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1. Let (Q,%, P) be a probability space and (%,),-1,.. be an increasing
family of sub o-fields of A (we put U, = (¢, Q). Let (£,)n1s,... be a sequence
of bounded martingale differences on (Q, ¥, P), that is, x,(w) is bounded
almost surely (a.s.) and E{z,|¥,.,} =0 as. for n=1,2,.-- It is easily seen
that this sequence has the following properties [G] and [M], which have been
introduced by Y. S. Chow ([1]) in an analogous form and by G. Alexits ([4]),
respectively, and may be of independent interest.

[G] (x,) is a sequence of martingale differences and there exist non
negative constants ¢, such that for every real number ¢

E{exp(txn) |Un} = eXp(C%tz/z) a.s. (n =12-- ') .
For each n, the minimum of those ¢, is denoted by T(x,).
M] |z (0)| =K, as.forn=1,2--.

and E{x; x;,---x;,} =0 for ¢, <ip<<eve<ip3;kb=1,2+--.

In this note we investigate the asymptotic behavior of the weighted sums
of those random variables. In §3 we will deal with the class [M] and in §4
with the class [G] and the uniformly bounded case of martingale differences.

2. Preliminary Lemmas.

LEMMA 1. If (z,) is a sequence of random variables for which [M]
holds with K, =1 for all n, then for every real number ¢

2. 1) E{exp (t ;V_: bnkxk)} =exp ( t; Zn bik)

k=1 k=1
where (byi)i=1, 2, n; n=1, 2,-- 1S an arbitrary sequence of real numbers .

PROOF. We may assume that |b,,| #0 for £ =1,2,---. Since |b,.2;|
=< |b,;| as. and the exponential function exp(¢b,.x;) is convex, we have
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2. 2) exp(thyety) = cosh(t |byy|) + (2i/ |bai ) sinh(t]b,e]) as.
Then, using the property [M], we have

E{exp (t 5 b,,kxk)}g 1T cosh(z|bue)

k=1 =1

REMARK 1. If (x,) is a sequence of martingale differences such that
|z,| = K, as. for all n, then from (2.2), we obtain

E{exp(tx,) [¥,._,} =cosh(tK,) as.
=exp(’K:/2) as.forn=1,2---.

Therefore (x,) has the property [G] with 7(x,) = K,,n=1,2,---.

LEMMA 2. If (z,) is a sequence of random wvariables for which [G]
holds with w(x,) =1, n=1,2,--+, then

b

@9 EBlexalesh) =8 exp (5 341

and (b,) is an arbitrary sequence of real

m
Z bixy,
k=1

where S,(0) = max

1=m=n

numbers .

PrRoOOF. Noting that 7(b,x,) = |b,|7(x,) = |b,|, we have

@0 Elon(s5 b} <o 15 ) Bfo{ e

k=1 k=1

=exp (tzgz" )E {exp (t Z— bkxk>}

k=1

o)
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2
gexp( d

> bz)
k=1 .

On the other hand we have ([2],p. 317) for a > 1

. a \* .
B = (%) BOS.I,

n

where S, = > by, since (|S,]) is a sequence of non negative submartingale.

Then -
E{exp(S,)} = Ef{exp(S;)} + E{exp(—tS;)}

g 2 S
‘2E{,§ @ |

had t2fS2J
—BEiz @n)! }

2 n
=8exp ( ;— > b,%) q.ed.
k=1 ]

3. Let (@ni)k=1, 2,-em; n=1> 2... D€ a sequence of real numbers and put

n n 1
= > a,x and B, = (Z a?,,c)2
k=1 k=1 .

THEOREM 1. If (x,) is a sequence of random variables for which [M]
holds with K, =1 for all n, then

3.1 li;x}jup «/2%;:@ =1 as

PROOF. Supposing in Lemma 1 that ¢ = (2(log n)/B%,);_ and b,,=a,, and
multiplying both sides by exp(— (2 + &)log n), where € > 0, we obtain

E{exp ((%g”) | T | — (2+8)10gn)} gz( 17)1

so that by the Beppo-Levi theorem
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> L
exp 210§Ji YT, — (2+&)logn|<oo  as.
n=1 B"

Hence,

1
lim sup ((ZI(I)Bgzn )2 |F,| — (2+€&)log n)< 0 as.

that is,

lim sup I, | 2+¢e
n—so0 /\/ ZBf,logn 2

IA

a.s.

Since & is an arbitrary positive number, letting &— 0, we obtain (3.1),
q.e.d.

COROLLARY 1. Let (x,) be the same as in Theorem 1 and (a;) be a

n
sequence of positive numbers. Put A, = _ a;. If

j=1
3.2 a,/A, = o(1/logn), A,/log n 1 o as n— oo,
then
3. 3) (apnxitan_1xy + +++ + ax,)/A, =0 as n— o0, as.

PROOF. Write 4, = ay,y = max a;, then 1=kn)=n and k(n) is
1

=k=n
increasing. If k(n) = O1), we have by (3.2) aiw)/A, =o01/logn) and if
k(n)—oco, then we have again

axwlog n — apylog k(n) Apmylogn = o(1)
An Ak(n) Anlog k(ﬂ) '

Hence in any case we get a,/A, = o(1/log n). Therefore by Theorem 1,

Ianxl + oo+ alxnl - |anxl + e+ alxni \/za::qlogn

A, =/ =
\/ 2> atlogn
i=1

n

which is o(1), and we get (3.3),
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REMARK 2. In (3.3), if we consider a,x;, + a,xy, + + -+ + a,x, instead of
a,z, + a,_,x, + +++ + a,x,, we may replace the condition (3.2) by

3. 2y a,/A,=0(1/loglog A,), A, — o as n— oo,

This can be established by the same way as in the proof of Theorem 3 and
we omit the proof.

REMARK 3. From Theorem 1 we find that S, = a2, + ayx, + +++ + a,x,

1

= o(log n)*, when > a2 <<co. For we may take an integer m such that
j=1

> a is sufficiently small and apply Theorem 1 to S, —.S,, for n>m.

J=m+1

COROLLARY 2. Let (x,) be the same as in Theorem 1 and put

o 1 iy 1 w«_ [0+ a
N kzoE,,kxM foro.'>—7,E,,—< + )

Then

. |oa]
(3.5) limsup o Ga + 1)yn Tog 7 = © &

PROOF. Since

n

Z (n k)2a Z k2a

k=1

2“(71/(20£ + 1)) n**(n/2a+1))

—1as n— oo,

we have, taking a,, = (n — k)* in Theorem 1

6.6 Z (A —(k/n))* Ty 11 z (n— k)T
R e @iy Tog n TP e/ @+ D)log 7

=1 as.

On the other hand ([3])
Ei/E7 =1 — (k/m)* + OQ/n)
and therefore, (3.5) follows from (3.6), q.ed.
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[ 1
4. Let (a,) be a sequence of real numbers and put D, = (Z a?-)z, S, =
. j=1
ax, + o0+ a,x, and S, = a,x, + apo1 Ty + o0 + a1z, .

THEOREM 2. Let (x,) be a sequence of random wvariables for which [G]
holds with v(x,) =1 for all n. If

4.1 as/D; —0, D} — oo as n— oo
then
4. 2) limsup |5 =1 as.

noe - A/2D% loglog D3,

PROOF. Take an arbitrary positive number & and fix it. Next we define
the sequence (n,) of positive integers as follows : We may choose 7, by (4.1)
such that

. 3) D> 5
(4. 4) &/DL< L for n>n,.

3
And generally, after n;, n,, -+ -, n,_, are defined we may choose 7, such that
(4' 5) D72'lk—l < Dg‘k é ZDzlk—l < D72lk+1 .

From (4.4) we get D3, .,/D3, . < 2 and therefore , is well defined. Then from
(4.4), (4.5) and (4.3),

2 4
D;, =D — ar = 3 D= 3 D;, .,

so that
(4. 6) Di > 4/3F k=1,2.--.

Further, using the Tchebycheff inequality and (2.3),

iP{ U <lSml>(1+e>vm}

m=ng+1
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IA

> P{max |S,| > (1 + &~/2D},log log D3, }
k=1

N <M=Nks1

I

> 2(14&)D2,log log D )
8 e . - k . k
2 XP( (D%, — D)

- 1+26) log log D2,
éSZeXP(*(<Dz)l/?Dga>O§1 )

k=1

By (4.5) and (4.6), the last series is dominated by

8> exp(—(1 + 26) loglog D;,) = K>~ (1/k)"*** <oo
k=1 k=1
Where K is a positive constant. Therefore (4.2) follows immediately in virtue
of the Borel-Cantelli lemma, q.e.d.

COROLLARY 3. Let (x,) be the same as in Theorem 2 and (a,) be a
sequence of positive numbers. Put A,=a, + a, + +++ + a,. If

4.7 a,/A, =o(l/loglog A,), A, — > as n— o,
then
(4. 8) S./A,—0 as n— oo, a.s.

This result may be proved along the same line as the proof of Theorem
2, and we omit the detail. If the condition (4.1) is satisfied, the proof may
be done as that of Corollary 1. But in general, (4.1) need not follow from
4.7). In fact, we give an example (due to T. Tsuchikura) of sequence (a,)
which satisfies the condition (4.7) but does not (4.1).

Put p,=n!, n=1,2,-... Then, since

we have

Pra 1 _q19...
IR T2 e g ¥ ply — 2 L2

and
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ploglog(lp + 2p, + <o+ +(n — 1D)p,0) 2 n _
{ 1p+2p+ et (n—Dpo, } = =1y (log 7)* = o(1).

Therefore, if we define (a;) by a, = p,a,=a;=pp,a, =as =ag= py,*+*,
and generally a, = p,, for 1 + 2+ «cc+(n—1D+1=m=1+2+ -+ +mn,
we have

Am

A loglog A,,

élﬁ + 2P2 + .j_)n. ¥ (n — l)Pn—1 loglog (1P1 + oot (n — 1)Pn—1)=0(1)

but

afn > Pzn-l > 1
Dl = 1pi+2p 4+ <« « + npl + pin 2

REMARK 4. In [3] V.F.Gaposhkin showed that the law of iterated
logarithm of uniformly bounded independent random variables holds for the
Cesaro’s summation method. In our case we follow his proof, word by word,
starting from Theorem 2 and (2.4) and then we can obtain the following
result.

If (x,) is the same as in Theorem 2 and o% (@ > 0) is in (3.4), then

. |o%]
limsup = o Ga + 1))n Toglogn = - &

THEOREM 3. Let (x,) be a sequence of martingale differences such that
|z, =1 as. and (a,) be a sequence of positive increasing numbers. If

4.9 a,/A, =o0(l/loglog A,), as n— oo,
then
(4.10) S,/A,—0 asn— oo, as.

PROOF. Give €> 0 and define (n;) in the previous manner, that is,

(4.11) A, >2B8+8/(6+¢6 (>1)
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(412) a,/A, <&/(6+ & for n >n,

(4.13) a,(loglog A,)/A, < &/64 for n > n,,
and

(4‘14) ‘A'ﬂ/c-l < Ank == (1 + (8/3))Aﬂk- < A'ﬂk.+1

We will show that

(4.15) 2P(S,.. > (¢/2)A,,} = P{max §, >¢ A,}.

'nk<nsnkﬂ

For this purpose we put the event

365

Fl= {—Snk+l<x:°°'9g;—l<x’sjgx}, l=n/¢+1, nk+2,---,nk+1

and denote the conditional probability (expectation) with respect the event F,

by P{- |F} (E{- |F}). We may suppose that P{F;} >0, and then

Mke1

: 2
E{Sﬂku - S_l)z | Ft} =E {(Z Appa—j+1L5 — Z az—j+1-'13j)
. J=1 Jj=1

)
Ry

Il

2
E {( (anm—jﬂ - al—j“)xj)
J=1

T+l 2
Fl} + E{(Z Ay, 1—J+1xj)

j=l+1

:

I

14 Nkl 2
Z (@npi-ge1 — Q- j+1)) (Z amm-.f‘*'l)

£

(An — A,

I\

I\

where we used the fact that if 1 =i=[<j=n,,,,

E{zz,|F} = (1/P{F))E {zx,[F)}
= (1/P{F}E{z,[(F)E{z,|¥,_}} =0,

where I(F)) is the indicator of F,, and that

A= g1 = A g1 » J=L2 . lim, =1,
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Therefore
P{[S.—S.| = (€/2)A,.|F} = 4/ A )E{(Sh.. — S)*IFJ)

= {/(EAL)) A, — Az’
= 4/&)(An.../An) — 1)
=(4/8)(&/9) < 1/2,

hence

P{—Sm:n > x — (8/2)AnxlFl} ;— 1/2:
and consequently

P{S:lku > (E/Z)A’nk} = P{S;lk+l > gAnk - (e/Z)Ank}

= > P{F} P{S,.>¢&A, — (€/2A,|F}

l=ng+1

= (1/2)P{max S, > €A, }.

NU<N=Tg+1

Thus, (4.15) has been shown. From (4.15), (2.4), (4.14) and (4.13),

416) > P{max S,>e4,} =23 P{S..>(¢/2)A.)
k=1 ESPEMen k

=1

& &2A?2
Z exp <_~Tk__)

= 2 k=1 8 Z ag.
Pl
- &A
é 2 eXp ( — Mk+1 )
; 32a,,.,
=23 exp(—2loglog A,,.).

E
[

1

On the other hand, from (4.11), (4.12) and (4.14) we obtain
A,>Q2B+8/6+8)) k=1,2---.

In conjunction with (4.16) this gives
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S P{max S, >€4,} =C 3" (1/k) <o,
k=1

k=1 ME<N=Tks1

where C is a positive constant. By the same way we can obtain

Z P{min S;l <~8A7u} <OO’

=
k=1 NE<N=Nge1

and therefore (4.10) holds in virtue of the Borel-Cantelli lemma, g.e.d.
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