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Introduction. In this paper we shall define the notion of a principal
cofibration which generalizes the cofibration X — C; —2Y induced by a map
f:X—Y where C; means the mapping cone of f and 3Y the reduced
suspension of Y. The notion of a principal cofibration is a dual of a principal
fibration in the sense of Peterson-Thomas [6].

One of the problem considered here is the following; under what con-
ditions is a cofibration equivalent to a principal ? This is answered by
Theorem 2.7 in §2.

In § 3 we dualize the results in [5], which are in the special case of induced
cofibration. In §4 we mention an application to the Lusternik-Schnirelmann
category and obtain a generalization of Berstein-Hilton’s results.

1. Preliminaries. In this paper we assume that all spaces have base
point denoted by * and all maps (homotopies) preserve (keep fixed) base point.

A map q: B— E is called a cofibration if it has the homotopy lowering
property for all spaces, i.e. if, for each space P and for all maps f,: E— P
and homotopies g,: B— P with g, = f,q, there exists a homotopy f,: E— P
with ¢,=f,9q. If ¢ is an inclusion map, this is the homotopy extension
property. The quotient space F=E/q(B) is called the cofibre of q. Frequently
the cofibration g : B— E with cofibre F will be denoted by the sequence

BZE 2» F, where p: E— F is the projection.

Given a map f: A— B, let C, be the mapping cone of f, the space
obtained from CA U B by identifying (a,1) e CA with f(a), where CA denotes
the reduced cone over A.

The set of all homotopy classes of maps A— B will be denoted by
7(A, B), which contains the distinguished element o, i.e. the homotopy class
of the constant map % : A— B. The homotopy class of a map f: A— B is
denoted by [f].

For maps f: A—C and g: B—C, we defineamap fVg: AVB—C by

(fVg)a*=f(a) acA
(fVg)(x,b)=g(®) beB
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where AV B is the subspace AX* U *XB of A X B. Then for a map h:C
— D we have

(1) (hof)V(hog)=ho(fVyg).

For maps f: A—C and g: B— D, we define a map fVg:AVB—->CVD
by fVyg=fxglAVB.

A space X is an H'-space if there exists a map p: X — XV X such that

1 *\V1
the compositions X—»XVX—V>XVX—>Xand X——»X\/X—~>
A’

XV X~——>X are homotopic to the identity. Here A’ means the folding
map, i.e. A'(x, *)=A'(%,x) = x and 1 means the identity map.

A space X is an H'-space in the strong sense if there exists a map
w:X—>XV X and a map v: X — X such that

(i) the composition x-tox VvV X 1—\/—9:X VX ~A—+X is homotopic to the
identity.
.. 1Vw A
(i1) the composition xtx VX—XV X— X is null homotopic.
1V uV1

(iii) the compositions xt.x VXX—XVXV X and X———»X\/X

XVXVX are homotopic.

2. The principal cofibration.

DEFINITION 2.1. The cofibration B—(L»E—P>F is a principal if the
following conditions are satisfied:
I). F is an H'-space with co-multiplication u.
II). There exists a map ¢: E—~FV E and a map h:F — Ey, where E
denotes the space obtained from E \ E by identifying (g(b), *) with (%, ¢(b))
for each b ¢ B, subject to the conditions;
1) the diagram

¢

E— FVE
7| | 1vo
F -t FvF
is commutative.
2) the diagram
B -2 FVB
ql l 1Vgq

ELFVE
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is commutative. Here 7, denotes the injection into the second factor.
3) the diagram

E-* FvE

m l h <7 k,

Ey

is homotopy-commutative. Here k;: E — E, is the composition of the injec-
tion j;: E— E V E followed the identification map n: E\V E— Ey, (:=1,2).

EXAMPLE 1. The well known cofibration ALCA!;EA is a principal.
In fact, if we represents a point in reduced cone CA by (a,%) and a point in
reduced suspension 3A by <a,t>, then ¢:CA —3AVCA and h:3A — (CA)x

are defined as follows:

(<a,2t>,%) 0=t=1/2
¢(a’ t) = {
(%, (a,2t-1) 1/2=¢t=1
((a,28) 0=t=1/2
h<a,t> = {
(a,2—-2¢),%) 1/2=t=1.

To show that Example 1 satisfies the conditions of Definition 2.1 is similar
to the proof of Example 2, so we only prove Example 2.

EXAMPLE 2. Let f: A—B be a map. Then the cofibration B—~C,—3A
induced by A —>CA —3A via f is principal. We call such cofibration an
induced cofibration.

Now we show that B ~Z+Cf£> S A fullfil the conditions in Definition 2.1.
¢:C,—>3AV C; is defined by

¢(b) =(%,b) b BcCCs
(<a,2t>,%) 0=t=1/2

#at) = { (5 (@2t —1) 1/2=2=1,

and 2:3A4 — (C,)x is defined as in Example 1. Then conditions 1) and 2) in
Definition 2.1 hold evidently and so we prove only 3).

h<a,2t> 0=t=1/2

(h 7 k) dla t) = {
B(a,2t—1) 1/2=t=1,
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(+,(a,48) 0=t=1/4
=1 (a,2-48),%) 1/4=t=1/2
l (a,2¢t—1),%) 1/2=t=1.
Hence we have (A k) o¢| CA=k,| CA. Also (b k) §b) = (b, *) = (%,b)
=ky(b) for b € B. Thus (A V k) o ¢ == &,.

The following Lemma 2.2 is a generalization of Proposition 4.6 in [2]
and a dual of Lemma 4.1 in [6].

LEMMA 2.2. Let Bg»E—aF be a principal cofibration. Let X be any

space and let [v], [v] € w (E, X). Then
g*[v] = g*[v]
if and only if there exists a map w:F — X such that ¢*[w V v] =[v'].
PROOF. Suppose that v' == (w V v) c¢p. Then by 2) in Definition 2.1,
voga(wVuv)opog=(wVv)o(lV goi=veq.

Conversely suppose that vg == vq’. Then, by the lowering homotopy property,
we may assume that vg = vq'. It is evident that v V v': E\V E— X induces
amap v Vv :Ex—>X such vVvor=vVv. Weset w=vVv oh and
consider the map (wVv)o¢p: E—->F\V E—X.

Since v=(vVv')oj, =vVv omoj, =vVv ok, we have

wVv=@VV R V@Vrok)=uVvohVEk) by ().

Hence (wVv)odp=v Vv o(hVk)op=vVvok, (by 3) in Definition 2.1).

But vVvok, =vVv omroj, =(wVv)oj, =v. Thus we have ¢*[wVv]
=[v']. Q.E.D.

Let B g>E£F be a principal cofibration and let X be any space. Let
w;: F—X be maps (: =1,2). Then w, + w, = A’ o (w, V w,) o u induces a
binary operation in = (F, X).

Consider the diagram

E % pyg V@2 y
|2 |1ve o
i w; V w,

F — FVF — XVX.



PRINCIPAL COFIBRATIONS 325

By 1) in Definition 2.1, the left sequence is commutative and clearly
ANo(w, V wy)o(lVp =w, Vw,p. Thus we have,

LEMMA 2.3. #*[w, + w,] = ¢* [w, V w, p].

Lemma 2.3 generalizes Proposition 4.6  in [2].
Following to [3], a diagram in the category of sets
4, I 4
(2) Jo 1 lkl
k
A, —> A,

is called an exact square if it is commutative and if k,(a,) = k,(a,) for
a;€ A; (i =1,2) then there exists an a,< 4, such that a; = j.(a,) (=1, 2).

The following Lemma 2.4 together with Lemma 2.2 have the key-roles
for the later discussions.

LEMMA 2.4. Let B ELBF be a principal cofibration. Let f:X —Y be
a map such that fy:m(F, X)—>w(F,Y) is a surjection. Then if g*:m(E, X)—
w(B,X) is a surjection, the diagram

(B, X) L (B, X)

P
~E,Y) L =(B,Y)

is an exact square.

PrROOF. Let [#] € w(B,X) and [v] € w(E,Y) such that fi[u] = ¢*[v].
Since g¢*:m(E, X)— w(B, X) is a surjection, there exists an [s] € 7(E, X) such
that ¢* [s] = [«#]. Then we have ¢*fx[s] = ¢*[v]. Hence, by Lemma 2.2 there
exists a map w:F —Y such that ¢* [w V f5] = [v].

Also since fy:m(F, X) — w(F, X) is a surjection, there exists [d] € m(F, X)
such that fx[d] = [w]. Then we have [v] = ¢*[ fdVfs] = ¢* fuldVs]. If we
define a map I: E — X by [=(dVs)p, then fl = v and so fy[/]=v. Now again
applying Lemma 2.2 to the map [ = (dVs)p, we have ¢*[l] = ¢*[s] =[v].

From now on, we work in the category of the spaces having the homotopy
type of connected CW-complexes.

DEFINITION 2.5. Two cofibrations B 9, EﬁF and B—q—> E f» F, are

equivalent if there exists a homotopy equivalence s: E — E’ such that sg=gq’.
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We remark that if cofibres F and F are 1-connected, then an equivalence
s: E— E’ induces a homotopy equivalence s:F— F. We call such an s an
induced cofibre equivalence. This is proved as follows.

From {3; Theorem 3.6 and Corollary 3.7] we may assume that two

cofibrations ¢ and ¢  are inclusion cofibrations.
Then, from §7 in [3] and sp=p's, we have a commutative diagram :

H®B 2 H@E) 25 HE) 2> HB) 2 H_(E)

P P L R L L

H®B) L mE 2 gy 2 vo®) 2 °oE)

where upper and lower sequences are exact.
By Five Lemma, we have 5y: H.(F)~ H(F') for all ». Since F and F’
are l-connected, we may conclude that s: F— F’ is a homotopy equivalence.

LEMMA 26. (J.H.C. Whitehead) (cf.[7]) Let X and Y be O-connected
spaces and f:X —Y a map. Then the following statememts are equivalent;
a) fx:m(X)—>m(Y) is isomorphic for i < N and epimorphic for i = N,

b) For any CW-complex K, fy:mw(K, X)— w(K,Y) is injective for dim K<N

and surjective for dim K =< N.

THEOREM 2.7. Let Bg»E—aF " be a cofibration, where E' and F' are
1-connected, and BgEgF a principal cofibration. Then the former is
equivalent to the latter if the following condition are satisfied :

i) there exists a homotopy equivalence w:F — F’,
ii) E, B are CW-complexes such that q(B) is subcomplex of E and dim
F=r, and B is (r—1)-connected,

i) H(F ,G)=0 for i >s and an arbitrary abelian group G, and E’

is (s—1)-connected.

PROOF. We have the commutative diagram

.3 "
=FE) L B 5y Lo #(BE)

P | 2. | #.
~ P* n qF ,
o, F) L B, F) Lo (B, F),

where upper and lower sequences are exact.
The obstructions extending the map ¢': B—E’ to a map of E into E
are in H'*'(E, B; m(E")). Since the pair (E, B) satisfies the homotopy
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extension property, we have H(E, B)~ H,(F) for all . Thus, by virtue of
the conditions i) and iii), it results that

H*YE,B;7m(E) =0 for i=s.

But E’ is (s — 1)-connected, and so HYE,B;7(E)) =0 for ¢ =s—1. Hence
the existence of a map s : E— E’ such that s'qg = ¢’ is assured.

Since B is (r — 1)-connected, py: H(E") — H,(F’) is isomorphic for 7 <r
and epimorphic for 7 =7 and p%:7(E) —> m(F") is so. By Lemma 2.6 and
the condition ii), it follows that py :#m(F, E) — = (F, F’) is surjective.

Now if we take the maps ¢': B— E and wp:E—F’, then pilqg]1=0
= g*[wp]. Thus Lemma 2.4 may be applied and we see that there exists a
map s: E— E’ such that sq = ¢" and p's = wp.

Accordingly we have the diagram in which each ladder is homotopy-
commutative ;

-2 . g 2 F
1 ) s la)
B ,i., E _P_, F.

Applying the (inclusion) cofibration homology exact sequence to the above
diagram, we have a commutative diagram

e Ho(F) -2 BB 2% HE) P HE) -2~ Heo(B) —

N T e

. O * , ~ ©
e H.(F) - H(B) L mE) L5 gy -2 Ho(B) — .

By Five Lemma, sg:H,(E)— H,(E’) is isomorphic onto for each 7 and E, E’
are l-connected. Hence s: E — E’ is a homotopy equivalence.

3. Induced cofibrations. Throughout the remainder we assume that all
spaces have the homotopy type of connected CW-complexes.

An induced cofibration is a precise dual of the principal fibration in [5]
and hence the results obtained in [5] can be dualize.

In the well known cofibration A Lca Lid 3 A, we consider
J:mw(ZA,ZA) —> m(A4, p) and . :m(A, A) —> 7 (4, p),

where the definitions of J and ¢y are due to that of Eckmann-Hilton [3].
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LEMMA 3.1. Define 0:3A —3A, by o <a,t> = <a,1—t>, then
J o] = [11,

where 1 represents the identity map of A.

LEMMA 3.2. For a map f:3A— B, let f,:CA — B be a nullhomotopy
of fp. If we define f':3A— B by f <a,s> = f,_, a), then

f=feo.

Since the proofs of Lemma 3.1 and 3.2 are precise dual of that of Lemmas
2.1 and 2.2 in [5] respectively, we shall omit it.

Let A, gAz §A3 be a differential triple, i.e. Ba = .
We set A, NgEA; = {(ay,u) € A, X EA,; w(u) = B(a,)}, where EA, is the
path space in A, starting at the base point * and =: EA; — A; is defined by
m(u) = u(l).

Let P be any space and for any map w:P— A, NgEA; we set w(x)
= (u(x), u(x)), where u(x)c A, and wu(x)e EA;. Then it is evident that w
induces maps w: P— A, and u:P— EA,. Now if we define v:CP— A, by
v(z, t) = w(x)(t), then Bu(x) = v(x,1). Thus to a map w:P— A,NzEA, we
may correspond a pair of maps (%, v):

P 2. 4

‘| | 8

cP—2 A,.

Let (u,v) be a pair of maps corresponding to another map w’: P— A, N EA,.
Then it is easily verified that if w = w’, then (x,v) = (&, v").
Conversely a homotopy class of map w:P— A, NgEA, corresponds to

a homotopy class of pair (u,v).
Thus we have a one-to-one correspondence ¢ :w(P, A, NgEA;)— 7,(P,8) defined

by 6[w] = [(, v)].
If we define a: A4, — A, Nz EA; by ala,) = (aa,, *) where % € EA, denotes
a constant path based at %, then we have the commutative diagram :

¢
”T(P,Az ﬂﬁEAs) - '7"1(P,/3)

NS

'"'(P, Al) .
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THEOREM 33. Let BLE —P>F be a cofibration and [ : ZA—F a homotopy
equivalence. Then the cofibration q is equivalent to an induced cofibration
with induced cofibre equivalence in [l] if and only if J[lo] € Im gy.

The proof of Theorem 3.3 are obtained by dual discussion of Theorem
3.4 in [5] and we shall omit it.

COROLLARY 34. Let B L E —j—)> F be a cofibration and [ : A — F a homo-
topy equivalence. Then the cofibration q is equivalent to an induced cofibration
with induced cofibre equivalence [I] if and only if 6¢7'J[lo] € Im gy.

In the next Theorem all spaces are assumed to be connected CW-complexes.

THEOREM 35. Let BLE z Fbe a cofibration where B is(r—1)-connected
and F (s—1)-connected (s >r >1). Suppose that dim F < r+s—1. Then the
cofibration q is equivalent to an induced cofibration.

PrROOF. By the assupmtion F is (s—1)-connected and dim F < 2s—1. Then
it is well known that F' is homotopically equivalent to a suspension space,
say, 2A. Since HY(F)=~ H'(2A)~ H"'(4), we have H'(A)=0 for i =r+s—1.
Clearly A is 1-connected. Hence applying Hilton’s Theorem 1" in [4],

gx:m(A, B) > (A, E N pEF)

is surjective. Therefore Theorem follows from Corollary 3.4.

Let BLE Eid F be a cofibration where B, E are 1-connected. Suppose that F
is a K'(G, s)-space, where K'(G,s) is a polyhedron with abelian fundamental
group such that H(K'(G,s)) =0 for i=s and H(K'(G,s))=G. Then F is
(s—1)-connected and may be considered as a (s+1)-dimensional polyhedron.
Thus, we have Hilton’s Theorem 7.1 in [3] as a Corollary. :

COROLLARY 3.6. (Hilton) Let Bg»EgF be a cofibration where B and
F are 1-connected and F is a K'(G,s)-space. Then the cofibration is equivalent
to an induced cofibration.

4. Application to Lusternik-Schnirelmann category. ILet X" be the
Cartesian product of 7n-copies of X, and let 7"(X) be the subspace of X"
consisting of points (xy, -+, x,) such that x;=# for some 7.

DEFINITION 4.1. X has category = n (cat X =< n) if there exists a map



330 K. TSUCHIDA

n: X - T*(X) with jy == Ay where j: T%X)— X" is injection and Ay: X—X"
is the diagonal map.
The map 7 is called the structure map.

THEOREM 4.2. Let BgEﬁF be a principal cofibration where F is a
H'-space in the strong sense (see, §1). If cat B=n and there exists a map
[ E—TYE) such that T™(q)on = foq, where 5 is the structure map for B
and T™(q): T"(B) — T™(E) is induced by q, then cat E = n.

PROOF. We have a commutative diagram :

(B, THE) —Ls (B, THE)) — L (B, THE))
| x |7 L

wFEY P n(EE)Y _L . =BE)

in which the horizontal rows exact. By the assumption, we have ¢*[f]
=[T™(q)on]. Since F is a H -space in the strong sense, by the same arguments
as in Proposition 2.8 in [1] and the remark in the course of the proof of
Theorem 3.4 in [1], it follows that

Jx 2 m(F, TNE)) —— m(F, E")

is surjective.

Now we have jx[T™(q)oy] = [jzoT™g)on] = [q" o jzon] = [¢" 0 As] = [Agoq]
= ¢g*[Ag]. Thus Lemma 2.4 may be applied and the existence of a map ¢:
E — T"[E] such that jof = Ay is assured. Q.E.D.

REMARK. Theorem 4.2 is a generalization of Theorem 3.4 in [1]. In

fact, let f: A— B be a map and let B—Z>Cf—>2A be a cofibration induced
by f. Suppose that f is n-quasiprimitive in the sense of Berstein and
Hilton [1]. Then if cat B=n with the structure map #:B— T"(B), there
exists a map ¥ : A — T"(A) such that the diagram

A —f—+ B
gy )

T"(4) —2% T"(B)

is homotopy-commutative.
Consider a diagram;
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f q

A L. B 1, ¢

"oy 1 g ]
T™A) —— T"(B) —— T*(C))
where ¢: B— C; is the (inclusion) cofibration.
Then it is easily verified that the sequence

(Cpy THC) —o s (B, T7C)) —Ls (A, THC,)

is exact. Since T™(2) uf = T"(Q)T"(f)¥ =< *, there exists a map u: C, — T™(C;)
with woi = T"(i)ou.

Thus we see that if a cofibration ¢: B — C; is induced by f and f is z-
quasiprimitive, then the assumptions of Theorem 4.1 are satisfied and cat
C=n.

5. Appendix. Finally we shall define a dual of H-fibration in [5] which
is a intermediate notion between arbtrary cofibration and principal cofibration.

DEFINITION 5.1. A cofibration Bg»EﬁF is a H'-cofibration if there
exists a co-operation ¢: E— F\ E and a homotopy H,:E — FxE subject
to the following conditions:

(a) the diagram

B -2 . FVB

q lqu

E —% . FvE
is commutative.

(b) Hy, = jo¢ (j: FVE — FXE injection) and H, = (pX1)oA,
H,g = « for all ¢.

PROPOSITION 5.2. H, induces an H' -structure on F.

PrROOF. By Definition 5.1, we have H,q = # for any ¢ and especially
H,q = jpq = . Hence (1Xp)jpg = *.
In the diagram;
E 2. rvE L FxE

| 2 |1ve | 1x2

F — » FVF 7%, FxF
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where jy: F\VVF — FXF is the injection, we have (1 X p)j = j«(1V p). Since jr
is the injection, (1Vp)¢pg =*. Hence (1Vp)¢ induces a map u:F —FVF
such that up=(1Vp)p. Also (1x p)H, induces a homotopy H,: F — FxF such
that H:;p= (A xp)H,. Then H;p= 1xpH, = 1 xp)(px1)Ag = Asp, where
Ay and Ay denote the diagonal maps in E and F respectively. Also H,p
=(IxXpH, = (1 X ) jo = jenp.

Thus it follows that Ho=jmu and H; = Ay Hence the map p: F—>FVF
defines an H'-structure. Q.E.D.

THEOREM 5.3. Let B~q»E£>F be a H'-cofibration in which all spaces
are CW-complexes. If ue HWE, Q) and v e H™(F, Q), where Q is the field of

rational numbers, then we have
Po)yvuu=0.

PROOF. Let E#E be the quotient space EXE/EVE and let m: EXE —
E#E be the projection. If we identify H'(E#E,Q) = > H(E,Q)® H(E,Q),

p+q=7
P,a>0

by the definition of the cup product in terms of the diagonal map, we have

PO)Uu =(mA(p*(v)Qu). Let px1:E# E—>F# E be a map induced by
px1: ExXE — FXE, there exists a commutative diagram :

HF,Q@HNE Q) P HeE )0 HYE, 0)

l - l

B F#EQ Y e o).

Hence (mAp)*(p*(v)Qu) = (wAp)*(px1)*(vQ®u). But jp == (px 1)Ag by the con-
dition b) in Definition 5.1. Hence (px1)mAz = m(pX 1)Ag == mj = *.
Thus we may conclude that p*(v) U w = 0. Q. E.D.

REFERENCES

[1] L. BERSTEIN AND P. J. HILTON, Category and generalized Hopf invariants, Illinois.
Math., 4(1960), 437-451.

[2] B. ECKMANN AND P. J. HILTON, Operators and Co-operators in homotopy theory, Math.
Ann., 141(1960), 1-21.

[3]1 P.J. HILTON, Homotopy theory and duality, mimeographed notes, Cornell University,
1959, .

[4] ———————, On excision and principal fibrations, Comment. Math. Helv., 35(1961).

[5]1 J. P. MYER, Principal fibrations, Trans. Amer. Math. Soc., 107(1963), 177-185.



PRINCIPAL COFIBRATIONS 333

[6] F.P. PETERSON AND E. THOMAS, A note on non-stable cohomology operations, Bol.
Soc. Mat. Mexicana, 3(1958), 13-18.
[7] H. TopA, An outline of the homotopy theory, Sugaku (in Japanese), 15(1964).

MATHEMATICAL INSTITUTE
HIROSAKI UNIVERSITY.





