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1. Introduction. Let 7r2, 7r3, and 7r4 be abelian groups and let 7\ 2

—>7r3, T 2 ) 3 : τr2(8)7Γ3—>7r4 be bilinear homomorphisms. In this paper, we shall give
a necessary and sufficient condition under which the given homomorphisms
T 2 ) 2 and T2)3 are realizable simultaneously as the Whitehead product opera-
tions in spaces of the type K(π2,2 7Γ3,3 &(4);7r4,4 &(5) •) in the case 7Γ2

is free. This problem was handled by H. Miyazaki [5], but his solution is not
complete as was pointed out by P. J. Hilton in [3].

Our present method depends on the theory of cohomology operations by F.
P. Peterson [7], [8]. In §2, we state some properties of the Eilenberg-MacLane
complex KN{ΊΓ,2) and its homology, for later use. In §3 we show a cohomo-
logy relation, giving a connection between Postnikov invariants and White-
head products in a space. In the last section the realizability theorem is
stated and proved.

2. The complex KN(π, 2) and its homology. Let ir be an abelian group.
Following Eilenberg-MacLane [2], we recall some properties of the jR-complex
KN(π, 2) with multiplication Δ.

For each u € TΓ and each integer t g: 0, there corresponds a 2ί-cycle κ2t

(u, 2) of KN(π, 2) which satisfies the equations

κ2s(u, 2)Δ*2 ί(κ, 2)= ( 5 + *) fcHs+o(u, 2)

and the following homologies

κ2t(ru, 2)— ri/e2t(u92)9

κ2i{u + v, 2)— Σ *2i(u> 2)Δκ2j(v, 2).
i+j=t

By [2], II, Theorem 21.1, under the mapping

κ2t(u,2)->homology class of κ2t(u,2)
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H2t(τr, 2), for t fg 3, is isomorphic to the commutative graded ring (with

multiplication Δ) which is generated by κ2s(u, 2) for each u £ ir and integer

5 ^ t, subject to the above equations and homologies.

In low dimensions, the i<Y)-structure of /c2t(u, 2) is as follows.

Foκ2(u,2) = F1κ2(u,2) = F2/c2(u,2) = lχ (unit one cell),

*4(«, 2)={D,D2K2{U, 2)XD1DoK2(u,2))-(D3DίK2(u, 2))(D2D0,c2(u, 2))

+ (D2Dlfc2(u, 2))(D3DoK2(u, 2)),

**(u, 2)= Σ ' ( - l)^(DV4DV3DVtDVlfc2(u, 2)XDHtDμιKί(u, 2)),

t;, 2) = £ (- 1)$1AAAA^(^ 2)) ( D A ^ , 2)),

P

where S(μ) = £ (μ* — (ί — 1)) and the sums 2Z (resp. Σ ) being taken over

all (2. 4) shuffles (μ, i;) (resp. all (2. 4) shuffles (μ, v) such that /̂ j = 0).

In the following sections, we often use the symbol κ2t(u,2) to denote

the homology class of ιc2t(u,2), if no confusion is expected.

3. A cohomology relation. Let τr2, 7r3 be abelian groups and &C4)
 <Ξ H\TΓ2,

2 7r3).Then there exists a space E of the type K(τr2,2 τr3, 3 &(4)). E is considered

as the total space of a principal fibre space in the sense of [6], whose base

space B is of the type K(τr2, 2) and fibre F is of the type K(τrB, 3). We id-

entify

7Γ2 = 7 Γ 2 ( £ ) = P^ 7Γ2(β), 7Γ3 = 7 Γ 3 ( £ ) = £

where p: Z£—>5 is the projection and i: F-^E is the inclusion.

Under the identification H\τr2, 2 τr3)= Horn {HJjr2y 2); τr3), we define a

map η:τr2->τr3 by

;() ^(u,2), u € τr2.

Then for any u9v € π2(E), the Whitehead product [w, f] e 7Γ3(£) is

Let 7r4 be an abelian group and assume that a bilinear homomorphism

^ , 3 : 7Γ2®7Γ3—>τr4 and a homomorphism Eη: 7Γ3/27Γ3—>τr4 are given. By [2], III,

Theorem 17.4, Eη determines the class θ £ H6(τr3, 4 τr4). Moreover, let
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ψ € H2(τr2,2; 7r2) be the fundamental class. Then we have

PROPOSITION. In case Ext (H5(π292);irA) = 0, the relation

θ(k^) + ψ u £ ( 4 )=0,

where the cup product U is taken relative to T 2 ) 3, holds in J/6(τr2,2; τr4) if
and only if there exist the following relations:

Uu®v(u))= 0,

t,t(μ®tfa))+ Ttl$(v® [«,»])= Eη[u,v],

for all u,v 6 7r2.

PROOF. By the hypotheses, we can identify ί/β( π-2,2 ;7Γ4) = Hom(ί/β(7r2,2);

7Γ4). By the definition of u-product, we have

(u, 2)= TUΨiF^F.F^iu, 2))®k^(F0FlKβ(u, 2)))

κ,{u, 2))

Ki(v,2))= Tt,t(u®tfa))+ Ttlt(p®[u,v]).

On the other hand, by [2], III, Theorm 17.4,

where the U2-product is taken relative to the pairing φ:Ίri®iri—> iri such that

φ(a,ά)= Eη(a),

φ(ci,β)+φ(β,ά)=0,

2φ(«,/3)=0,

for any a, β € w3. By the definition of u2-product ([9]), we get

u tk^Mu, 2)) - φ (P'KF,F*t(u2)), k^KF.F^u, 2)))
2)),*ί«(ί 1^Λ(«,2)))

u,2)))

- Φdu,ύ], [«,«])= Eη(2η(u))= 0,

and similarly
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£ ( 4 ) U 2£<4>(*2(w, 2)Δ*4(τ;, 2))- φ([u, v], [u, v])= Eη[u, v].

The conclusion follows immediately.

4. The main theorem. Let η <= τr3(£2) be the Hopf class and Eη e TΓ4(AS3)

be its suspension. In any space X, it is well known that the following
relations hold:

[u,v] = (u + v)oη — uoη — voηy

( _ U)oη = uoη,

[u,U°η]= 0,

[U9 Voη] + [v, [U, V]] = [11, v]oEη,

for u, v € 7Γ2(X). Using the result of the previous section, we shall prove the
following realizability theorem.

THEOREM. Let τr2, 7r3 and 7r4 be abelian groups such that Ext (H5(τr2, 2);
7Γ4)= 0. For given bilinear homomorphisms T 2 2 : 7r2®7r2—>7r3 ατi<i T2 )3:7r2®7r3

—>7Γ4, ί ^ r ^ exists a space of the type K(τr2,2; 7r3, 3 £ ( 4 ) 7r4,4 &(5); •) //z
which T2,2, T2i3 are realized simultaneously as the Whitehead product oper-
ations if and only if the following conditions hold:

(i) There exists a map η : 7r2—>7r3 such that,

T2ι2(tt(g)τ;)= τ;(w + t ; ) - ̂ ( « ) - η(v),

for u,v € τr2.

(ii) There exists a homomorphtsm Eη : 7r3/2τr3—>τr4,

= Eη(T2t2(u®v)\

for u,v] ^ τr2.

REMARK. By [2], II, Theorem 22.1, there exists the epimorphism

Tor (τr2,τr2)+ Γ4(2τr2)->//5(τr2, 2).

Therefore, when π2 has no element of finite order or is cyclic of finite order
prime to 2, H5(ΊT2,2) vanishes and the condition Ext (H5(τr2,2); 7Γ4)= 0 is
satisfied.

PROOF. The necessity is stated above. Therefore, to prove the theorem,
it is sufficient to show the existence of a space realizing 7 \ 2 , T2 > 3. If the
condition (i) holds, then by [4] Theorem 1, there exists a space E of the
type K(τr2,2 7r3,3 £ ( 4 )) in which T 2 l 2 is realized. Now, suppose that the
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condition (ii) holds. As in §3, consider the principal fibre space (E,p,B)
with fibre F. By the proposition of §3, for θ € ίί6(τr3,3; 7r4) associated
with Eη, the relation (θ + fu)k^ =0 holds. Since p*kw = 0, we can
define ([7] p. 297)

(θ + ψu)pk^ e H*(E9irJ/p*H*(B9irA) + Qθ + p*ψu)HχE,τr3),

where ιθ denotes the suspension of θ. Let kx be a representative of (θ + ψ
U)p*<4) and let μ:Fx E->E be the operation of F n E. Then, by [8]

Theorem 1,

where 16'(α:/)= 1^(0== ^ i (c denotes of the fundametal class of fl%F,7rs)).
As ^ is additive, we have 1θ(t — x}— 0. Hence ι — x — 2x" for some

x' € H*(F, 7r3). In the spectral sequence associated with (E, p, B), ψ<S>(o —> x)
defines a class of Έ%**eΈ%\ and d^ψ®^ - x)} = {ψl)2χ/k( i:>} = {2x\fuk^)}
= [x"2θ(k^)} = {0} € £J °, where *", ϊ " are endomorphisms of H\B, τr3),
ψ*UH4(β,7r3) induced by # " respectively. Thus ^(8)(i- — x) defines a class of
E2J which is represented by some element k0 € H5(E, τr4), and (see e. g. [1])

μ*k0 =(ι — x')®p*ψ

i*kQ = 0.

Let ^ ( 5 ) = ô + ^i Then we have

L e t / : £->K(7r4, 5) be a map representing the homotopy class determined
by &C5). / induces a principal fibre space (X9q,E) with fibre Y of the type
K(τr4,4). We identify τr2(X)= <7iV2(£), τr3(X)= qi^(E) and τr4(X) = ;#τr4(Y) =
7r4, where j:Y->X is the inclusion. Then by [8] Theorem 2, for u € τr2(X) =
7Γ2, α € 7Γ3(X)=7Γ3,

thus T2,3 is realized in X. As it is supposed that T2 > 2 is realized in E, under
the above identification, T 2 ) 3 is realized in X. The theorem is proved.



208 K. IWATA

BIBLIOGRAPHY

[ 1J BOTT, R. AND SAMELSON, H., On the Pontrjagin product in spaces of paths, Com-
ment. Math. Helv., 27(1953), 320-337.

[ 2 ] ElLENBERG, S. AND MACLANE,S., On the groups ΐl(ir,n) I. Ann. of Math., 58(1953),
55-106, II, Ann. of Math., 60(1954), 49-139, III, Ann. of Math., 60(1954), 513-557.

[ 3 ] HILTON, P. J., Math. Rev., 22(1961), #5971.
[ 4 ] IWATA, K. AND MlYAZAKI, H., Remarks on the realizabilty of Whitehead products,

Tohoku Math. Journ., 12(1960), 130-138.
[ 5 ] MlYAZAKI, H., On realizations of some Whitehead products, Tohoku Math. Journ., 12

(1960), 1-30.
[ 6 ] PETERSON, F. P. AND THOMAS, E., A note on non stable cohomology operations, Bol.

Soc. Mat. in Mexicana, 3(1958), 13-18.
[ 7 ] PETERSON, F. P. AND STEIN, N., TWO formulas concerning secondary cohomology

operations, Amer. Journ. of Math., 81(1959), 281-305.
[ 8 ] PETERSON, F. P., Whitehead product and the cohomology structure of principal fibre

spaces, Amer. Journ. of Math., 82(1960), 649-652.
[ 9 ] STEENROD, N. E., Product of cocycles and extensions of mappings, Ann. of Math.,

48(1947), 290-320.

TOHOKU UNIVERSITY.




