INTEGRABILITY OF NON-NEGATIVE TRIGONOMETRIC SERIES. II.

R. P. Boas, Jr.*

(Received July 20, 1964)

There is an extensive literature on connections between the integrability of $x^{\alpha} f(x)$ and the convergence of $\sum c_{n} n^{-\alpha-1}$ when c_{n} are (in some sense) sine or cosine coefficients of $f(x)$ and either the coefficients or the function satisfies a condition of positivity or monotonicity. I considered some cases when $\alpha>0$ in [1]. I should now like to bring out the connection between these results and some older ones; I give a few additional results, and correct one of the theorems of [1].

Theorems 3 and 4 of [1] imply the following result (here $\gamma=1+\alpha$, where α is the index appearing in [1]).

THEOREM A. If $1<\gamma<2, g(x) \geqq 0$ on $(0, \pi), x g(x) \in L$, and b_{n} are the generalized sine coefficients of g, then $\sum n^{-\gamma}\left|b_{n}\right|$ converges if and only if $x^{\gamma-1} g(x) \in L$.

In this form, Theorem A is seen to be a natural extension of the following theorem of B. Sz.-Nagy [3], which is also a special case of a Theorem of Edmonds [2].

ThEOREM B_{1}. If $0<\gamma \leqq 1, g(x)$ is decreasing and bounded below in $(0, \pi), x g(x) \in L$ and b_{n} are the generalized sine coefficients of g, then $\sum n^{-\gamma}\left|b_{n}\right|$ converges if and only if $x^{\gamma-1} g(x) \in L$.

Thus, as is usual with theorems of this kind, an increase in the range of γ corresponds to a weakening of the hypothesis (from decreasing g to positive g).

The proof in [1] also establishes a generalization of Theorem A.
Theorem A'. If $1<\gamma<2, G(x)$ increases on $(0, \pi), \int_{0}^{\pi} x d G(x)<\infty$

[^0]and $b_{n}=(2 / \pi) \int_{0}^{\pi} \sin n x d G(x)$, then $\sum n^{-\gamma}\left|b_{n}\right|$ converges if and only if $\int_{0}^{\pi} x^{\gamma-1} d G(x)<\infty$.

Theorem $B_{1}(0<\gamma<1)$ can be deduced from Theorem A^{\prime} by integration by parts.

Theorem 6 of [1], restated in our present notation, gives an analogue of Theorem A for $\gamma=2$:

If $g(x) \geqq 0$ on $(0, \pi), x g(x) \in L$ and b_{n} are the generalized Fourier sine coefficients of g then $\sum n^{-2}\left|b_{n}\right|$ converges if and only if $x g(x) \log x \in L$.

We might reasonably ask instead for a condition on the coefficients b_{n} that would be equivalent to $x g(x) \in L$, provided that we do not assume $x g(x)$ $\in L$ to begin with. If we retain the condition $g(x) \geqq 0$, the generalized sine coefficients are not defined unless $x g(x) \in L$ and so at first sight there seems to be no possibility of a theorem of the kind we are asking for. However, if we did not have $g(x) \geqq 0$ we could have $\int_{0+}^{\pi} x_{g}(x) d x=0$ and then

$$
\int_{0+}^{\pi} g(x) \sin n x d x=-\int_{0}^{\pi}(n x-\sin n x) g(x) d x
$$

even when $x g(x) \notin L$. This suggests that it would be reasonable to take

$$
\begin{equation*}
b_{n}=-2 \pi^{-1} \int_{0}^{\pi}(n x-\sin n x) g(x) d x \tag{1}
\end{equation*}
$$

as generalized sine coefficients provided that $x^{3} g(x) \in L$.
We have the following theorem.

Theorem 1. If $g(x) \geqq 0$ on $(0, \pi), x^{3} g(x) \in L$ and b_{n} are defined by (1) then $x,(x) \in L$ if and only if $n^{-1} \sum_{k=1}^{n} k^{-1} b_{k}=o(1)$.

There are analogous results for cosine coefficients. Corresponding to Theorem B 1 , Sz.-Nagy proved

ThEOREM B_{2}. If $0<\gamma \leqq 1, f(x)$ is decreasing and bounded below on $(0, \pi), f(x) \in L$ and b_{n} are the cosine coefficients of f then $\sum n^{-\gamma}\left|a_{n}\right|$ converges if and only if $x^{\gamma-1} f(x) \in L(0<\gamma<1), f(x) \log x \in L(\gamma=1)$.

If we want to extend this to larger values of γ we have to generalize the cosine coefficients a_{n}, since when $f(x) \geqq 0$ and $f(x) \in L$ we already have' $x^{\gamma-1} f(x) \in L, \gamma \geqq 1$. With the same sort of motivation as for generalized sine coefficients, we take

$$
\begin{equation*}
a_{n}=-2 \pi^{-1} \int_{0}^{\pi}(1-\cos n x) f(x) d x \tag{2}
\end{equation*}
$$

provided that $x^{2} f(x) \in L$.
Then we have the following corrected version of Theorems 7 and 8 of [1].
THEOREM 2. If $1<\gamma<3, x^{2} f(x) \in L, f(x) \geqq 0$ on $(0, \pi)$, and a_{n} are defined by (2), then $\sum n^{-\gamma}\left|a_{n}\right|$ converges if and only if $f(x) x^{\gamma-1} \in L$.

There is a more general version with Stieltjes integrals, analogous to Theorem A'.

The analogue of Theorem 1 for cosine coefficients corresponds to the exceptional case $\gamma=1$ of Theorem B_{2}. I state it in Stieltjes form.

Theorem 3. If $F(x)$ decreases on $(0, \pi), \int x^{2}|d F(x)|<\infty$, and

$$
a_{n}=-2 \pi^{-1} \int_{0}^{\pi}(1-\cos n x) d F(x)
$$

(so that $a_{n} \geqq 0$) then $F(x)$ is bounded if and only if $n^{-1} \sum_{k=1}^{n} a_{k}=o(1)$.
We shall deduce Theorem 1 from Theorem 3. We can also deduce the following result, which can be considered as a replacement for the missing case $\gamma=0$ of Theorem B_{1}.

THEOREM 4. If $g(x)$ decreases on $(0, \pi), \int_{0}^{\pi} x^{2}|d g(x)|<\infty, g(\pi-)=0$, and $b_{n}=(2 / \pi) \int_{0}^{\pi} g(x) \sin n x d x$ (necessarily nonnegative), then $g(0+)<\infty$ (i.e., g is bounded) if and only if $n^{-1} \sum_{k=1}^{n} k b_{k}=o(1)$.

Proof of Theorem 2. This theorem is what is actually established by the argument of [1], Theorems 7 and 8 . We reproduce the argument briefly.

Suppose $\sum n^{-\gamma} a_{n}$ converges. Then (since everything is nonnegative).

$$
\begin{aligned}
\int_{0}^{\pi}\left\{\sum_{n=1}^{\infty} n^{-\gamma}(1-\cos n x)\right\} f(x) d x & =\sum_{n=1}^{\infty} n^{-\gamma} \int_{0}^{\pi} f(x)(1-\cos n x) d x \\
& =-\frac{1}{2} \pi \sum_{n=1}^{\infty} a_{n} n^{-\gamma}
\end{aligned}
$$

But

$$
\sum_{n=1}^{\infty} n^{-\gamma}(1-\cos n x) \geqq A x^{2} \sum_{n=1}^{1 / x} n^{-\gamma+2} \geqq A x^{\gamma-1}
$$

and so $f(x) x^{\gamma-1} \in L$.
Suppose $f(x) x^{\gamma-1} \in L$. Then

$$
\begin{aligned}
\frac{1}{2} \pi \sum_{n=1}^{\infty} n^{-\gamma}\left|a_{n}\right| & \leqq \sum_{n=1}^{\infty} n^{-\gamma} \int_{0}^{\pi}(1-\cos n x)|f(x)| d x \\
& =\int_{0}^{\pi}\left\{\sum_{n=1}^{\infty} n^{-\gamma}(1-\cos n x)\right\}|f(x)| d x
\end{aligned}
$$

But

$$
\sum_{n=1}^{\infty} n^{-\gamma}(1-\cos n x) \leqq \sum_{1}^{1 / x}+\sum_{1 / x}^{\infty} \leqq \frac{1}{2} x^{2} \sum_{1}^{1 / x} n^{2-\gamma}+\sum_{1 / x}^{\infty} n^{-\gamma}=O\left(x^{\gamma-1}\right),
$$

and since $f(x) x^{\gamma-1} \in L$ it follows that $\sum n^{-\gamma}\left|a_{n}\right|$ converges.
Proof of Theorem 3. If $F(x)$ is bounded it is of bounded variation and so $a_{n}=o(1)$. It is then trivial that $n^{-1} \sum_{k=1}^{n} a_{k}=o(1)$

If this average is bounded, we have, with $2 m+1 \leqq n$,

$$
\begin{aligned}
\frac{1}{2} \pi n^{-1} \sum_{k=1}^{n} a_{k} & =n^{-1} \sum_{k=1}^{n} \int_{0}^{\pi}(1-\cos k x)|d F(x)| \\
& =\int_{0}^{\pi}\left\{\frac{1}{n} \sum_{k=1}^{n}(1-\cos k x)\right\}|d F(x)| \\
& \geqq \int_{0}^{\pi}\left\{\frac{1}{2 m+1} \sum_{k=1}^{m}(1-\cos (2 k+1) x)\right\}|d F(x)| \\
& \geqq \frac{1}{3} \int_{0}^{\pi}\left\{1-\frac{\sin 2 m x}{2 m \sin x}\right\}|d F(x)|
\end{aligned}
$$

Letting $m \rightarrow \infty$, we have $\int_{0}^{\pi}|d F(x)|<\infty$ by Fatou's lemma

Proof of Theorem 1. Let

$$
-\frac{1}{2} \pi b_{n}=\int_{0}^{\pi}(n x-\sin n x) g(x) d x,
$$

with $g(x) \geqq 0$. First suppose $x_{g}(x) \in L$ so that $b_{n}=o(n)$ (since the generalized sine coefficients of g are $o(n)$). Then clearly

$$
\begin{equation*}
n^{-1} \sum_{k=1}^{n} k^{-1} b_{k}=O(1) \tag{3}
\end{equation*}
$$

Now suppose that (3) holds. Put $G(x)=\int_{x}^{\pi} g(t) d t$. Since $x^{3} g(x) \in L$, we have

$$
x^{3} G(x) \leqq \int_{x}^{\delta} t^{3} g(t) d t+x^{3} \int_{\delta}^{\pi} g(t) d t
$$

By taking δ small and then x small, we see that $x^{3} G(x) \rightarrow 0$ as $x \rightarrow 0$. Then

$$
\begin{aligned}
\frac{1}{2} \pi b_{n}=-\int_{0}^{\pi}(n x-\sin n x) g(x) d x & =\int_{0}^{\pi}(n x-\sin n x) d G(x) \\
& =-n \int_{0}^{\pi} G(x)(1-\cos n x) d x .
\end{aligned}
$$

We can now apply Theorem 3 since

$$
\begin{aligned}
\int_{0}^{\pi} x^{2} G(x) d x & =\int_{0}^{\pi} x^{2} d x \int_{x}^{\pi} g(t) d t \\
& =\frac{1}{3} \int_{0}^{\pi} t^{3} g(t) d t<\infty .
\end{aligned}
$$

Theorem 3 then says that $G(x) \in L$, i.e.

$$
\int_{0}^{\pi} d x \int_{x}^{\pi} g(t) d t=\int_{0}^{\pi} t g(t) d t<\infty .
$$

Proof of Theorem 4. Since $\int x^{2} d g(x)$ is finite it follows that $g(x)$ $=o\left(x^{-2}\right)$ as $x \rightarrow 0+$ (cf. the preceding proof). Then we have

$$
\frac{1}{2} \pi b_{n}=\int_{0}^{\pi} g(x) \sin n x d x=-n^{-1} \int_{0}^{\pi}(1-\cos n x) d g(x) .
$$

By Theorem 3, $g(x)$ is bounded if and only if $n^{-1} \sum_{k=1}^{n} k b_{k}=o(1)$.
REmARK. (Added October 30, 1964) Suppose $0<\gamma \leqq 1, g(x) \geqq 0$ with $x g(x) \in L$, and let b_{n} be the generalized sine coefficients of g. Comparing Theorems A and B_{1}, we might naturally ask what conditions are necessary and sufficient (a) for $\sum n^{-\gamma}\left|b_{n}\right|$ to converge, (b) for $x^{\gamma-1} g(x) \in L$. The answer to (a) is not known, but an answer to (b) is an easy consequence of Theorem A. We have $x^{\gamma-1} g(x) \in L$ if and only if $x^{\gamma+\delta-1} g(x) C_{\delta}(x) \in L$, where $0<\delta<1$, $\gamma+\delta>1$, and $C_{\delta}(x)=\sum n^{\delta-1} \sin n x$. By Theorem A, this in turn is equivalent to $\sum n^{-\gamma-\delta}\left|c_{n}\right|<\infty$, where c_{n} are the sine coefficients of $g(x) C_{\delta}(x)$, provided that $x g(x) C_{\delta}(x) \in L$, i.e. $x^{1-8} g(x) \in L$. The coefficients c_{n} are explicitly expressible in terms of the b_{n} by means of convolutions. There is a similar result for cosine series.

References

[1] R. P. BoAs, Jr., Integrability of nonnegative trigonometric series, Tôhoku Math. Journ. 14(1962), 363-368.
[2] S. M. Edmonds, The Parseval formulae for monotonic functions, I, II, III, IV, Proc. Cambridge Phil. Soc., 43 (1947), 289-306; $46(1950), 231-248, ~ 249-267$; 49 (1953), 218-229.
[3] B. Sz. -NAGy, Séries et intégrales de Fourier des fonctions monotones non bornées, Acta Sci. Math. (Szeged) 13 (1949), 118-135.

Northwestern University
Evanston, Illinois

[^0]: * Research supported by grant no. GP 2491, National Science Foundation.

