INDECOMPOSABLE TRAJECTORIES

Robert P. Hunter and Paul M. Swingle

(Received October. 1, 1956)
Whether the motion of any one of the various fundamental particles of physics is as a wave or as a projectile or neither we have in Set Theory many allied questions. Basic among these is that concerning the type of point set over which this motion takes place. Obviously any fundamental particle in a science based upon observation must at any moment cover an uncountable point set. Is this point set a nicely behaving one or a very peculiar type? Is it connected or not, closed or not, dense in a domain or not? Observation can never tell. It is the task of mathematics to develop all interesting possibilities.

Our interest here is partly this: if a particle moves in an arc-wise path, or its image on an arc-wise trajectory in phase space, with no recrossing but densely in a domain, what type of connected set can result? Especially we are interested here when an indecomposable connected set results, but we do note in Theorem 6 that even a locally connected connexe can result. We are also interested in disjoint sums of these paths.

Let the m-dimensional imbedding space be S_{m}. We need one where we can show the existence of an arc densely in a connected domain: a separable Moore space [5] satisfying Axioms 1 and 2 is such a space; or S_{m} can be any equivalent metric space. For ease in explaining we will speak of a region about $p, \in S$, as the interior of an ($m-1$)-sphere with center at p.

Definitions. Let p be a point of a path of a particle at time t_{0} and p^{\prime} be at any time t : if $p p^{\prime}$ is an arc we say the path is arc-wise connected ${ }^{11}$. The points of the path, even through infinite time, will then be called an arc-wise path or trajectory for the image in phase space. For phase space see [2: p 13 and 1: pp. 8-13]. A connected set C is said to be an indecomposable connexe; if it is not the sum of two connected subsets each with a different closure than that of C; if C is an indecomposable connexe and arc-wise connected from some point p, then C will be called an arc-wise trajectory or connexe. The closure of C is denoted by \bar{C}.

Notation. By $\left\{T_{i}\right\}$ we mean an infinite class of $T_{i}(i=1,2, \ldots$). By

[^0]the point set sum, $\cup C_{i}$, of $\left\{C_{i}\right\}$ we mean the set of points contained in the sum of all the elements C_{i}. The set T is chain-wise constructed if T is the point set sum of a class $\left\{C_{i}\right\}$, where each C : is a simple chain between some two points, as is also $C_{1}+C_{2}+\ldots .+C_{l}(g=1,2, \ldots)$. Each link-region of C_{i} will be the interior of an $(m-1)$-sphere of S_{m} : the small radius of C_{i} will be the radius of the smallest of these sphere and the large radius that of the largest.

Theorem 1. In any connected domain D of S_{m} there exists an arc-wise indecomposable trajectory dense in D.

Proof. This consists in combining two familar processes: (a) The "tunneling" process of Wada for the construction of an indecomposable connexe as used in [10: Th. 1, pp. 178-179] ; (b) The method of constructing an arc as in [5: Th. 1, pp. 86-88 or $6:$ Th. 3.9, p. 80]

In the proof of Theorem 1 of [10] we have: $1 a$ a sequence of connected domains, i.e. "tunnels", $T_{1}, T_{2}, \ldots, T_{j}, \ldots$ where each T_{j} contains T_{j+1}, i. e. $\left.T_{j} \supset T_{j+1} ; 2 a\right)$ Each T_{j} is dense in $\left.D-T_{j} ; 3 a\right)$ Each T_{j} is chain-wise constructed by $\left\{C_{i}\right\}_{j}$, where each C_{i} is a simple chain as above; 4a) Where r_{i} is the smallest radius of $C_{i} \in\left\{C_{i}\right\}_{j}, \lim r_{i}=0$ for each $T_{j} ; 5 a$) If, for a fixed j, H is the point set sum of the first h elements of $\left\{C_{i}\right\}_{j}$, then T_{j-1} $\supset \bar{H} ; 6 z)$ If $\boldsymbol{r}^{\prime}{ }_{j}$ is the largest of the large radii of the C_{i} of $\left\{C_{i}\right\}_{j}$, then lim $r_{j}^{\prime}=0$. In the construction of T_{j} we will say the simple chain C_{i} of $\left\{C_{i}\right\}_{j}$ is the i-stage of T_{j}.

In the arc-wise connected Theorem 1 of [5: pp. 86-88] we have: $1 b$) A sequence of simple chains, $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{j}^{\prime}, \ldots$ from point p to point $q ; 2 b$) Each closure of a link-region of $C^{\prime}{ }_{i}$ is contained in a link-region of $C^{\prime}{ }_{j-1} ; 3 b$) If $r^{\prime \prime}$, is the large radius of $C^{\prime}{ }_{j}$, then lin $r^{\prime \prime}{ }_{j}=0$.

We combine these two proofs, to give that the set intersection $T=\cap T_{j}$ ($j=1,2, \ldots$) is an arc-wise indecomposable connexe as follows: 1) We take densely in D points $p_{1}, p_{2}, \ldots p_{g}, \ldots$ and the g-stage of each T_{j} is taken to give an arc $p_{p_{l+1}}$ where T finally will be $\left.p_{1} p_{2}+p_{2} p_{3}+\ldots ; 2\right)$ Thus to obtain $p_{1} p_{2}$ we take C^{\prime}, of $1 b$) above as $C_{1} \in\left\{\mathrm{C}_{i}\right\}_{j}$ for each $j=1,2, \ldots$ and each simple chain $C^{\prime}{ }_{j}$ here joins p_{1} to $p_{2} ; 3$) To permit the "looping back" into T_{1} needed for T to be dense in D we take $p_{3} \in T_{1}-p_{1} p_{2}$ and take C^{\prime}, of $1 b$) as $C_{2} \in\left\{C_{i}\right\}_{j}$ for each $j=2,3, \ldots$ and each C_{j}^{\prime} is taken joining p_{2} to $\left.p_{3} ; 4\right)$ Similarly we take $p_{4} \in T_{2}-p_{1} p_{3}$ and C_{j}^{\prime}, joining p_{3} to p_{4}, as $C_{3} \in\left\{C_{i}\right\}_{3}$ for each $j=3,4, \ldots, 5$) The arc $p_{1} p_{3}=p_{1} p_{2}+p_{2} p_{3} ; 6$) We continue the construction of the arc $p_{1} p_{j}$ by obvious induction: 7) After the g-stage of construction, having obtained $p_{i} p_{g}$, then for this g the $\left\{C_{i}\right\}_{!}$for $T_{!}$only has to satisfy $1 a)-6 a$) above and not $1 b)-35$). It is well known that all the above can be done so as to obtain the arc-wise connected set T.

That T is an indecomposable connexe can be shown by the usual method for the Wada process : suppose T is the sum of two connexes H and K, neither of whose closure is that of T. Thea there exist regions, H^{\prime}, K^{\prime}, such that
$\bar{H} \cdot \bar{K}=0=\bar{H} \cdot \overline{K^{\prime}}$ and $H^{\prime} \cdot H \neq 0 \neq K^{\prime} \cdot K$, where ' 0 ' is the null set. By $2 a$) and $6 a$) there exists a simple chain, composed of links of some of the elements of some $\left\{C_{i}\right\}_{j}$, whose point set sum \supset a connected domain D^{\prime}, with boundary B , such that $D^{\prime}+B$ joins H^{\prime} to K^{\prime} to H^{\prime} and $\left(B-\overline{H^{\prime}} \cdot \cdot T=0\right.$; also D^{\prime} does not contain all of $K^{\prime} \cdot T$. Thus B separates K and so K is not connected. Hence T is the desired arc-wise indecomposable trajectory dense in D.

Let Z_{j}, which we will call a "cylinder", be the part of the boundary of T, which is also in the point set sum of the $(m-1)$-spheres giving the link-regions of $\left\{C_{i}\right\}_{j}$. Thus above we have that T is enclosed in a descending tower $\left\{Z_{j}\right\}$ of cylinders and $T \cdot Z_{j}=0$. When we have this situation we will say T is ε-densely looped by the tower $\left\{Z_{j}\right\}$, and so by the complenent of T. We mean by this that for every $p, q \in T$ and regions H^{\prime}, K^{\prime}, where $\overline{H^{\prime}} \cdot K^{\prime}=0, p \in H^{\prime}, q \in K^{\prime}$, there exists a Z_{j} joining H^{\prime} to K^{\prime} to H^{\prime} so that Z_{j} separates $K^{\prime} \cdot T$. Since $T \cdot Z_{j}=0$ for all j, we also will say that T is ε-shielded by the descending tower $\left\{Z_{j}\right\}$. It follows by the above type of argument that: (I) A connexe T, dense in a connected domain D, which is ε-densely looped, or ε-shielded, by a descending tower $\left\{Z_{j}\right\}$ of cylinders is an indecomposable connexe.

If, in the plane, $\left\{P_{v}\right\}(v=1,2, \ldots, n ; n>1)$ is a set of mutually exclusive arc-wise paths each contained, and dense, in a domain D, then P_{v} is an indecomposable connexe; this is true becuuse P_{w} is in the complenent of P_{v}, $v \neq w$, and so P_{v} is ε-densely looped by its complement, i. e. P_{w} plays the role of Z_{j} above. The sum of any $n-1$ of the P_{v} is an indecomposable connexe by the same reasoning. We also show below in Theorem 7 that, if $n=1$, the arc-wise path P_{1} in the plane is an indecomposable connexe, but in $S_{m}, m>2$, by Theorems 5 and 6 , it may not be unless it has ε-shielding, as in the proof of Theorem 4 below.

Theorem 2. For any finite n there exists in any connected domain D of S_{m} a set of n mutually exclusive arc-wise indecomposable trajectories each dense in D.

Proof. For $n=1$ this is true by Theorem 1. Suppose we have constructed k mutually exclusive arc-wise indecomposable trajectories each dense in D. Then $P_{!}(g=1,2, \ldots, k)$ is the point set sum of $\left\{f_{i}\right\}_{!}$, where f_{i} is an arc having nothing conmon with $f_{h}, i \neq h$, except an end point if h is $i+1$.

Consider the case $m>2$. We wish to obtain an arc-wise indecomposable trajectory T having nothing common with a $P_{!!}$. We do this by using the well known method of constructing an arc missing a countable number of continua, no sum of which separates a domain in S_{m}, to modify the proof of Theorem 1 as follows: 1) As above $T=\cap T_{j}(j=1,2, \ldots)$ where T_{j} is chain-wise constructed by $\left\{C_{i}\right\}_{j}$, the g-stage of T_{j} gives an $\operatorname{arc} p_{g} p_{g+1}$, and T is the point set sum of $\left\{p_{q} p_{n_{+1}}\right\}$; 2) Let F_{1} be the sum of the 1-stage $f_{1} \in\left\{f_{i}\right\}_{g}$, for $g=1,2, \ldots, k$ and, by induction, let F_{h} be $F_{1}+F_{2}+\ldots+F_{h-1}$ plus the sum of the h-stage $f_{l}, \in\left\{f_{i}\right\}_{g}$ for g above; 3) Take now the link-regions of $C_{1} \in\left\{C_{i}\right\}_{1}$ so that their closures have nothing common with F_{1}, and in general
take the link-regions of $C_{1}, C_{2}, \ldots C_{h} \in\left\{C_{i}\right\}_{h}$ so that their closures have nothing common with F_{n}. Thus it follows that no arc $p_{q} p_{q+1}$ has a point common with $P_{1}+P_{2}+\ldots .+P_{k}$, and so T does not. For the case $m=2$, an arc can separate a domain and so there the above method must be modified to construct the n arc simultaneously.

Corollary 2.1. If I is an m^{\prime}-dimensional hereditarily indecomposable continuum which is imbeddable in a connected domain D of the Cantorian manifold $S_{m}, m^{\prime}<m-1$, then for any finite n there exists a set of n mutually exclusive arc-wise paths $P_{v}(v=1,2, \ldots . n)$, each of which is an indecomposable connexe dense in D and does not contain a point of I; also, if $I^{\prime} \subset I, I^{\prime}+P_{1}+$ $P_{2}+\ldots+P_{n}=V$ is an indecomposable connexe.

Proof. This follows from Theorem 2, since, for $m>m^{\prime}+1, D-I$ is a connected domain.

Here V is 1-indecomposable but not n-indecomposable ${ }^{23}$, since each P_{i} is dense in D and so does not itself have an essential part. In the case where there are n particles in motion with mutually exclusive paths B_{i}, each indecomposable and alone dense in some domain D_{i}, the D_{i} mutually exclusive, where each B_{i} contains a limit point of some other B_{j} however, then $B=B_{1}$ $+B_{2}+\ldots .+B_{n}$ is an n-indecomposable connexe; the D_{i} could be tori with common boundary point p and then $B+p$ is n-indecomposable. We call V above an n-indecomposable path or trajectory fusion and B an n-indecomposable trajectory union.

Theorem 3. For any finite n there exists in any connected domain D of S_{m} an n-indecomposable arc-wise trajectory union $P=P_{1}+P_{2}+\ldots+P_{n}$ dense in D; if $E \subset D-P$, then $P+E$ is an n-indecomposable trajectory union, locally n indecomposable at each point of E, and locally 1-indecomposable at each point of P_{i}.

Proof. Each P_{i} is constructed in a domain D_{i} from Theorem 1. To obtain the n mutually exclusive D_{i} one uses Wada's process as in Theorem 1 modified as follows to give a set of D_{i} with common boundary: (1) One constructs a chain C_{1} for each P_{i} in steps; 1.1) First one obtains a simple chain of regions for P_{1} from points p_{11} to $p_{12} ; 1.2$) Then from a covering of regions with ($m-1$)-sphere as boundary whose closures have nothing common with the chain of 1.1) one obtains a similar chain for P_{2}, between points p_{21} and p_{22}, repeating for $P_{3}, \ldots, P_{n} ; 1.3$) Having obtained these n mutually exclusive chains, one continues to extend them by a similar process. This entire process

[^1]is well known. We note E can be the widely connected or biconnected set of [10: p. 181].

Theorem 4. If a particle, or image, Q moves in S_{3} densely interior to a torus U always in a counter clock-wise direction about the center, then the path P can be an ari-wise indecomposable connexe.

Proof. By a cylinder Z with open ends we mean Z is the boundary of the point set sum of the regions of a simple chain C, except Z does not contain the part of this boundary which also is part of the boundary of the two end regions. Let, at time t_{0}, Q be at p_{0} and at t_{i} be at p_{i}, where \lim $t_{i}=\infty$. Let $\left\{Z_{i}\right\}$ be a descending tower of open end cylinders in U giving an ε-shielding of P as follows : 1) $P \cdot Z_{i}=0$ for $i=1,2, \ldots$; 2) Q passes densely through each end of $Z_{i} ; 3$) Where r_{i} is the large radius of $\left.Z_{i}, \lim r_{i}=0 ; 4\right)$ P is interior to Z_{1} from t_{0} to t_{1} and interior to Z_{k} from t_{0} to $t_{k} ; 5 ; Q$ moves densely through U. Thus from (I) above P is an arc-wise indecomposable trajectory. This motion conserves angular momentum.

Corollary 4.1. The n particles Q_{i} can move densely interior to a torus U of S_{3} in mutually exclusive paths P_{i} such that $P_{1}+P_{2}+\ldots .+P_{n}$ is an n-indecomposable path fusion.

Lemma 1. There exists in the coordinate plane a bounded connected set N which is the sum of a countable number of mutually exclusive arcs.

Proof. Let $a_{i}=(1 / i, 1), b_{i}=(1 / i, 0), c_{i}=(0,-1 / i), a_{i}^{\prime}=(-1 / i,-1), b_{i}^{\prime}=$ $(-1 / i, 0), c_{i}^{\prime}=(0,1 / i)$ for $i=1,2, \ldots$: let f_{i} be the straight line interval $a_{i} b_{i}$ plus the circular arc $b_{i} c_{i}$ on the circle with center at $(0,0)$; similarly let f_{i}^{\prime} be the straight line interval $a_{i}^{\prime} b_{i}^{\prime}$ plus the circular arc $b_{i}^{\prime} c^{\prime}{ }_{i}$. Let $N=\left(f_{1}+\right.$ $\left.f_{2}+\ldots.\right)+\left(f_{1}^{\prime}+f_{2}^{\prime}+\ldots.\right)$. Suppose $N=H+K$ separate, where say $H \supset f_{1}$. Hence $H \supset c_{1}$ and so \supset infinitely many f_{i}^{\prime}; thus $H \supset$ all $c^{\prime}{ }_{i}$ and so all f_{i}. Hence $K=0$ and N is connected.

Theorem 5. There exists in any connected domain D of a euclidean S_{3} an arc-wise connected path P, dense in D, which is a decomposable connexe.

Proof. One can take the origin and the unit so that the interior R of $x^{2}+y^{2}+z^{2}=4$ is in D; thus $R \supset N$ of Lemma 1. Let an arc-wise path or trajectory T, dense in D, be taken as follows: 1) The particle will travel so that T finally will contain each f_{i} and f_{i} of Lemma 1 as subarcs; 2) Whenever the image enters R it will not leave until it passes through a point $(0, y)$ where $-1<y<1$, i.e. every arc of $R \cdot T \supset$ one of these points; To assure T is dense in D the part of the method for this of [10: pp. 178-179] may be used. Thus 2) and Lemma 1 gives that $R \cdot T$ is connected. Suppose T is indecomposable. Hence, by Lemma A^{\prime} of [9:p. 799], T is the sum of the connexes $R \cdot T$ and $T-R \cdot T$, neither of which have the same closure as T. Therefore T is decomposable.

Theorem 6. Let U be the interior of a torus in S_{3}, where if R is any
spherical region in $S_{3}, p, q \in R$, then $R \supset$ a geodesic $p q$. Then there exists an arc-wise path P of a particle p, which moves counter clock-wise and densely in U, but P is locally connectet.

Proof. Since U is completely separable there exists a countable set s_{1}, $s_{2}, \ldots, s_{i}, \ldots$, of spheres in U such that any donain D^{\prime}, of U, \supset an s_{i}. Let $\left\{p_{i}\right\}$ $(i=1,2, \ldots)$ be the class of all possible pairs $p_{i}=\left(s_{g}, s_{l}\right)$, where $g \neq h$, of s_{g}, s_{l}. Let $\left\{f_{k}\right\}$ be a class of mutually exclusive arcs in U where f_{k} joins s, s^{\prime} of $p_{k}=\left(s, s^{\prime}\right)$ as follows : a) by a geodesic (straight) line interval if possible; b) if not, then by a curved line : in either case $f_{k i}$ must be such that finally in one revolution of p through U it can move counter clockwise over $f_{i \text {. }}$. Thus p moves densely through U. until finally $P \supset$ each f_{k}. Let R be any region as above in U and suppose $R \cdot P=H+K$ separate. Let $h \in H$ and $k \in K$. Then there exists a $p_{k}=\left(s, s^{\prime}\right)$, where s bounds Q and s^{\prime} bounds $Q^{\prime}, h \in Q, k \in Q^{\prime}$, and $R \supset \boldsymbol{Q}+\boldsymbol{Q}^{\prime}$. Hence, by \boldsymbol{a}), there exists a geodesic $\operatorname{arc} h^{\prime} k^{\prime}$ in $P \cdot R$, where $h^{\prime} \in H \cdot Q$ and $k^{\prime} \in K \cdot Q^{\prime}$. As $h^{\prime} k^{\prime}$ is connected it lies entirely in H or K. Thus $R \cdot P$ is connected and P is locally.

Theorem 7. If P is an arc-wise trajectory contained, and dense, in a locally compact, connected domain D of a subspace S_{2} of S_{m}, then P is an indecomposable trajectory.

Proof. Suppose $P=H+K$, where H and K are connexes neither with the same closure as P. Then there exist regions H^{\prime}, K^{\prime} such that $H^{\prime} \cdot K=0=$ $H \cdot \bar{K}^{\prime}, \quad H \supset H \cdot P, \quad K \supset K^{\prime} \cdot P ; H^{\prime}$ can be taken with a simple closed curve h as boundary and K^{\prime} likewise with k. For the image of a particle p to move densely in D on an arc-wise trajectory P we have : 1) $P \supset$ an $\operatorname{arc} f_{1}$ and $h \supset$ an $\operatorname{arc} h_{1}$ with common end points and $f_{1}+h_{1}$ bound a domain D_{1}, which contains a subarc of k; 2) $D_{1} \cdot P \supset$ a similar arc f_{2} which divides D_{1} into two connected domains D_{11} and $D_{12}, 3$) For $j=11$ or $12, P \cdot D_{j} \supset$ a similar arc f_{j} which divides D_{j} into two connected domains $D_{j_{1}}$ and $D_{j 2}$ and this process can be continued by induction; 4) If, on h_{1}, f_{j} has end points a, b and f_{k} has end points c, d, then one can take the f_{i} such that always on h_{1} one of the arcs $a b$ and $c d$ contains the other. We thus obtain a countable class $\left\{D_{j}\right\}$ of donains whose boundaries are contained in $P+h_{1}$. Consider every sequence, $D_{1}^{\prime}, D_{2}^{\prime}, \ldots D_{g}^{\prime}$, \ldots., where $D_{\prime}^{\prime} \supset{\widetilde{D^{\prime}}}_{q+1}$: the class of possible $\cap{\overline{D^{\prime \prime}}}^{\prime}$ is uncountable and almost all of the n cut K^{\prime}; at most a countable number of then can contain subarcs of P. Hence there exist uncountable many of these, and so one, which does not contain a point of P and thus separates K, because of [5: Theorem 42; p. 28]. Hence P is an indecomposable connexe.

Theorem 8. If the image of a particle p moves densely in a locally compact phase subspace S_{2} entirely under forces independent of time on an arc-wise indecomposable trajectory P, then S_{2} is the sum of uncountably many mutually exclusive indecomposable trajectories, each dense in S_{2}.

Proof. [We assume : if any image q moves in time t over path \boldsymbol{Q}^{\prime}, then
Q^{\prime} is closed and $x \in Q^{\prime}$ implies x is a limit point of $S_{2}-Q^{\prime}$]. If in time from t_{0} t) $t^{\prime} p$ moves from p_{0} to p^{\prime}, then $p_{0} \neq p^{\prime}$, for if not the trajectory P would repeat this thereafter and not be indecomposable. If q is another particle image moving over trajectory Q, then if $P \cdot Q \neq 0, P$ and Q thereafter would have to be the same trajectory; thus $P=\boldsymbol{Q}$, unless $P \cdot Q=0$. Hence, for $P \cdot Q=0, P$ is in the complement of Q and so, as noted above, Q is an indecomposable connexe. For tine t_{i} such that $\lim t_{i}=\infty$, if Q_{i} is the trajectory of image q fron t_{0} to t_{i}, Q is the sum of a countable number of continua, each dense in its complement. Thus by Theoren 15 of [5:p. 11] or by the Theoren of Baire [$4: p .320$], $S_{2,}$ must be the sum of uncountably many indecomposable connexes, mutually exclusive, and each dense in S_{2}.

It is to be noted that by the methods of proof used above one could have both a decomposable and an indecomposable trajectory dense in a domain D of $S_{m}, m>2$: thus the question arises whether conditions could be put on the phase space in order to make all the trajectories indecomposable; there is also a similar question in Theorem 8 in order to make all the trajectories arc-wise, when one is.

One sees that if a particle moves densely in a subspace S of a conservative phase space S_{m} as in Khinchin's "Statistical Mechanics", S is an invariant part, hence is metrically indecompasable, and thus is a surface of constant energy [$2: \mathrm{pp} .15,29,46$]. The construction of the indecomposable connexes above is related to "random walk": If \bar{D}, of D above is compact, it has a finite covering, giving rise to a random choice of a chain C_{1}; the closure of the point set sum D_{1} of C_{1} has a finite covering, giving rise to a random choice of a chain C_{2}; continuing by induction one has the statistical question concerning the probability $\cap D_{i}$ will be an indecomposable connexe ${ }^{3}$. Conpactness could be onitted.

Theorem 9. If D is a connected domain in S_{2}, then there exists a nonwidely connected, hereditarily indecomposable connexe I contained, and dense, in D.

Proof. To show this we use the process of Wada to obtain denseness, as in Theorem 1 above, and combine it with that of Bing in [7] to obtain here hereditability. Let the pairs $p_{k}=\left(s_{i}, s_{j}\right)$ be as in the proof of Therren 6. In combining these processes we obtain: 1) By Wada's a set of chains $C_{\text {it }}$ ($k=1,2, \ldots$) joining s_{i} and s_{j} of p_{k} and a set of domains D_{k}, the point set sum of the links of $C_{k} ; 2$) By Bing's [7: pp. 268-270] a set of ε_{k}-crooked chains C_{k}^{\prime} contained in $D_{i k}$ and joining s_{i} and s_{j} of p_{k}; 3) These links of C_{k}^{\prime} are of diameter $\varepsilon_{k j}$ and Lim $\varepsilon_{k}=0$;4) The chain C_{k+1}^{\prime} has a subchain in D_{k}^{\prime} joining s_{i} and s_{j} of $\left.p_{k} ; 5\right)$ Where $Z_{i k}$ is the cylinder without ends of the proof of Theoren 4 of C_{k}^{\prime}, the chains are taken so that $Z_{i!} \cdot Z_{l}=0$ for $g \neq h ; 6$) Here, contrary to [7:p.268], D_{k}^{\prime} does not separate S_{3}.

[^2]Let $I=\left(\bar{D}_{1}^{\prime} \cdot D_{2}^{\prime} \cdot \ldots . D_{k}^{\prime}{ }_{k}\right)+\left(\overline{D_{2}^{\prime} \cdot D_{3}^{\prime} \cdot \ldots .}\right)+\left(\bar{D}_{3}^{\prime} \cdot \boldsymbol{D}_{4}^{\prime} \ldots ..\right)+\ldots$. Since the D_{k}^{\prime} are connected, I is also. Because of 4$),\left(\bar{D}_{g}^{\prime} \cdot \bar{D}_{g+1}^{\prime}\right) \neq 0 \neq I$ and by 1$) I$ is dense in D. The descending tower $\left\{Z_{k}\right\} \varepsilon$-shields I by 5) and so any connected dense subset of I is indecomposable. Suppose $I^{\prime}=H+K$, where I^{\prime}, H, K are connexes with different closures. By 2) and 4) there exist $s_{j}^{\prime}, \in\left\{s_{i}\right\}$, for $j=1,2,3,4$ so that each C_{k}^{\prime}, for $k>$ some g, has a subchain joining $s_{1}^{\prime}, s^{\prime}{ }_{2}$, $s_{3}^{\prime}, s_{4}^{\prime}$ in that order, where $\left(s_{1}^{\prime}+s_{4}^{\prime}\right) \cdot I^{\prime}=0, s_{2}^{\prime} \cdot K=0 \neq s_{2}^{\prime} \cdot H$, and $s_{3}^{\prime} \cdot H=0 \neq$ $s^{\prime}{ }_{3} \cdot K$. Thus each D_{k}^{\prime} contains $H+K=I^{\prime}$. Then following the argument of Condiotin (4) in [7: p. 268] we see that there must be an arc $p x q$ in a $C_{j}{ }_{j}$ which is not ε_{60}-crooked, which is a contradiction. Thus I is a hereditarily indecomposable connexe.

The arc-wise indecomposable trajectories are nicely behaving compared with these very peculiar hereditarily indecomposable connexes. If motion takes place on these peculiar connexes, it would not seem to be either as a projectile or as a wave. The question concerning the types of peculiar sets which can exist is mostly unexplored; it would seem that to understand the nature of space they must be explored; perhaps finally this must be done even to understand the nature of matter.

References

[1] Fowler and Guggenheim, Statistical thermodynamics, Ccmbridge Press, (1939)
[2] A.I.Khinchin, Statistical Mechanics, tra-slated by G. Gamow, Dover.
[3] C.Spain, Tensor calculus, Interscience Publishers, (1953).
[4] C. Kuratowski, Topologie, 1, Polska Akademia Nauk, Monografie Matematyszne, Tom XX, (1952).
[5] R.L. Moore, Foundations of point set theory, AMS, Colloquium, 13, (1932).
[6] R. L. Wilder, Topology of manifolds. AMS, Colloquium, 32, (1949).
[7] R.H. BING, Higher-dimensional hereditarily indecomposable continua, Trats., AMS, 71, (1951), 267-273.
[8] M. E. EsTII L, A bi oonnected set having no widely connected subset, Abstract, Bull. AMS, 59 (1953), 368 and Indecomposable connexes and related sets in the plane, Abstract, Bull. AMS, 58 (195.2), 662.
[9] P.M.SWINGLE, Indecomposable connexes, Bull. AMS, 47, (1941), 796-8J3.
[10] , Closures of types of indecomposable conrexes, Proc. AMS, 2, (1951), 178-185.
[11] ——n- n-indecomposable and related connexes and Locally n-indecomposable and related concepts, presented to AMS Aug. 39 and Nov. 26, 1954, Abstract. Published now in part, Local properties and sums of trajectories, Portugaliae Mathematica, 15, (1956), 89-103; also same, 16, (1957).

The University Of Miami, Fia.

[^0]: 1) If M is disconnected we will write $M=H+K$ separate, meaning M is the point set sum of two mutually exclusive, non-vacuous subsets H and K, neither of which contains a limit point of the other. If M is not disconnected it is connected. We call a non-degenerate connected set a connexe. By arc we mean simple continuous arc, i. e. a set topologically equivalent to the graph of a continuous $f(x)$ from $x=a$ to $x=b$. A simple chain is always one with a finite number of regions as links. Definitions of the terms used can be found in [5, 6, or 4] usually.
[^1]: 2) In [11] the fol'owing are defined for a conrexe W : If $W=U W_{i},(i=1,2, \ldots, n)$, W_{i} is connected, and $E\left(W_{2}\right), \neq 0$, is the part of W_{i} not contained in the sum cf the closures of the other W_{k}, then $E\left(W_{i}\right)$ is called the essential part of W_{i}; If W is the sum of n, but not $n+1, W_{i}$ eac'l with an essential part, then W is said to be an n indecomposable connexe; If $p \in W$ and for each region $R, p \in R, R \cdot W$ is contained in n, but not $n+1, W_{i}$ of W, each with an essential part containing points of $R \cdot W$, then W is said to be locally n-indecomposable at p.
[^2]: 3) A related answer is given by R.H. Bing in Concerning hereditarily indecomposable continux, Pacific Journal of Mathematics, v.1, 1951, p. 46.
