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1. Introduction. Let f{x) be an integrable function with period 27 and
its Fourier series be

S(f) = > cpet"®.
oo
-~
We write A for the class of functions with absolute convergent Fourier

N
series. A is a Banach algebra under usual operations. In this algebra,
spectral synthesis is impossible and operating functions are analytic.

A. Beurling [1] considered a subclass of A such that

Ay = {f1A(f) < oo}
where

172

an = [ e [ fwr — fa-vpda] ae.

0

The algebra A, has remarkable properties, that is to say, that spectral
synthesis is possible and the functions which satisfy the Lipschitz condition
of order 1 are operating. ‘

In this note, we extend slightly A(f) to

(1) ap) = [ o) | Rt d) - Ra—)]? dx}m dt

for 1=8<2 and show that A,g(f)<oo is equivalent to Bg(f) < o or
Cs(f) < oo, where

: o, ) B/2
(2) Bﬁ(f)=zn‘”’“{ 2 |ckl2}

n=1 |k]=n+1
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and

T oo ( n )/3/2
(3) Ca(f)=zn‘3ﬁ”12 k2i6k|2)’

n=1 k| =1

Denote by s,(x) the partial sum of S(f), then
‘ oo 27 B/2
Bif) = £ [ 1) - s ]

and

yB/2

Cﬁkf) = gﬂ_sﬂ/z{j:l |sn(2)]? dx}

]
7

Therefore the above equivalency has an interpretation for approximation

theory.
The above equivalence relation throws also lights on papers of Boas [3]

and Kinukawa [5] on the absolute convergence of trigonometric series. We
discuss this and related problems in the last section.

2. Equivalence relations. We begin with the equivalency of Bs(f) < oo
and Cu(f) < oo.

THEOREM 1. For 1= < 2, the finiteness of Bs(f) is equivalent to
the finiteness of Cg(f).

PROOF. By a principle of the condensation test, By(f)< oo is equivalent
to the finiteness of

o . o 8/2
(5) B = gzem| T el

lv]=2¢+41

and Cy(f) < oo is equivalent to the finiteness of

Y gk+1 B/2
(6) oK) = 2o el
k=0 lv]=1

Concerning Ci(f), we have

o | gk+1 B/2
G = Z2en! = o]
k=0

lv]=1
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— Zzlc(l 38/2) jz %{ Zlcv‘i%ﬁ/z

lm=0|v]=2m+1 H
oo szl },3/1
é Z Qk(1-36/2) i4z 92m ‘Culz )
k=0 m=0 Iv] 2m 41

Since 8/2 < 1, by Jensen’s inequality, the last term is less than

Ki Ok(1-38/2) %i om8 ( %: \Cv]2>ﬁ/2}

k=0 m=0 |v|=2m41

k5 2 jal) Do
k=m

m=0 lv]=2m+1

. gm+t 8/2
:Kzzma-ﬁm{ > mz}

m=0 | |=2m+1

I 0 B/2
kg ren] 5 o

m=0 lvl=2m4+1
= KBy(f).

Concerning the converse part, we proceed with the same method.

oo B/2
Bi(f) = 22"“ ﬁm{ > lcm}

[v] =241

o« w B/2
= > oka-hm {Z ZZ ‘Cv‘z}
k=0

m=k |v|=2"m+1

lIA
[\/] 8

ol
Il
o

™ gmet l B/2
ok(1- 5/1){22 2m< Z V2|Cvl2)
Iv]

m=k =27 41 J .

By Jensen’s inequality, we have

o oo [ am+1 B/2
< nga—ﬁ/z) {Z Z—mB( Z v |Cu|2) z}
k=0 m=k

lv|=2m+1

I
™M

gm1 B3 m
o-m8 ( Z » |Cul2) z Ok(—8/2)
k=0

0 Ju]=2m+1

" . Cigme R N
KZ 2m(1—-3/5/2) { Z vz |Cy|2}
m=0 lv]=1
C{f).-

3
i

A
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THEOREM 2. For 1 =8 <2, the finiteness of Af) is equivalent to
the finiteness of Bg(f) or Cy(f).

PROOF. Since

flf(x+t)—f(.1 t)]gdx—47rz |c|? sin? kt ,

k=—oc0

we have

B/z

Af) = ftﬂ{ [xlf(xﬂ) —f(x—t)lzdx} dt

1 o B/2
=Kf t-wﬂ{z |ce|? sin? kt} dt
0

lk]=1

(n-1)71 B/2 o B/2
<KZf Par L ]ck|2k2t2 + (Z Icklz !»dt
|k] 1 )

n=2"%Yn"1 k=n+1

o n B/2 (n—1)-1 o B/2 (n—-1)"1
=K (Z kzlcklz) f t-2+3ﬁ/2dt+Kz( 2 lcklz) ft-“ﬁ/”dt

n=2 \|k|=1 |kl=n+1 n-1

n=2 \k=7+l

= Ki (Zn: lcklﬂkz)ﬁ/z - 4 Ki ( i Ick|2>m o
= KCy(f) + KBy(f).

On the other hand,
1 2 B/2
Al f) = fo t-“ﬂﬂ{fo | flx+12) ——f(x—t)lzdx} dt

1 o B/2
= Kf t‘“m{ > lck|?sin? kt} dt

Jkl=1

(n—1)"1

n B/2
= KZ[ oA {Z |cx|? sin? kt} dt .

n=2%Y n-t k=1
When k2 < 1, we have sin kt = Akt, and the last term is greater than

w  pmeDT Y
[+ l

I\Zf t—2+3/3/2{2 ka‘c l

n=2%q"1 |kl=1 n=2 "

oo ( B2
dt;Kzﬁ-wﬁiz k?icklﬂ} .

C o \k| =1
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Thus the theorem is proved.

The equivalency of Ag(f) << o to Bs(f) < o= is proved by Leindler [9]
already and M. and S. Izumi [4] gave a simple proof for Agf) = KBs(f),
also.

3. Convergenceof > |c,|° and related problems. Stechkin proved very
simply that B(f) < co implies the absolute convergence of Y ¢,. The same
proof gives the following theorem.

THEOREM 3. If By(f) < oo for 1=B8<2, then 3 |c,|? < oo.

PROOF. Without loss of generality, we can suppose that f{x) is even.
By Holder’s inequality,

-2/(2-8 )(2-'&!2 = B 2//3tﬁ/2
L 2= (e |y i

THEOREM 4. If flx) and ¢(x) are contirnuous even function, of period
2, with Fourier coefficient ¢, and d,, if f(x) is a contraction of ¢(x), and
if |da| =v. where

o n B/2

(4) 2 nwe {z k 'v,%} < o
n=1 k=1

or
oo ( 3 B/2

(5) Zﬂ‘ﬁ“] 2 'Yf} <=0
ne=l k=n+1 .

then 3 |c,|* < oo.
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PROOF. That f(x) is a contraction of ¢g(x) means

1AD) = f) | = lg@) = g

Since (4) or (5) is equivalent to Ag(f) < oo, Theorem is immediate from
Theorem 3 and the form of Ax(f).
~ Boas [3] and Kinukawa (5] prqved Theorem 4 under the conditions (4)
and (5). \
COROLLARY. Theorem 4 remains true when the hypothesis (4) or (5)
is replaced by v, |0 and >_|7,|? < .

Boas [3] and Konyushkov [7] proved that the hypothesis of corollary
implies (4) and (5) and, equivalent to Ax(f) << oo by Theorem 2. »

Kinukawa [6, 7] also discussed the problem of spectral synthesis under
the conditions (4) and (5). However it is sufficient under (4) or (5) and this
turns to Ag(f) <o and reduces to Beurling’s idea.

In particular, when 8=1, as Beurling shows,

Ao = {f1A(Sf) < o}®

is an algebra. In fact, we have

1 27 1/2
A(fy) =f t‘“Uﬂ [ flx+2) glx+t) — flx—1) g(x—t)lzdx} dt

= j: 132 {\[:I’ff(x'-l‘t) g(x+t)—f(x_t)g(x+t)
+ fle—t) g(x+18) — fle—t) glx—1)|? dx}l/a 5

= max |g(z) | A(f) + max | f(z)| A(9)

=2A(f) Ay),
because

max| @] = 3 leal = BU) = ACS).

<1<
0=a=27 n=—o0

The equivalency of A(f) < oo, B(f) < co and C(f) < oo gives the following
inequalities between the formal products of Fourier coefficients. '

*) A(f) means Ag(f) when 8=1 and B(f),C(f) are the same,
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Let

f@)~ 2 cqet™

gz~ > d.et
and

fx) g(x) ~ 3 Ve

where

ryn = Z den_.k.

k=-—o0

THEOREM 5. We have the following inequalities

o oo 1/2
£e( 2,00

|k|=n+1

sl o £ 0

|k]=n+1 lkl=n+1

and

oo n 1/2
Z n—a/z(z k2 lrykl2)
n=1

[k]=1
o n 1/2 oo n 1/2
=&|Zn( S #lal) {Ero S #iar)]
n=1 k| =1 n=1 Jk|=1
where K is a constant.
REMARK. Actually Beurling considers Fourier transforms. In Fourier

integral case, f{x) does not necessarily belong to the class L*(— oo, o0), but
only

fzt"’{lf(t)lz + 1A=0)1"} dt < oo, fm{lf(t)l2 + A=D1} dt < o0

for any fixed positive 2. Hence calculation is somewhat troublesome, but
we get analogous propositions.
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