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1. Let F(2) be a meromorphic function and let T(», F) be its Nevanlinna
characteristic function. Let N(r, @) = N(r, F — a); N(r, F) = N(r, ) have the
usual meaning in the Nevanlinna theory.

Define

8a)=1— lirg_»sﬂup %(:-:%,

. . ¢ Nra)
A(g) = 1 — lim inf 2\ @)
(a) im in )

If 8(a) > 0 we say that @ is an exceptional value for F(z) in the sense of
Nevanlinna (e. v. N); and if A(z) > 0 we call @ as an e.v.V (exceptional value
in the sense of Valiron).

2. Let f(2) be an entire function and let

u(r, f) = ir) = Min | f(z) |.

12] =7

It is clear that if O is an asymptotic value for f(2) then w(»)—>0 as
r—> oo, We show that the converse is not true. We prove:

THEOREM 1. For an entire function f(z), the minimum modulus ur)
tending to zero does not imply that 0 is an asymptotic value.

LEMMA If 0 is an e.v. N for the entire function f(z) then u(r)—0 as
r—> ©o,

PROOF. In the terminology of Nevanlinna
1

L) = =1 [Meer| 1 _las
m(r, 7 m(r, 0) o fo og e .
Hence m(r,0) < log* 1

w(7)
But lim inf _m(r, 0) >0,

roe T(r, f)
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because 0 is an e.v. N, so

T(r,f) < Alog* 1 for r = 7,
wr)

and the lemma follows because

T(r,f)—> o as r—> oo,
To complete the proof of Theorem 1, let

fE@=T(1+ =25),

fo(2) = I[ ¢ [(—1)"%]
where b.(z) = (1 + —l;z—)x” exp (—_M>

T T

rw= 2"\, = 8,
Define S(z) = fi(2) fo(=).

Then f(2) is an entire function of order 3 /2 for which §(0) > 0 see A.A.
Goldberg [1].

Thus 0 is an e.v.N for f(2), so u(r,f)— 0 by the lemma. But 0 is not an
asymptotic value for f(z).

3. THEOREM 2. Let F(z) be a meromorphic function of order p (0 < p<oo);
and let p(r) be Lindelof proximate order relative to T(r,F). Let n(r,a;) be
the number of zeros of F(2) — a; in |z| <r; all the a; being different (0 <|a,|
=< o0; in case a; = o, n(r, a;) = n(r, ) is the number of poles). Then

im sup 30 75 2 g — 2

r—oo
where 9 is an integer = 3.

n(r,a;)
PP

PROOF. Let lim sup Z =k

r—>e0
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and if possible let £ < (g -- 2)p, then

q

2 n(r,a) < (k+ &)r*? for r=r,.

i=1

e ” k+ &
Hence > N(r, a) + Ologr) < (k& + &) f PO dp ~ P o)

iml

- k:‘e T(r, F)

for a sequence of values of 7.
Further from the second theorem of Nevanlinna

(@—2)T(r,F) < qu N(r, a,) + O(logr).

iml

Hence for an infinity of values of » we have

(@g—2)T(r, F) < k : € T(r,F) + O (log r), and since & is arbitrarily small

(g — 2)p < k. This gives a contradiction. Hence the result follows.

4. Let f(2) be an entire function and let p,(a) be the exponent of con-
vergence of the zeros of f(z) — a. If p,(a) < p we say that @ is an e.v.B

for f(=).

. T(r, f)
If lim inf —22J472 >0
et n(r, a)$(r) z

for a positive non-decreasing function $(x) such that

fux§b<i%

A4

then « is defined to be an e v-E, see S.M.Shah [2]. Let f(z) be an entire
function of order p (0 < p < o) and let p(r) be proximate order relative to
log M(r,f), that is,

p(r) = p as r—> o,

r0'(r) logr > 0 as r— oo,

log M(r, f) < r*® for r=r,

and log M(r,f) = r**? for a sequence of values of . Valiron has proved that
for a class of entire functions of finite non-zero order if
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n(r, a)

—> 0 as r > oo,
rP(T)

n(r, x)

then )

lies between two positive constants for every x == a.

Hence it is reasonable to define @ as an exceptional value in some sense if

lim M = 0. (1)

r—>c0 rp‘r)

We shall call @ as an e.v.L(in the sense of Lindelsf) if (1) holds.

THEOREN 3. (i) If a is an e.v.B then a is an e.v.L also but the
converse is not true.

Gi) If a isane.v.L then ais e.v.V with Ala) = 1.

Gii) If a is e.v.E then a is e.v.L also but the converse is not true.

PROOF. (i) Let @ be e.v.B then

nr,a) =0F) c<p

S0 nra) < Arfr? for r= r,.
PO

Further p(r) > _p_;—_c_ for r=r,.

Hence M—-)O as r—> co

rp(r)

so a is e. Vv, L.
That the converse is not true can be seen from the function

F@=T(1+ —2=)

2 n(logn)?
Here M(r, f)~ T alr 1) S a—
logr (logr)®
Set p(r) = 1 — loglogr
logr

Then it can easily be seen that p(r) is a proximate order relative to log M(r,f).
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Here p=p0)=1,

so 0 is not e.v. B.

But

2(r.0) —>0 as r—> o
P

and n(?(ff) lies between two positive constants for all == 0 and thus 0 is
r

e.v.L.

(ii) Let a be e.v.L then

n(r, a) < &r*® for r=r,

4 ()
N(r, a) < ef P01 gp ~ €7
ro p
N(r, a) < £ 2r)yen ~ € opper)
P P
= —i—ZP log M(#, f) for a sequence of values of r
8 P
< =2 TQr,f).
p
. . ¢ N a)
Hence lim inf ——2"2- = 0,
r—>oc0 T(r’ f )

So a is e+ v-V with A(a) = 1.
We omit the proof of the first part of (iii). That the converse is not true can
again be seen from the same example

f& =10 (1 + —z-)

3 n(logn)*

r
log M (r,.f) _ log r _ logr
n(r, 0)$(r) $(r)

Here

»
(logr)* ¢(1‘)
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dx

)

But since f
A

so log £ = o ($(x)) when = — oo.

im o8 M f) _
P s 0y O

Hence

Hence a fortiori

. Trf) _
o)

So 0 is not e.v.E though‘ilt ise.v.L. -

5. Nevanlinna [3] has proved that if F(z) is a meromorphic function of
order p < 1/ 2 for which '

Nr,a) _

y
e T(r, F) 0 @
. N(r, x)
l — =1

then im sup (. F) 3

for every 2+ a (0 =< |z| < ).

Of course (3) is not true for every meromorphic function of order < 1/2 for
every x. For instance if f(2) is an entire function of order < 1/2 then F(z)=
f(2)/(z — a) will be a meromorphic function of order < 1/2 for which

N(r, )
=0 as r—> oo,
T(r, F)
We give a method to construct a class of meromorphic functions of any
given order for which (3) holds for every x (0 < |z| <o). We prove:

THEOREM 4. Given any p (0 < p< o), there exists a meromorphic function
of order p for which (3) holds for every x (0 < |x| < o).

Let f(z) = >_ a,2™ be an entire function of order p for which
n=0
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1 < oo,

n=0 7\'n+1 - 7\'7:

and let as usual

u(r.f) =Min |[f(2)],

|2 ="

then w(r, f)—> oo as r —>oo through a sequence r = r,,; see A.J. Macintyre and

P. Erdés [4].

1
Set Fz) = + 2, @
f(2)
then T(r, F) = T(r, f) + O(log 7).
Let a be any number such that 0 < |a| < . Then for |z| = we have

uniformly as n— oo

Fir)—a=z—a+ 0o(Q).

Hence
1 ) 1 . 5 =
3 = =0
" (r F—a 2 fo o8 —a
for r = r, and n > n,.
Hence linrl_”s.up*N(;—’(f;)—a) = 1.

Also m@n F) = logr+ 0(1) = o(T(r, F)) as r— oo through the sequence
r = r,.. Hence

. N(r, F)
1 —2 /=1
L2 T )

This proves (3) for every finite or infinite z.

REMARK. If the meromorphic function is of order < 1/2, the construction is still
easier, since in (4) any entire function f(z) of order < 1/2 will serve the pur-
pose, because by a well known theorem of Wiman for such an entire function
lirr:»iup u(r, f) = o=. We also remark that by choosing a suitable entire function
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f(2) for which the sequence 7, is sufficiently dense we could have even achieved

. NG x)
lim N2 _
= T(r, F)
for every z (0 < |z| =< o).
Finally we prove:
THEOREM 5. For every meromorphic function F(2) of order p (0 =< p< o),

lim suI,,Eﬁlljzl_ >

%2 T )
provided that a is not e.v.V for F(2).

P

We omit the proof.
I take this opportunity to thank Professor W.K.Hayman for his valuable
suggestions.
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