\frac{1}{2}} t^{-(\alpha+2)}\left(\log \frac{1}{t}\right)^{\Delta}\right\} .
\end{aligned}
$$

Similarly, for $\Delta \geqq 1$

$$
\Lambda_{2}=O\left\{\omega^{-\frac{1}{2}} t^{-(\alpha+2)}\left(\log \frac{1}{t}\right)^{\Delta-1}\right\}
$$

For $0<\Delta<1$, it is easily to see that $u^{-\epsilon}\left(\log \frac{1}{u}\right)^{\Delta-1}$ has the minimum value at $u=\exp \left(-\frac{1-\Delta}{\varepsilon}\right)$ for $0<u<1$ and is monotone decreasing for $0<u$ $<\exp \left(-\frac{1-\Delta}{\varepsilon}\right)$, where ε is any positive number. And so

$$
\begin{aligned}
& \Lambda_{2}=O\left\{\omega^{-\frac{1}{2}} \int_{t}^{\delta} u^{-(\alpha+3-\epsilon)} u^{-\epsilon}\left(\log \frac{1}{u}\right)^{\Delta-1} d u\right\} \\
&+O\left(\omega^{-\frac{1}{2}} \int_{\delta}^{1} u^{-(\alpha+3)}\left(\log \frac{1}{u}\right)^{\Delta-1} d u\right\} \\
&+O\left\{\omega^{-\frac{1}{2}} \int_{1}^{\infty} u^{-(\alpha+3)}(\log u)^{\Delta-1} d u\right\} \\
&=O\left\{\omega^{-\frac{1}{2}} t^{-\epsilon}\left(\log \frac{1}{t}\right)^{\Delta-1} t^{-(\alpha+2-e)}\right\} \\
&+O\left(\omega^{-\frac{1}{2}} t^{-\epsilon}\left(\log \frac{1}{t}\right)^{\Delta-1}\right)+O\left(\omega^{-\frac{1}{2}}\right)
\end{aligned}
$$

for $0<\Delta<1$, where $\delta=e^{-\frac{1-\Delta}{\epsilon}}$.
Summing up the estimations of Λ_{1}, Λ_{2} and Λ_{3}, we have

$$
\begin{equation*}
\Lambda(t)=O\left(\omega^{-(\alpha+2)}\left(\log \frac{1}{t}\right)^{\Delta} t^{-(\alpha+2)}\right) \quad \text { for } \quad t \geqq C \rho(\omega) \tag{3.3}
\end{equation*}
$$

We first investigate J. Integrating by parts, J becomes

$$
\left.\int_{c_{\rho}(\omega)}^{\infty} \omega \mathscr{(}\right)(t) V_{1+\alpha}(\omega t) d t=\int_{C_{\rho(\omega)}}^{\infty} \omega \theta(t) \frac{\left(\log \frac{1}{t}\right)^{\Delta}}{t} V_{1+\alpha}(\omega t) d t
$$

$$
=-\int_{c_{\rho}(\omega)}^{\infty} \omega \theta(t) d \Lambda(t)=-[\omega \theta(t) \Lambda(t)]_{c_{\rho}(\omega)}^{\infty}+\omega \int_{\sigma_{P}(\omega)}^{\infty} \Lambda(t) d \theta(t)=J_{1}+J_{2},
$$

where

$$
\begin{aligned}
J_{1} & =O\left\{\left[\omega^{-(\alpha+1)} t^{-(\alpha+1)}\left(\log \frac{1}{t}\right)^{\perp}\right]_{C \rho(\omega)}^{\infty}\right\} \\
& =O\left\{\omega^{-(\alpha+1)} C^{-(\alpha+1)} \frac{\omega^{\alpha+1}}{(\log \omega)^{\Delta}}\left(\log \frac{\omega}{(C \log \omega)^{\alpha+1}}\right)^{\Delta}\right\} \\
& =O\left(C^{-(\alpha+1)}\right) \quad \text { as } \omega \rightarrow \infty,
\end{aligned}
$$

and

$$
\begin{aligned}
J_{2}= & O\left\{\omega \int_{C_{\rho}(\omega)}^{\infty} \omega^{-(\alpha+2)} t^{-(\alpha+2)}\left(\log \frac{1}{t}\right)^{\Delta}|d \theta(t)|\right\} \\
= & O\left\{\omega^{-(\alpha+1)}\left[t^{-(\alpha+2)}\left(\log \frac{1}{t}\right)^{\Delta} \Theta(t)\right]_{C_{\rho}(\omega)}^{\infty}\right\} \\
& +O\left\{\omega^{-(\alpha+1)} \int_{C_{\omega(0)}}^{\infty} t^{-(\alpha+3)}\left(\log \frac{1}{t}\right)^{\Delta} \Theta(t) d t\right\} \\
& +O\left\{\omega^{-(\alpha+1)} \int_{C_{\rho}(\omega)}^{\infty} t^{-(\alpha+3)}\left(\log \frac{1}{t}\right)^{\Delta-1} \Theta(t) d t\right\} \\
= & O\left\{\omega^{-(\alpha+1)}\left[t^{-(\alpha+1)}\left(\log \frac{1}{t}\right)^{\Delta}\right]_{C_{\rho}(\omega)}^{\infty}\right. \\
& +O\left\{\omega^{-(\alpha+1)}(C \rho(\omega))^{-(\alpha+1)}\left(\log \frac{1}{C \rho(\omega)}\right)^{\Delta}\right\} \\
= & O\left(C^{-(\alpha+1)}\right)
\end{aligned}
$$

by (3.2) and the similar estimation to those of $\Lambda(t)$.
Thus, if we take C sufficiently large, we get
(3.4) $\quad J=J_{1}+J_{2}=o(1) \quad$ as $\omega \rightarrow \infty$.

Now there is an integer $k>1$ such that $k-1<\beta \leqq k$. We may suppose that $k-1<\beta<k$, for the case $\beta=k$ can be easily deduced by the following argument. By integration by parts k-times, we have

$$
\begin{aligned}
I= & \int_{0}^{\sigma_{\rho}(\omega)} \omega \rho(t) V_{1+\alpha}(\omega t) d t \\
= & \sum_{h=1}^{k}(-1)^{h-1}\left[\omega^{h} \varphi_{h}(t) V_{1+\alpha}^{(h-1)}(\omega t)\right]_{0}^{c_{\rho}(\omega)} \\
& +(-1)^{k} \omega^{k+1} \int_{0}^{\sigma_{\rho}(\omega)} \varphi_{k}(t) V_{1+\alpha}^{(k)}(\omega t) d t
\end{aligned}
$$

$$
\begin{equation*}
=\sum_{n=1}^{k}(-1)^{n-1} I_{n}+(-1)^{k} I_{k+1}, \text { say. } \tag{3.5}
\end{equation*}
$$

From (1.8), $\varphi(t)=O\left(\left(\log \frac{1}{t}\right)^{\Delta}\right)$. Then we may put in Lemma 1
$V(t)=\left(\log \frac{1}{t}\right)^{\Delta}$ and $W(t)=\left(\log \frac{1}{t}\right)^{-\frac{1}{\gamma}}$. Hence

$$
\begin{equation*}
\varphi_{h}(t)=o\left\{t^{k}\left(\log \frac{1}{t}\right)^{\Delta-\frac{h}{\beta}\left(\Delta+\frac{1}{\gamma}\right)}\right\} \quad \text { for } h=1,2, \ldots k-1, \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{k}(t)=o\left\{t^{t^{k}} /\left(\log \frac{1}{t}\right)^{-\frac{1}{\gamma}}\right\} . \tag{3.7}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\boldsymbol{I}_{h} & =\left[\omega^{h} \varphi_{h}(t) V_{1+\alpha}^{(h-1)}(\omega t)\right]_{0}^{C_{\rho}(\omega)} \\
& =o\left\{\left[\omega^{h} t^{h}\left(\log \frac{1}{t}\right)^{\Delta-{ }_{\beta}^{h}\left(\Delta+\frac{1}{\gamma}\right)}(\omega t)^{-(1+\alpha)}\right]_{0}^{C_{\rho}(\omega)}\right\} \\
& =o\left\{\left(\log \omega^{\frac{\Delta}{\alpha+1}(h-(1+\alpha))}\left(\log \frac{\omega}{(\log \omega)_{\alpha+1}^{\Delta+1}}\right)^{\Delta-\frac{h}{\beta}\left(\Delta+\frac{1}{\gamma}\right)}\right\}\right. \\
& =o\left\{\left(\log \omega^{\frac{\Delta}{\alpha+1}(h-(1+\alpha))+\Delta-\frac{h}{\beta}\left(\Delta+\frac{1}{\gamma}\right)}\right\} .\right.
\end{aligned}
$$

Since $\frac{\Delta \gamma+1}{\gamma}=\frac{\Delta(\beta+1)}{\alpha+1}$, the exponent of $\log \omega$ is

$$
\frac{\Delta h}{\alpha+1}-\frac{h(\Delta \gamma+1)}{\beta \gamma}=\frac{\Delta h}{\alpha+1}-\frac{\Delta h(\beta+1)}{\beta(\alpha+1)}=\frac{-\Delta h}{\beta(\alpha+1)}<0 .
$$

Thus, we have

$$
\boldsymbol{I}_{h}=o(1) \quad \text { as } \omega \rightarrow \infty, \quad \text { for } h=1,2, \ldots, k-1
$$

Here the terms $I_{h}, h=2,3, \ldots, k-1$, appear for $\alpha>2$.

$$
\begin{aligned}
I_{k} & =\left[\omega^{k} \mathcal{C}_{k k}(t) V_{1+\alpha_{i}}^{(k-1)}(\omega t)\right]_{0}^{C_{p(\omega)}} \\
& =o\left\{\omega^{k-(1+\alpha)}\left[t^{k-(1+\alpha)}\left(\log \frac{1}{t}\right)^{-\frac{1}{\gamma}}\right]_{0}^{c_{\rho}(\omega)}\right\} \\
& =\boldsymbol{o}\left\{(\log \omega)^{\frac{\Delta(k-(1+\alpha)}{1+\alpha}}\left(\log \frac{\omega}{(\log \omega)^{\frac{\Delta}{\alpha+1}}}\right)^{-\frac{1}{\gamma}}\right\}
\end{aligned}
$$

$$
\begin{equation*}
=\boldsymbol{o}\left\{(\log \omega)^{\frac{k \Delta}{1+\alpha}-\frac{\Delta \gamma+1}{\gamma}}\right\} \tag{3.9}
\end{equation*}
$$

$$
=o\left\{(\log \omega)^{\frac{(k-(\beta+1)) \Delta}{\alpha+1}}\right\}=o(1)
$$

Concerning I_{k+1}, we split up four parts,

$$
I_{k+1}=\omega^{k+1} \int_{0}^{C_{\rho}(\omega)} V_{1+\alpha}^{(k)}(\omega t) d t \int_{0}^{t} \varphi_{\beta}(u)(t-u)^{k_{i}-\beta-1} d u
$$

$$
\begin{aligned}
=\int_{0}^{\omega^{-1}} d u \int_{u}^{u+\omega^{-1}} d t & +\int_{\omega^{-1}}^{c_{\rho}(\omega)} d u \int_{u}^{u+\omega^{-1}} d t \\
& +\int_{0}^{c_{\rho(\omega)-\omega^{-1}}} d u \int_{u+\omega^{-1}}^{c_{\rho}(\omega)} d t-\int_{0}^{c_{\rho}(\omega)} d u \int_{c_{\rho}(\omega)}^{u+\omega^{-1}} d t
\end{aligned}
$$

(3. 10) $=K_{1}+K_{2}+K_{3}-K_{4}$, say.

Since $V_{1+\alpha}^{(k)}(t)=O(1)$ for $0 \leqq t \leqq 1$,

$$
\begin{aligned}
K_{1} & =\omega^{k+1} \int_{0}^{\omega^{-1}} \varphi_{\beta}(u) d u \int_{u}^{u+\omega^{-1}} V_{1+\alpha}^{(k)}(\omega t)(t-u)^{k-\beta-1} d t \\
& =o\left\{\omega^{k+1} \int_{0}^{\omega^{-1}} \frac{u^{\beta}}{\left(\log \frac{1}{u}\right)^{\frac{1}{\gamma}}}\left[(t-u)^{k-\beta}\right]_{u}^{u+\omega^{-1}} d u\right\}
\end{aligned}
$$

(3.11) $=o\left\{\omega^{\beta+1} \int_{0}^{\omega^{-1}} \frac{u^{\beta}}{\left(\log \frac{1}{u}\right)^{\gamma}} d u\right\}=o\left((\log \omega)^{-1}\right)=o(1), \quad$ as $\omega \rightarrow \infty$.

$$
K_{2}=\omega^{k+1} \int_{\omega^{-1}}^{c_{\rho}(\omega)} \varphi_{\beta}(u) d u \int_{u}^{u+\omega^{-1}} V_{1+\alpha}^{(k)}(\omega t)(t-u)^{k-\beta-1} d t
$$

$$
=o\left\{\omega^{k+1} \int_{\omega^{-1}}^{\sigma_{\rho(\omega)}} \frac{u^{\beta}}{\left(\log \frac{1}{u}\right)^{\frac{1}{\gamma}}} d u \int_{u}^{u+\omega^{-1}}(\omega t)^{-(1+\alpha)}(t-u)^{k-\beta-1} d t\right\}
$$

$$
=o\left\{\omega^{k-\alpha} \int_{\omega^{-1}}^{c_{\rho(\omega)}} \frac{u^{\beta-(1+\alpha)}}{\left(\log \frac{1}{u}\right)^{\frac{1}{\gamma}}}\left[(t-u)^{k-\beta}\right]_{u}^{u+\omega^{-1}} d u\right\}
$$

$$
=o\left\{\omega^{k-\alpha-(k-\beta)}\left(\log \frac{\omega}{(\log \omega)^{\alpha+1}}\right)^{-\frac{1}{\gamma}}\left[u^{3-\alpha}\right]_{\omega^{-1}}^{C_{\rho}(\omega)}\right\}
$$

(3.12) $=\boldsymbol{o}\left\{(\log \omega)^{-\frac{1}{\gamma}+\frac{\Delta(\beta-\alpha)}{\alpha+1}}\right\}=\boldsymbol{o}(1), \quad$ as $\omega \rightarrow \infty$.

Concerning K_{3}, if we use integration by parts in the inner integral, then

$$
\begin{aligned}
K_{3}= & \omega^{k+1} \int_{0}^{c_{\rho}(\omega)-\omega^{-1}} \varphi_{\beta}(u) d u \int_{u+\omega^{-1}}^{c_{\rho}(\omega)} V_{1+\alpha}^{(k)}(\omega t)(t-u)^{k-\beta-1} d t \\
= & \omega^{k+1} \int_{0}^{C_{\rho}(\omega)-\omega^{-1}} \varphi_{\rho}(u) d u\left\{\left[\omega^{-1} V_{1+\alpha}^{(k-1)}(\omega t)(t-u)^{k-\beta-1}\right]_{u+\omega^{-1}}^{C_{\rho}(\omega)}\right. \\
& \left.\quad-(k-\beta-1) \int_{u+\omega^{-1}}^{c_{\rho}(\omega)} \omega^{-1} V_{1+\alpha}^{(k-1)}(\omega t)(t-u)^{k-\beta-2} d t\right\} \\
= & M_{1}-(k-\beta-1) M_{2} .
\end{aligned}
$$

$$
\begin{aligned}
& M_{1}=O\left\{\omega^{k}(\log \omega)^{-\Delta} \int_{0}^{\theta_{\rho}(\omega)} \varphi_{\beta}(u)(C \rho(\omega)-u)^{x-\beta-1} d u\right. \\
& \left.+\omega^{\beta-\alpha} \int_{0}^{\tau_{\rho}(\omega)} \varphi_{\beta}(u)\left(u-\omega^{-1}\right)^{-(1+\alpha)} d u\right\} \\
& =o\left\{\omega^{k}(\log \omega)^{-\Delta} \int_{0}^{C_{\rho}(\omega)} \frac{u^{\beta}}{\left(\log \frac{1}{u}\right)^{\frac{1}{\gamma}}}(C \rho(\omega)-u)^{\alpha-\beta-1} d u\right. \\
& \left.+\omega^{\beta-\alpha} \int_{0}^{\tau_{\rho}(\omega)} \frac{u^{\beta}}{\left(\log \frac{1}{u}\right)^{\frac{1}{\gamma}}}\left(u-\omega^{-1}\right)^{-(1+\alpha)} d u\right\} \\
& =o\left\{\omega^{k}(\log \omega)^{-\Delta}\left(\log \frac{\omega}{(\log \omega)^{\alpha^{\alpha+1}}}\right)^{-\frac{1}{\gamma}}\left(\frac{(\log \omega)^{\frac{\Delta}{\alpha+1}}}{\omega}\right)^{k}\right\} \\
& +o\left\{\omega^{\beta-\alpha}\left(\log \frac{\omega}{(\log \omega)^{\frac{\Delta}{\alpha+1}}}\right)^{-\frac{1}{\gamma}}\left(\frac{\left(\log \omega^{\frac{\Delta}{\alpha+1}}\right.}{\omega}\right)^{\beta-\alpha}\right\} \\
& =o\left\{(\log \omega)^{-\frac{\Delta \gamma+1}{\gamma}+\frac{\Delta k}{\alpha+1}}\right\}+o\left\{(\log \omega)^{-\frac{1}{\gamma}+\frac{\Delta(\beta-\alpha)}{\alpha+1}}\right\} \\
& =o\left\{(\log \omega)^{\frac{k-(\beta+1)}{\alpha+1}}\right\}+o(1)=o(1) \text {, } \\
& M_{2}=o\left\{\omega^{v} \int_{0}^{G_{\rho}(\omega)} \frac{u^{\beta}}{\left(\log \frac{1}{u}\right)^{\frac{1}{\gamma}}} d u \int_{u+\omega^{-1}}^{c_{\rho}(\omega)} \omega^{-(1+\alpha)} t^{-(1+\alpha)}(t-u)^{k-\beta-2} d t\right\} \\
& =o\left\{\omega^{k-(1+\alpha)} \int_{0}^{c_{\rho}(\omega)} u^{\beta-(1+\alpha)} \frac{1}{\left(\log \frac{1}{u}\right)^{\frac{1}{\gamma}}}\left[(t-u)^{k-\beta-1}\right]_{u+\omega^{-1}}^{C_{\rho}(\omega)} d u\right\} \\
& =o\left\{\omega^{\beta-\alpha} \int_{0}^{c_{\rho}(\omega)} u^{\beta-(1+\alpha)}\left(\log \frac{1}{u}\right)^{-\frac{1}{\gamma}} d u\right\} \\
& =o\left\{\omega^{\beta-\alpha}(\log \omega)^{-\frac{1}{\gamma}} \omega^{-(\beta-\alpha)}(\log \omega)^{\frac{\Delta(\beta-\alpha)}{\alpha+1}}\right\}=o(1), \quad \text { as } \omega \rightarrow \infty \text {. }
\end{aligned}
$$

Thus, we have
(3.13)

$$
K_{3}=o(1), \quad \text { as } \omega \rightarrow \infty
$$

$$
\begin{aligned}
K_{4} & =\omega^{k+1} \int_{C_{\rho}(\omega)-\omega^{-1}}^{\zeta_{\rho}(\omega)} \varphi_{\beta}(u) d u \int_{C_{\rho}(\omega)}^{u+\omega^{-1}} V_{1+\alpha}^{(k)}(\omega t)^{\prime}(t-u)^{k-\beta-1} d t \\
& =O\left\{\omega^{k+1-(1+\alpha)} \int_{C_{\rho}(\omega)-\omega^{-1}}^{\epsilon_{\rho}(\omega)} \varphi_{\beta}(u) d u \int_{C_{\rho}((\omega)}^{u+\omega^{-1}} t^{-(1+\alpha)}(t-u)^{k-\beta-1} d t\right\} \\
& =o\left\{\omega^{k-\alpha} \int_{C_{\rho}(\omega)-\omega^{-1}}^{\sigma_{\rho}(\omega)^{-1}} u^{3}\left(\log \frac{1}{u}\right)^{-\frac{1}{\gamma}} d u(C \rho(\omega))^{-(1+\alpha)} \int_{\sigma_{\rho}(\omega)}^{u+\omega^{-1}}(t-u)^{k-\beta-1} d t\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =o\left\{\omega^{k+1}(\log \omega)^{-\Delta} \int_{C_{\rho}(\omega)-\omega^{-1}}^{c_{\rho}(\omega)} u^{3}\left(\log \frac{1}{u}\right)^{-\frac{1}{\gamma}}\left[(t-u)^{k-\beta}\right]_{C_{\rho}(\omega)}^{u+\omega^{-1}} d u\right\} \\
& =o\left\{\omega^{\beta+1}(\log \omega)^{-\Delta} \int_{C_{\rho}(\omega)-\omega^{-1}}^{C_{\rho \rho(\omega)}} u^{\beta}\left(\log \frac{1}{u}\right)^{-\frac{1}{\gamma}} d u\right\} \\
& =o\left\{\omega^{\beta+1}(\log \omega)^{-\Delta}(\log \omega)^{-\frac{1}{\gamma}}\left(\frac{(\log \omega)^{\alpha+1}}{\omega}\right)^{\beta+1}\right\}
\end{aligned}
$$

$$
\begin{equation*}
=o\left\{(\log \omega)^{-\frac{\Delta \gamma+1}{\gamma}+\frac{\Delta(\beta+1)}{\alpha+1}}\right\}=o(1), \quad \text { as } \omega \rightarrow \infty . \tag{3.14}
\end{equation*}
$$

Summing up (3.10), (3.11). (3.12). (3.13) and (3.14), we get
(3. 15)

$$
I_{k+1}=o(1)
$$

as $\omega \rightarrow \infty$.
From (3.1), (3.4), (3.5), (3.8), (3.9) and (3.15) we have

$$
\begin{equation*}
\sigma_{\omega}^{\alpha}=o(1) \quad \text { as } \omega \rightarrow \infty, \quad \text { for } \alpha>0 \tag{3.16}
\end{equation*}
$$

Next, we consider the case $-1<\alpha \leqq 0$.
If we denote by σ_{n}^{α} the n-th Cesàro mean of order α of the Fourier series of $\varphi(t)$ at $t=0$, and

$$
\begin{align*}
\pi \sigma_{n}^{\alpha} & =\int_{0}^{\pi} \varphi(t) K_{n}^{\alpha}(t) d t \\
& =\int_{0}^{k / n} \varphi(t) K_{n}^{\alpha}(t) d t+\int_{k i n}^{\pi} \varphi(t) R_{n}^{\alpha}(t) d t+\int_{k \mid n}^{\pi} \varphi(t) S_{n}^{\alpha}(t) d t \tag{3.17}\\
& =I_{1}+I_{2}+I_{3},
\end{align*}
$$

say. By (3.6)
(3.18)

$$
\varphi_{1}(t)=o\left\{t\left(\log \frac{1}{t}\right)^{\Delta-\frac{1}{\beta}\left(\Delta+\frac{1}{\gamma}\right)}\right\}=o(t),
$$

for

$$
\frac{1}{\beta}\left(\Delta \beta-\frac{\Delta \gamma+1}{\gamma}\right)=\frac{\Delta(\beta \alpha-1)}{\beta(\alpha+1)}<0
$$

Hence, by Lemma 3 and Lemma 4, we get
(3.19)

$$
I_{1}=o(1), \quad I_{2}=o(1)
$$

$$
\text { as } n \rightarrow \infty .
$$

Therefore, it is sufficient to show that $I_{3}=o(1)$. Let

$$
\begin{equation*}
\rho(n)={\frac{(\log n)^{\frac{\Delta}{a}}}{n}}^{\frac{\Delta}{\alpha+1}} \tag{3.20}
\end{equation*}
$$

say. If we put

$$
\Lambda(t)=\int_{t}^{\pi} \frac{\left(\log \frac{1}{u}\right)^{\Delta}}{u} \frac{\cos \left(A_{n} u+A\right)}{\left(2 \sin \frac{u}{2}\right)^{\alpha+1}} d u
$$

then

$$
\Lambda(t)=O\left(\left(\log \frac{1}{t}\right)^{\Delta} / n t^{\alpha+2}\right)
$$

Integrating by parts we have
$J_{2}=-\frac{1}{A_{n}^{\alpha}} \int_{k \rho(n)}^{\pi} \theta(t) d \Lambda(t)=-\frac{1}{A_{n}^{\alpha}}\left\{[\theta(t) \Lambda(t)]_{k \rho(n)}^{\pi}-\int_{k \rho(n)}^{\tau} \Lambda(t) d \theta(t)\right\}=K_{1}+K_{2}$, say. The calculations of K_{1} and K_{2} are similar to those of J_{1} and J_{2} in the former half of this theorem. Thus, if we take k sufficiently large we obtain (3.21)

$$
J_{2}=o(1)
$$

as $n \rightarrow \infty$.
In the estimation of J_{1}, we may suppose that $m-1<\beta<m$, where $m(>1)$ is an integer. Integrating by parts m-times we have

$$
\begin{align*}
& J_{1}=\int_{k / n}^{k_{\rho}(n)} \varphi(t) S_{n}^{\alpha}(t) d t=\left[\sum_{n=1}^{m}(-1)^{k-1} \varphi_{l}(t)\left(\frac{d}{d t}\right)^{n-1} S_{n}^{\alpha}(t)\right]_{k / n}^{k_{\rho}(n)} \\
& 22) \quad+(-1)^{m} \int_{k / n}^{k_{\rho}(n)} \boldsymbol{\varphi}_{m}(t)\left(\frac{d}{d t}\right)^{m} S_{n}^{\alpha}(t) d t=\sum_{n=1}^{m}(-1)^{n-1} L_{h}+(-1)^{m} L_{m+1}, \tag{3.22}
\end{align*}
$$

say. Using Lemma 4 and (3.6), we get

$$
\begin{align*}
\mathcal{L}_{h} & =o\left\{\left[t^{n}\left(\log \frac{1}{t}\right)^{\Delta-\left(^{\left(\Delta+\frac{1}{\gamma}\right)}\right.} n^{n-(1+\alpha)} t^{-(1+\alpha)}\right]_{k / n}^{k \rho(n)}\right\} \\
& =o\left(n^{-\frac{\Delta l}{\beta(\alpha+1)}}+o\left((\log n)^{\Delta-\frac{\sigma_{\beta}}{\beta}\left(\Delta+\frac{1}{\gamma}\right)}\right)=o(1) \quad \text { as } n \rightarrow \infty,\right. \tag{3.23}
\end{align*}
$$

for $h=1.2, \ldots, m-1$.
Similarly,

$$
\begin{equation*}
L_{m}=\left[\boldsymbol{\rho}_{m}(t)\left(\frac{d}{d t}\right)^{m-1} S_{n}^{\alpha}(t)\right]_{k / n}^{k_{\rho}(n)}=o\left((\log n)^{\frac{\Delta(k-\beta-1)}{\alpha+1}}=o(1) \text {, as } n \rightarrow \infty .\right. \tag{3.24}
\end{equation*}
$$

Concerning L_{m+1},

$$
\begin{aligned}
L_{m+1} & =\int_{k / n}^{k_{\rho}(n)}\left(\frac{d}{d t}\right)^{m} S_{n}^{\alpha}(t) d t \int_{0}^{t} \varphi_{\beta}(t)(t-u)^{m-\beta-1} d u \\
& =\int_{0}^{k / n} \boldsymbol{\varphi}_{\beta}(u) d u \int_{k / n}^{u+k / n}\left(\frac{d}{d t}\right)^{m} S_{n}^{\alpha}(t)(t-u)^{m-\beta-1} d t \\
& +\int_{k /}^{k \rho(n)} d u \int_{u}^{u+k / n} d t+\int_{0}^{k \rho(n)-k / n} d u \int_{u+k / n}^{k_{\rho}(n)} d t-\int_{k \rho(n)-k / n}^{k \rho(n)} d u \int_{k \rho(n)}^{u+k / n} d t \\
& =M_{1}+M_{2}+M_{3}+M_{4}, \text { say. }
\end{aligned}
$$

The methods of the estimations of $M_{\nu}(\nu=1,2,3,4)$ are similar to those of the former half of his theorem. Thus, we get

$$
\begin{equation*}
L_{n+1}=o(1) \tag{3.25}
\end{equation*}
$$

as $n \rightarrow \infty$.
Summing up (3.17), (3.19), (3.21), (3.22), (3.23), (3.24) and (3.25), we get

$$
\sigma_{n}^{\alpha}=o(1), \quad \text { as } n \rightarrow \infty \quad \text { for }-1<\alpha \leqq 0 .
$$

From (3.16) and (3.26), the theorem is proved completely.
4. Proof of Theorem 2. We denote by σ_{ω}^{α} the α-th Bessel mean of the Fourier series (1.1), where $\alpha=\frac{\Delta \gamma \beta}{\Delta \gamma+1}>0$. Then

$$
\begin{align*}
\sigma_{\omega}^{\alpha} & =\int_{0}^{\infty} \omega \varphi(t) V_{1+\alpha}(\omega t) d t=\left(\int_{0}^{c_{\rho}(\omega)}+\int_{\rho_{\rho}(\omega)}^{\infty}\right) \omega \varphi(t) V_{1+\alpha}(\omega t) d t \tag{4.1}\\
& =I+J
\end{align*}
$$

say, where C is a fixed large constant and $\rho(\omega)=\frac{(\log \omega)^{\frac{\Delta}{\alpha}}}{\omega}$.
By the assumption (1.9),

$$
\begin{aligned}
I & =O\left\{\int_{C_{\rho}(\omega)}^{\infty} \omega(\omega t)^{-(1+\alpha)}\left(\log \frac{1}{t}\right)^{\Delta} d t\right\}=O\left\{\omega^{-\alpha}(C \rho(\omega))^{-\alpha}\left(\log \frac{1}{C \rho(\omega)}\right)^{\Delta}\right\} \\
& =O\left\{\omega^{-\alpha} C^{-\alpha} \omega^{\alpha}(\log \omega)^{-\Delta}\left(\log \frac{\omega}{C(\log \omega)_{\omega}^{\Delta}}\right)\right\}=O\left(C^{-\alpha}\right)
\end{aligned}
$$

Thus, if we take C sufficiently large, we have

$$
\begin{equation*}
I=o(1) \tag{4.2}
\end{equation*}
$$

as $\omega \rightarrow \infty$.
The estimation of J is similar to those of Theorem 1. So we have

$$
\begin{equation*}
J=\boldsymbol{o}(1) \tag{4.3}
\end{equation*}
$$

as $\omega \rightarrow \infty$.
From (4.1), (4.2) and (4.3), we have

$$
\sigma_{\omega}^{\alpha}=o(1), \quad \text { as } \omega \rightarrow \infty
$$

which is the required.
5. Proof of Theorem 3. We use Bessel summability and denote by σ_{ω}^{α} the Bessel mean of Fourier series (1.1), where $\alpha=\frac{\beta \delta}{\gamma+\delta-\beta}$. Then,

$$
\begin{equation*}
\int_{0}^{\infty} \omega \varphi(t) V_{1+\alpha}(\omega t) d t=\left(\int_{0}^{C \omega-\rho}+\int_{C \omega}^{\infty}\right) \omega \varphi(t) V_{1+\alpha}(\omega t) d t=I+J \tag{5.1}
\end{equation*}
$$

say, where $\rho=\frac{\beta}{\gamma+\delta}=\frac{\alpha}{\alpha+\delta}$.
By the assumption $\boldsymbol{\rho}(t)=O\left(t^{-\delta}\right)$ and (2.3), we have.

$$
\begin{aligned}
J & =O\left\{\int_{C_{\omega}-\rho}^{\infty} \omega t^{-\delta}(\omega t)^{-(1+\alpha)} d t\right\}=O\left\{\omega^{-\alpha}\left[t^{-(\alpha+\delta)}\right]_{c_{\omega}-\rho}^{\infty}\right\} \\
& \left.=O\left(C^{-(\alpha+\delta)} \omega^{-\alpha+\rho(\alpha+\delta)}\right)=O^{\prime} C^{-(\alpha+\delta)}\right)
\end{aligned}
$$

Therefore, if we take C sufficiently large, we get

$$
\begin{equation*}
J=o(1) \tag{5.2}
\end{equation*}
$$

as $\omega \rightarrow \infty$.
Now, there is an integer $k>1$ such that $k-1<\beta \leqq k$. We may suppose that $k-1<\beta<k$. By integcation by parts k-times, we have

$$
\begin{gather*}
I=\sum_{h=1}^{k}(-1)^{h-1}\left[\omega^{h} \varphi_{l}(t) V_{1+\infty}^{(h-1)}(\omega t)\right]_{0}^{c_{\omega}-\rho}+(-1)^{k} \omega^{k+1} \int_{0}^{C_{\omega}-\rho} \varphi_{k}(t) V_{1+\alpha}^{(k)}(\omega t) d t \\
(5.3) \tag{5.3}\\
=\sum_{h=1}^{k}(-1)^{h-1} I_{h}+(-1)^{k} I_{k+1}, \text { say. }
\end{gather*}
$$

In Lemma 1, we may put $V(t)=W(t)=1, b=-\delta, a=\beta$ and $c=\gamma$. Hence we get

$$
\varphi_{h}(t)=o\left(t^{-\delta(\beta-h) / \beta+h \gamma / \beta}\right) \quad \text { for } h=1,2, \ldots, k-1
$$

And

$$
\phi_{k}(t)=o\left(t^{\gamma-\beta+1}\right)
$$

Therefore,

$$
\begin{aligned}
I_{h} & =\left[\omega^{h} t^{(-\delta(\beta-h) / \beta+h \gamma) / \beta}(\omega t)^{-(1+\alpha)}\right]_{0}^{\sigma_{\omega}-\rho} \\
& =o\left\{\omega^{h-(1+\alpha)} \omega^{-\rho(-\delta(\beta-h)+h \gamma\} / \beta+\rho(1+\alpha)} C^{-(\alpha+1)-(\delta(3-h)+h \gamma \gamma / \beta}\right\} .
\end{aligned}
$$

Since $\rho=\frac{\beta}{\gamma+\delta}=\frac{\alpha}{\alpha+\delta}$, the exponent of ω of the last formula is

$$
\begin{aligned}
h & -(1+\alpha)-\frac{\rho}{\beta}\{-\delta(\beta-h)+h \gamma-\beta(1+\alpha)\} \\
& =h-(1+\alpha)-\frac{\rho}{\beta}\{-\beta(1+\alpha+\delta)+h(\gamma+\delta)\} \\
& =-(\alpha+1)+\frac{\alpha}{\alpha+\delta}(1+\alpha+\delta)=-\frac{\delta}{\alpha+\delta}<0
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
I_{h}=o(1), \quad \text { as } \omega \rightarrow \infty \quad(h=1,2, \ldots, k-1) \tag{5.4}
\end{equation*}
$$

Concerning I_{k},

$$
I_{k}=\left[\omega^{k} t^{\gamma-\beta+k}(\omega t)^{-(1+\alpha)}\right]_{0}^{\omega_{\omega}-\rho}=O\left\{\omega^{k-(1+\alpha)-\rho\{\gamma-\beta+k-(1+\alpha)\rangle} C^{\gamma-\beta+k-(1+\alpha)}\right\}
$$

The exponent of ω is

$$
\begin{aligned}
& k(1-\rho)-(1+\alpha)(1-\rho)-\rho(\gamma-\beta) \\
& =\frac{k(\gamma+\delta-\beta)}{\gamma+\delta}-\frac{\gamma+\delta-\beta+\beta \delta}{\gamma+\delta}-\frac{\beta(\gamma-\beta)}{\gamma+\delta} \\
& =\frac{\gamma+\delta-\beta}{\gamma+\delta}(k-1-\beta)<0
\end{aligned}
$$

Therefore,
(5.5)

$$
I_{i}=o(1)
$$

as $\omega \rightarrow \infty$.
Concerning I_{k+1}, we split up four parts,

$$
\begin{aligned}
\boldsymbol{I}_{k+1} & =\int_{0}^{C_{\omega}-\rho} \omega^{i+1} \varphi_{\beta}(u) d u \int_{u}^{C_{\omega}-\rho} V_{1+\alpha}^{(k)}(\omega t)(t-u)^{k-\beta-1} d t \\
& =\int_{0}^{\omega^{-1}} d u \int_{u}^{u+\omega^{-1}} d t+\int_{\omega^{-1}}^{C_{\omega}-\rho} d u \int_{u}^{u+\omega^{-1}} d t
\end{aligned}
$$

$$
\begin{align*}
& +\int_{0}^{\omega_{\omega}-\rho-\omega \omega^{-1}} d u \int_{u+\omega^{-1}}^{\omega_{\omega}-\rho} d t-\int_{0}^{\omega_{\omega}-\rho} d u \int_{C_{\omega}-\rho}^{u+\omega^{-1}} d t \\
& =K_{1}+K_{2}+K_{3}+K_{4}, \tag{5.6}
\end{align*}
$$

say. Estimations of them are similar to those of the theorem of the author [5]. And so, leaving out the detailed calculations, we have

$$
\begin{array}{lr}
K_{1}=o\left(\omega^{-(\gamma-\beta)}\right)=o(1), & \text { for } \gamma>\beta, \\
K_{2}=o\left(\omega^{\beta-\alpha-\rho(\gamma-\alpha}\right), & \text { for } \gamma-\alpha=\frac{(\gamma-\beta)(\gamma+\delta)}{\gamma+\delta-\beta}>0, \\
K_{3}=o\left(\omega^{k+(1+\alpha)(p-1)-\rho(\gamma+k-\beta)}\right)+o\left(\omega^{\beta-\alpha-\rho(\gamma-\alpha)}\right), &
\end{array}
$$

and

$$
K_{4}=o\left(\omega^{\beta-\alpha-\rho(\gamma-\alpha)}\right) .
$$

Since $\beta-\alpha-\rho(\gamma-\alpha)=\beta-\alpha(1-\rho)-\rho \gamma=\beta-\frac{\alpha \delta}{\alpha+\delta}-\frac{\alpha \gamma}{\alpha+\delta}=\beta-$ $\rho(\gamma+\delta)=0$ and $k+(1+\alpha)(\rho-1)-\rho(\gamma+k-\beta)=\frac{\gamma+\delta-\beta}{\gamma+\delta}(k-1-\beta)<0$,

$$
K_{i}=o(1), \quad \text { as } \omega \rightarrow \infty(i=1,2,3,4) .
$$

Summing up (5.1), (5.2), (5.3), (5.4), (5.5), (5.6) and (5.7), we obtain

$$
\sigma_{\omega}^{\alpha}=\boldsymbol{o}(1), \quad \text { as } \omega \rightarrow \infty,
$$

which completes the proof of theorem 3.

References

[1] J. J. Gergen, Convergence and Summability criteria for Fourier series, Quart. Jour. Math., 1(1930), 252-275.
[2] G. H. Hardy and J. E. Littlewood, Some new convergence criteria for Fourier series, Annali di Pisa (2), 3(1934), 43-62.
[3] S. IzUMI, Some trigonometrical series VIII, Tôhoku Math. Jour., 5(1954), 296-301.
[4] S. Izumi and G. Sunouchi, Theorems concerning Cesàro summability, Tôhoku Math. Jour., 1(1951), 313-326.
[5] K. Kanno, On the Cesàro summability of Fourier series, Tôhoku Math. Jour., 7(1955), (to appear), 110-119.
[6] S. Kinukawa, On the Cesàro summability of Fourier series, Tôhoku Math. Jour., 6(1954), 109-120.
[7] S. KINUKAWA, On the Cesàro summability of Fourier series (II), Tôhoku Math. Jour., 7(1955), 252-264.
[8] W.C. Randels, Three examples in the theory of Fourier series, Annals of Math., 36(1935), 838-858.
[9] G. Sunouchi, A new convergence criteria for Fourier series, Tôhoku Math. Jour., 5(1954), 238-242.
[10] G. Sunouchi, Convexity theorems and Cesàro summability, Journ. of Math. Tokyo, 1(1953), 104-109.
[11] F. T. Wang, On Riesz summability of Fourier series (III), Proc. London Math. Soc., 51(1950), 215-231.

Department of Mathematics, Faculty of Liberal Arts and Science, Yamagata University.

[^0]: *) Part I of this papear: this Journl, Vol. 7(1955), 110-118.

