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There is an extensive literature on connections between the integrability

of xaf(x) and the convergence of Σ cnn~a~ι when cn are (in some sense) sine

or cosine coefficients of f{x) and either the coefficients or the function satisfies
a condition of positivity or monotonicity. I considered some cases when cOQ
in [1]. I should now like to bring out the connection between these results
and some older ones I give a few additional results, and correct one of the
theorems of [1].

Theorems 3 and 4 of [1] imply the following result (here Ύ=l + Λ, where
a is the index appearing in [1]).

THEOREM A. If 1 < Ύ < 2, g{x) ^ 0 on (0, TΓ), xg(x) £ L, and bn are

the generalized sine coefficients of ff, then Σ n~Ύ I bn I converges if and only

if' xΊ~ιg{x) € L.

In this form, Theorem A is seen to be a natural extension of the following
theorem of B. Sz.-Nagy [3], which is also a special case of a Theorem of
Edmonds [2].

THEOREM BX. If 0 < 7 rg 1, g{x) is decreasing and bounded beloτv in

(0, 7r), xg{x) £ L and bn are the generalized sine coefficients ofg, then ^Zn~7\bn\

converges if and only if xy~ι g(x) € L.

Thus, as is usual with theorems of this kind, an increase in the range
of Ύ corresponds to a weakening of the hypothesis (from decreasing g to
positive g).

The proof in [1] also establishes a generalization of Theorem A.

THEOREM A'. // 1 < Ύ < 2, G(x) increases on (0, TΓ), / xdG{x) < oo
Jo
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and bn = (2/τr) I sin nxdG(x), then yZn~y\bn\ converges if and only if

xΊ-ιdG(x)<oo .

Theorem Bx (0< Ύ <1) can be deduced from Theorem A' by integration
by parts.

Theorem 6 of [1], restated in our present notation, gives an analogue of
Theorem A for Ύ=2:

If g(x) ^ 0 on (0,7r), xg{x) £ L and bn are the generalized Fourier sine

coefficients of g then ^2n~2\bn\ converges if and only if xg(x)\ogx £ L.

We might reasonably ask instead for a condition on the coefficients bn

that would be equivalent to xg{x) £ L, provided that we do not assume xg(x)
€ L to begin with. If we retain the condition g{x) ^ 0, the generalized sine

coefficients are not defined unless xg{x) £ L and so at first sight there seems
to be no possibility of a theorem of the kind we are asking for. However,

if we did not have g(x)^0 we could have J xg(x)dx=0 and then

£ g(x) sin nxdx = — I {nx — sin nx)g{x)dx
Jo

even when xg{x) K L. This suggests that it would be reasonable to take

(1) bn = —2τr~ι \ {nx — sin nx)q(x)dx
Jo

as generalized sine coefficients provided that x3g(x) € L.
We have the following theorem.

THEOREM 1. If g(x) ^ 0 on (0,τr), x3g(x) € L and bn are defined by (1)
n

then x , Or) € L if and only if n~ι ^ k~ι bk = o(ΐ) .

There are analogous results for cosine coefficients. Corresponding to
Theorem B1? Sz.-Nagy proved

THEOREM B2. // 0 < 7 ^ 1 , f{x) is decreasing and bounded below on

(0,7r), f(x) ζ L and bn are the cosine coefficients off then ]P n~y \ an \ converges

if and only if x*~ι f(x) € L (0< Ύ <1), f(x) log x € L (Ύ= 1).
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If we want to extend this to larger values of 7 we have to generalize
the cosine coefficients an9 since when fix) ^ 0 and f(x) £ L we already have'
xΎ~Ί f(x) £ L, 7 ^ 1 . With the same sort of motivation as for generalized sine
coefficients, we take

( 2 ) an — — 2τr~1 I (1 — cos nx)f(x) dx
Jo

provided that x2f(x) <= L.

Then we have the following corrected version of Theorems 7 and 8 of [1].

THEOREM 2. / / 1 < 7 < 3, x2f(x) z L, f(x) ^ 0 on (0, TΓ), and an are

defined by (2), then ^2n~y\an\ converges if and only if f{x)xy~ι € L.

There is a more general version with Stieltjes integrals, analogous to
Theorem A'.

The analogue of Theorem 1 for cosine coefficients corresponds to the
exceptional case 7=1 of Theorem B2. I state it in Stieltjes form.

THEOREM 3. If F(x) decreases on (0,τr), J x*\dF(x)\ < oo, and

an = — 2τr~ι I (1 — cos nx)dF(x)

n

(so that an §: 0) then Fix) is bomided if and only if n~ι^2,ak = o(l) .
k = l

We shall deduce Theorem 1 from Theorem 3. We can also deduce the
following result, which can be considered as a replacement for the missing
case 7=0 of Theorem Bi.

THEOREM 4. If g(x) decreases on (0,τr), I x2\dg(x)\ < oo , g{τr—) — 0,
•* 0

and bn— (2/ττ) J g{x) sin nxdx {necessarily nonnegative), then ρ(0 + )<oo (i.e.,

n

g is bounded) if and only if n~ιΣ kbk = o(l).
A ; = l

PROOF OF THEOREM 2. This theorem is what is actually established by
the argument of [1], Theorems 7 and 8. We reproduce the argument briefly.

Suppose ^2ιn"γan converges. Then (since everything is nonnegative).
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I \ ΣZ n~Ύ (1 ~~ c o s nx) i f(χ)dx = Σ n~Ύ I f(χ)(X —cos nx)dx

9- ̂  Σ
Z n=l

But
00 I/as

X) n~y (1-cos no:) ̂  Ar2 Σ

and so f(x)xΎ~1 € Z,.
Supposef(x)xy~ι € L. Then

-cos^)\f{x)\dx

But

rz=l 1 I/a; 1 1/x

and since f{x)xΊ~ι € L it follows that 2Z w~Y | an \ converges.

PROOF OF THEOREM 3. If F(x) is bounded it is of bounded variation
n

and so an= o(l). It is then trivial that n~ι Σak = o(l)

If this average is bounded, we have, with 2m + t/^n,

= »"ιΣ f (l-co

= /β* { v Σ (1 -cos fcr)J

1 Γ-j sin2mx_)
~ 3 Jo [ 2m s i n ^ l ' • 7

Letting m-^> ooy we have I |'<iF(^)| <^o by Fatou's lemrna
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P R O O F O F T H E O R E M 1. Let

1 Γ
τz-7rbn = I (nx — sin nx)q(x)dx ,

with g(x)^O. First suppose xg(x)zL so that bn — o(n) (since the generalized
sine coefficients of g are o(n)). Then clearly

(3) n-'Σk-'b^
k=ϊ

Now suppose that (3) holds. Put G(x) = J g(t)dt. Since xsg(x)zL, we

have

x3G(x) ^ J tzg{t)dt + x3 f g{t) dt.

By taking δ small and then x small, we see that x3G(x) —• 0 as x—*0. Then

1 Γ Γ
-^-7rbn= — I (nx—sin nx)g{x)dx = I (nx — sin nx) dG(x)

— —n\ G(x)(l —cos nx) dx .
Jo

We can now apply Theorem 3 since

f x2G(x)dx= [ x2dx ί q(t)dt
J0 Jo Jx °

t3g(t)dt <oo .

Theorem 3 then says that G(x) € L, i.e.

< oo .

PROOF OF THEOREM 4. Since J x2dg(x) is finite it follows that g(x)

o(x~2) as ; r -*0+ (cf. the preceding proof). Then we have

1 Γ Γ*
—^-irbn = J ^(x)sin nxdx = — n""1 / (1 — cos nx)dg(x).
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n

By Theorem 3, g(x) is bounded if and only if n~ιΣkbk = o(l).
A : = l

REMARK. (Added October 30, 1964) Suppose 0 < 7 ^ 1, g(x) ^ 0 with
rgr(:r) ^ L, and let έw be the generalized sine coefficients of g. Comparing
Theorems A and Bl9 we might naturally ask what conditions are necessary

and sufficient (a) for ^n~Ί\bn\ to converge, (b) for x7'1 g(x) e L. The answer

to (a) is not known, but an answer to (b) is an easy consequence of Theorem
A. We have xΊ~ι g(x) <Ξ L if and only if xy+b~ι g(x)Cδ(x) e L, where 0 < δ < 1 ,

Ύ + δ > l , and Cδ(x) = Σn8~1 sin?z.r. By Theorem A, this in turn is equivalent

to Σn~y~δ\cn\ < °°> where cn are the sine coefficients of g(x)Cδ(x), provided
that xg(x)Cδ(x) € L, i.e. xι~δg(x) € L. The coefficients cn are explicitly expres-
sible in terms of the bn by means of convolutions. There is a similar result
for cosine series.
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