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There is an extensive literature on connections between the integrability
of z*f(x) and the convergence of >_ ¢,n *"! when ¢, are (in some sense) sine
or cosine coefficients of f{x) and either the coefficients or the function satisfies
a condition of positivity or monotonicity. I considered some cases when a>0
in [1]. I should now like to bring out the connection between these results
and some older ones; I give a few additional results, and correct one of the
theorems of [1].

Theorems 3 and 4 of [1] imply the following result (here Y=1+a, where
a is the index appearing in [1]).

THEOREM A. If 1<v <2, 9(x)=0 on (0,7), xg(x) € L, and b, are
the generalized sine coefficients of g, then ) n~"|b,| converges if and only
if 277'g(x) € L.

In this form, Theorem A is seen to be a natural extension of the following
theorem of B. Sz.-Nagy [3], which is also a special case of a Theorem of
Edmonds [2].

THEOREM B,. If 0 <Y =1, g(x) is decreasing and bounded below in
0, m), zg(x) € L and b, are the generalized sine coefficients of g, then > _n~"|b,|
converges if and only if 7' g(x) € L.

Thus, as is usual with theorems of this kind, an increase in the range
of ¥ corresponds to a weakening of the hypothesis (from decreasing g to
positive g).

The proof in [1] also establishes a generalization of Theorem A.

THEOREM A'. If 1<v<2, G(x) increases on (0, ), f x dG(x) < oo
0
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and b, = (2/7) f sin nxdG(x), then _ n~"|b,| converges if and only if
0
[ adG@) < oo .
0

Theorem B, (0<7Y <1) can be deduced from Theorem A’ by integration
by parts.

Theorem 6 of [1], restated in our present notation, gives an analogue of
Theorem A for v=2:

If g(x)=0 on (0,7), xg(x) € L and b, are the generalized Fourier sine
coefficients of g then ) n7%|b,| converges if and only if xg(x)logx € L.

We might reasonably ask instead for a condition on the coefficients b,
that would be equivalent to xg(x)< L, provided that we do not assume xg(x)
€ L to begin with. If we retain the condition g(x)=0, the generalized sine

coefficients are not defined unless xg(x) € L and so at first sight there seems
to be no possibility of a theorem of the kind we are asking for. However,

K4

if we did not have g(x) =0 we could have f zg(x)dx=0 and then
0+

f g(x) sin nxdx = — f (nx — sin nx)g(x)dx
0+ 0

even when xg(x) & L. This suggests that it would be reasonable to take
(1) b, = —2m! f (nx — sin nx) g(x)dx
0

as generalized sine coefficients provided that z*¢(x) € L.
We have the following theorem.
THEOREM 1. If g(x) =0 on (0,w), 2*g(x) € L and b, are defined by (1)
then x (x)e L if and only if n™' 2 k' b, = o(1) .
k=1

There are analogous results for cosine coefficients. Corresponding to
Theorem B,, Sz.-Nagy proved

THEOREM B,. If 0<v =1, f(x) is decreasing and bounded below on
(0,7), flx) e L and b, are the cosine coefficients of f then > n~"|a,| converges
if and only if 7' fle)e L (0< v <1), flx)logx € L (v=1).
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If we want to extend this to larger values of ¥ we have to generalize
the cosine coefficients a,, since when flx) =0 and f(x)< L we already have
x7' f(x) € L, Y=1. With the same sort of motivation as for generalized sine
coefficients, we take

(2) ay = — 2m1 f:a — cos nx) f(z) dx

provided that x? f(x) € L.
Then we have the following corrected version of Theorems 7 and 8 of [1].

THEOREM 2. If 1<v <3, 22f(x)e L, f(x)=0 on (0,m), and a, are
defined by (2), then > n~"|a,| converges if and only if f(x)x"™" € L.

There is a more general version with Stieltjes integrals, analogous to
Theorem A’.

The analogue of Theorem 1 for cosine coefficients corresponds to the
exceptional case Y=1 of Theorem B,. I state it in Stieltjes form.

THEOREM 3. If F(x) decreases on (0,m), [ 2*|dF(@)| < o, and
a, = — 277“‘]; (1 — cos nx)dF(x)

(so that a,=0) then F(x) is bounded if and only if n™'Y_ a; = o(1).
k=1

We shall deduce Theorem 1 from Theorem 3. We can also deduce the
following result, which can be considered as a replacement for the missing
case Y=0 of Theorem B,.

THEOREM 4. If g(x) decreases on (0,), j; xt|dg(x)] < oo, g(mr—)=0,
and b,= (2/m) f g(x) sin nxdx (necessarily nonnegative), then g(0+)<<oo (ie.,
0

g is bounded) if and only if n~'2 kb, = o(l).

k=1

PROOF OF THEOREM 2. This theorem is what is actually established by
the argument of [1], Theorems 7 and 8. We reproduce the argument briefly.

Suppose >_n7"a, converges. Then (since everything is nonnegative).
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4 ©o o T

f {Z n"(1—cos nx) | flx)dx = Y n‘*f S(x)(1 —cos nx)dx
0 ln=1 n=1 0

__ 1 < -y
= Zvrgann

But

1/x

Z nY (1—cos nx) = Az® 3 n7"*? = Ax?

n=1 n=1

and so f(x)z’! € L.
Suppose f(x)x”™' € L. Then

—;:77 i;: n?a,| = i nY ﬁz(l—cos nx)| f(x)Idx

= j:l{in"’(l—cos nx)}) | flx) dx.

But
oo 1/x oo ) 1 1/x
> oa'1- cosnx)<z+2§_—2— 2?_‘,n“’—kZ,n‘”’—O(x“)
1/z 1z

n=1

and since f(x)x"' € L it follows that >_~n~"|a,| converges.

PROOF OF THEOREM 3. If F(x) is bounded it is of bounded variation

and so a,= o(1). It is then trivial that » ‘Zak = o(1)
k=]

If this average is bounded, we have, with 2m + 1 =< n,

%wn“i ay = n“i_/;z(l——coskx)ldF(x)l
fo {—712— i(l—coékx)} |dF ()]
= ”{—~Z<1 |
> o cos (2/e+1)x)j |dF(z)|
1 (" in 2
=4[ - sz are.

Letting m — oo, we have f |dF(x)| <oo by Fatou’s lemma
0
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PROOF OF THEOREM 1. Let

- —;—wbn = f (nx — sin nx)g(x)dx,
0

with g(x)= 0. First suppose xg(x)e L so that b,=o(n) (since the generalized
sine coefficients of g are o(n)). Then clearly

(3) 4 S kb = O(1).

Now suppose that (3) holds. Put G(x) = f g(t)dt. Since x’g(x)c L, we

have
1) 4
2G(x) = f pyt)de + 2 [ gy
x 8
By taking & small and then x small, we see that £*G(x) — 0 as x — 0. Then

1 i . " .
77rbn = —-/; (nx—sin nx)g(x)dzx = j; (nx—sin nx) dG(x)

= ——nj;tG(x)(l—cos nx)dx .

We can now apply Theorem 3 since

j:t:ﬁG(x) dx = f:aﬂ dx _/:g(t) dt

= %f g(t)dt < oo.
0
Theorem 3 then says that G(x) € L, i.e.

f:dxf:g(t) dt = f:tg(t) dt < oo.

PROOF OF THEOREM 4. Since f x*dg(x) is finite it follows that g(x)

=o(x"?) as £ — 0+ (cf. the preceding proof). Then we have

1 - . o
5 wh, = _/; g(x)sin nxdx = —n ‘j; (1—-cos nx) dg(x).
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By Theorem 3, g(x) is bounded if and only if n7' D> kb, = o(1).

k=1

REMARK. (Added October 30, 1964) Suppose 0 <7 =1, g(x)=0 with
xg(x) € L, and let b, be the generalized sine coefficients of g. Comparing
Theorems A and B,, we might naturally ask what conditions are necessary

and sufficient (a) for > n77|b,| to converge, (b) for 27'¢g(x) e L. The answer
to (a) is not known, but an answer to (b) is an easy consequence of Theorem
A. We have 277! g(x) € L if and only if 2¥**"! g(x)Cs(x) € L, where 0 <8 <1,
Y+8>1, and Cyx)=>_7°' sinnx. By Theorem A, this in turn is equivalent

to D n7""?|c,| < oo, where ¢, are the sine coefficients of g¢(x)Cy(x), provided

that zg(x)Cs(x) € L, i.e. ' °g(x)e L. The coefficients ¢, are explicitly expres-
sible in terms of the b, by means of convolutions. There is a similar result
for cosine series.
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