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DUALITY OF CYCLIC MODULES
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(Received June 12, 1967)

Quasi-Frobenius rings which possess so many interesting properties, have
been studied by a number of authors. J. Dieudonne pointed out that the
duality of i?-modules is most closely related to a quasi-Frobenius ring R,
stating that, for a both right and left Noetherian ring R, R is quasi-Frobenius
if and only if all left and all right finitely generated modules over R are
reflexive [3] (see also [5]). H. Bass introduced the terminologies "reflexive"
and "torsionless" [4]. These seem most important in duality theory. In this
paper we shall study the duality of cyclic modules over rings without any
finiteness assumptions generalizing the above theorem (Theorem 12 and
Theorem 15) and the Ikeda-Nakayama's theorem [1] (Theorem 13, Corollary 14,
and Theorem 15). It seems to me that the duality of cyclic modules is
essential in duality theory.

1. Introduction. Throughout this paper, we shall assume that R is a
ring with identity element and that every module over R is unitary. If A
is a left (right) i?-module, the dual A* = Hom^A, R) becomes a right (left)
i?-module ([6], p. 65). Thus the dual operation * is a contravariant left exact
functor on the category of i?-modules to that of R-modules. Considering
the element of A as homomorphisms from A* to R, we get the natural
i?-homomorphism

SA:A -A** .

We shall say that A is torsionless if 8̂  is a monomorphism and reflexive if
8j is an isomorphism. A is torsionless if and only if AcILR (direct product
of copies of R) ([6], p. 68). It is well known that every finitely generated
projective module P is reflexive and that P* is also finitely generated pro-
jective ([6], p. 68). If we are given the diagram A -> JB, then we have the
following commutative diagram

A** —

A —

—* £**
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For each subset X of R we shall denote by l(X) (resp. r(X)) the set of
all left (resp. right) annihilators in R of the set X. R satisfies the left (resp.
right) annihilator condition if Z(r(L)) = L (rasp. r(/(/)) = /) for all left (resp.
right) ideals L (resp. I). If R satisfies both left and right annihilator conditions,
then we say that R satisfies the annihilator conditions. L, L{, L2, (resp. 7, Iu

72,) denote left (resp. right) ideals of R.

2. Duality of cyclic modules.

THEOREM 1. The following conditions are equivalent :
1. R/L is torsionless.
2. l(r(L))=L.

PROOF. Consider the commutative diagram

(R/L)* *(aR)*

8 XI
r{L) +RR.

From this we get the exact sequence

0 — - (R/L)* — GiR)* — - R/r(L) —> 0.

Then we can form the commutative diagram in which the upper row is
exact

0 —> (R/r(L))* (nRf* — (R/L)**

)) )) 1 8 B / i

l(r(L)) ^KR —R/L.

By examining the diagram we see that 8R/L is a monomorphism if and only if
l(r(L)) = L. This completes the proof.

COROLLARY 2. Let R be a left Noeiherlan ring and let all left and
all right cyclic modules over R be torsionless. Then any finitely ganerated
(?~ight or left) R-module is reflexive.

PROOF. Cyclic left (resp. right) R-modules are of the form R/L (resp.
i?/7). Since all cyclic modules over R are torsionless, R satisfies the annihilator
conditions by Theorem 1 ("left" and "right" interchanged if necassary). Then
R is quasi-Frobenius [2]. Hence each finitely generated R-module is reflexive
[3], [5].

COROLLARY 3. Cyclic torsionless left R-modules are of the form R/l(l).

PROOF. Since Z(r(Z(7)))=/(7), the statement is clear by Theorem 1.
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In the following we shall study the properties of 8/ and $S/L. We recall in
mind that a module A is a W module if ExtB(A,R) = 0.

PROPOSITION 4. Let R/I be a W module. Then I*^R/l(I).

PROOF. Take the exact sequence

0 - / >RB >R/I - 0 .

Now dualize this sequence. Then we have the commutative diagram

0—»(R/I)*—-(£*)*—-/* — 0

8 8
1(1) - RR

where the upper row is exact since R/I is a W module. Hence I*»R/l(I).

REMARK. The element of I* is considered as a left multiplication of an
element of R modulo 1(1) in the condition that R/I is a W module.

PROPOSITION 5. Let R/I be a W module. Then I**^r(l(I)) and 8, is
nothing but the inclusion

PROOF. I*^R/l(I) by Proposition 4. Then I**^(R/l(I))*^rQ,(I)). It is
easy to check that 8Z is the inclusion /—•r(/(i)).

PROPOSITION 6. Let R/r(L) be a W module. Then (R/L)**»R/l(r(L))
and 8R/L is merely the natural homomorphism

BB/LiR/L—+R/l(riL)).

PROOF. Since (R/L)***r{L\ (R/L)**^r(L)*^R/l(r(L)) by Proposition 4.
It is then easy to see that §R/L is the natural homomorphism R/L->R/l(r(L)).

The next proposition tells us when §R/L is an epimorphism.

PROPOSITION 7. The following conditions are equivalent:
1. $R/L is an epimorphism.
2. ExtB(R/riL),R)=0.

PROOF. Consider the exact sequence

0 (R/L)* UR)* — R/r(L) 0.



352 T. KATO

Dualizing this we get the commutative diagram with exact rows

(*£)** (R/L)** — Ext^(i?/r(L),R) - 0

RR —- R/L —-0.

Then $R/L is an epimorphism if and only if Exti(i?/r(L),/J) = 0 proving the
proposition.

REMARK. By the above proposition, we see that the converse of
Proposition 6 also holds.

The following theorem gives a criterion for reflexivity of cyclic modules,
which is the key theorem in this paper.

THEOREM 8. The following conditions are equivalent:
1. R/L is reflexive.
2.l(r(L))==L and ExtE(R/r(L\R)=0.

PROOF. The result is clear by Theorem 1, Proposition 6, and Proposition 7.

REMARK. If R/L is reflexive, SB/L must be of the form in Proposition 6.
But if I is reflexive, Br need not be of the form in Proposition 5. For if we
take R—Z, the ring of rational integers, and I=2Z, we have r(l(2Z)) — Z.

3. Self-injective rings.

The following proposition was studied by J.P.Jans [5], [6] under the
condition that R is Noetherian.

PROPOSITION 9. The following conditions are equivalent:
1. All finitely generated torsionless left modules are reflexive.
2. All finitely generated torsionless right modules are W modules.

PROOF. Assume 2 and let A be a finitely generated torsionless left
i?-module. Choose a finitely generated projective left 2?-module P such that

P - A -0

is exact. Then we have the exact sequence

where B is a finitely generated torsionless right i?-module. From this we get
the commutative diagram with an exact row
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P** ^ A** 0

P - A

since B is a W module by t he assumption. Hence A is reflexive. Conversely
assume 1 and let B be a finitely generated torsionless r ight i?-module. Look
at t h e exact sequence

0 B* P* > A 0

w h e r e P is finitely generated projective and A finitely generated torsionless.

F rom th is we get t he exact sequence

0 - A* - P** - B - 0

since B is torsionless. Now dualize th is sequence to get t h e commutat ive
diagram wi th exact rows

p * # * * A** ^Exti(JB R) *• 0

(t II
P* - A - 0

where A is reflexive by t h e assumption. Hence w e have Extz?(jB,i?) = 0 which
completes t h e proof.

T h e r ings w i th t he annihilator conditions are similar to the self-injective
rings. In fact they coincide if t he r ings considered are Noether ian [7].

THEOREM 10. Let R satisfy the annihilator conditions. Then both R/r(L)
and R/l(I) are reflexive for all finitely generated L and I.

PROOF. We see easily that r(L, nL2)=r(Ll)+r(L2\ l(Ix n/2)=Z(/i)+Kh)
since R satisfies the annihilator conditions. Then Extff(i?/L,i?) = 0 = ExtJj(jR//,i?)
for all finitely generated L and / by Ikeda-Nakayama [1], Now the result
follows by Theorem 8.

REMARK. Under the assumption of Theorem 10, both L and / are
reflexive for all finitely generated L, / by Proposition 5.

Now we give characterizations of self-injective rings in terms of duality.
Consider the following condition (a):
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(a) Every diagram

>r(l(I))

in which / *• r(l(I)) is inclusion, can be imbedded in a commutative diagram

0 , J —+

•RR.'

Clearly the rings with the right annihilator condition satisfy the condition (a).

THEOREM 11. Let R satisfy the condition (a). Then the following
statements are equivalent:

1. R/l(l) is reflexive for all L
2. RR is injective.

PROOF. Assume 1. Then ExtB(R/r(l(l)),R) = O in view of Theorem 8.
Now let the following diagram, in which / *RR is inclusion, be given

0 >I >RR

RR.

Then we can imbed this in a commutative diagram

since Ext}s.(i?/r(/(/)),jR) = 0 and since by the condition (a). Hence RRis injective.
The converse follows immediately by Theorem 8 and by Z(r(Z(2))).=Z(/).

THEOREM 12. The following statements are equivalent:
1. R/L and R/I are reflexive for all L and I.
2. iiR and RR are injective and R satisfies the annihilator conditions.

PROOF. Assume 1. Since both R/L and R/I are torsionless for all L and
/, R satisfies the annihilator conditions by Theorem 1. Hence RR and RR are
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injective by Theorem 11 ("left" and "right" interchanged). The converse is
clear by Theorem 8 ("left" and "right" interchanged if necessary).

REMARK. Under the condition of Theorem 12, L and / are always
reflexive by Proposition 5.

THEOREM 13. Let RR be injective and L finitely generated. Then L and
R/L are reflexive.

PROOF. Since L is finitely generated and torsionless, L is reflexive by
Proposition 9. Next, consider the exact sequence of right i?-modules

0 - (R/L)* - (RR)* *- L*.

From this we get the commutative diagram with exact rows

L** - (rR)** - (R/L)** 0

0 . L rRR . R/L * 0

since R is right self-injective. By the diagram chasing, we see easily that 'iR/L

is an isomorphism and this completes the proof.

REMARK. If RR is injective and L finitely generated, then R/L is
torsionless by Theorem 13. Hence l(r(L)) = L by Theorem 1. This is the
Ikeda-Nakayama's main theorem [1],

COROLLARY 14. Let R be right self injective and L reflexive. Then
R/L is reflexive and hence l(r(L)) = L.

PROOF. The result follows by the same argument as in Theorem 13.

A module A is called finitely related if A^^P/T where P is projective
and T is finitely generated.

THEOREM 15. Let RE be injective. Then finitely generated, finitely
related left R-modules are reflexive.

PROOF. Let A be a finitely generated, finitely related left i?-module.
Then we have an exact sequence
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where P is projective and T is finitely generated. Since T and A are finitely
generated, P is also finitely generated and then P is reflexive. Since RR is
injective, T is also reflexive by Proposition 9. By the same argument as in
Theorem 13, we get the commutative diagram with exact rows

'j'** ^ px* ^ j±*x ^ o

0 , T P A

Thus A is reflexive which proves the Theorem.
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