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Let {x,, & n =1} be a submartingale. For a given sequence of positive
numbers w,, w,, - - -, we consider the weighted averages

sn=(w1x1+"'+wnxn)/Wn (ﬂ=1,2,"’)

where W, = w, + -++ + w,. Although the sequence {s,} need not be a
submartingale, we may expect some similar properties to the original
submartingale.

THEOREM 1. For the submartingale {x,, §.,n=1}, using the above
notations, suppose that imW, = co. Then the following two conditions
n—00

are equivalent to each other:
(1) sup E{]s,|} < oo,
(2) sup E{|x,|} < oo.

By the classical submartingale convergence theorem, the condition (2) is
sufficient to insure the almost sure convergence of {x,}, hence so is the
condition (1).

PROOF. It is easy to get (1) from (2), in fact,

E{ls,[} = B (2Bl walll - g B,y

To show that (1) implies (2) we consider the two cases of martingale
and submartingale.

(i) Let {x,, & n=1} be a martingale. If m <n, we have by the
definition of conditional expectations and the martingale equality

Efls.|} = E{E{|s.||&n}}
= E{{E{s,|&n} |}
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Making n — oo, m being fixed,
sup E{[s, [} = E{|zn]}

since W, — o and (Wp4+ -+« +w,)/W,—1 as n— oo. Thus we get (2)
in this case.

(ii) Now let {x,, &, n=1} be a submartingale. Then we can write
({11 p- 296)

n
T, =n + DA,

i=1

A =0, A= E{xj‘cl}j—l} — Xj-1 G=2

where {x, & 7 =1} is a martingale, and A; =0 (j =1). Denote

Bn‘:ZAj (71:-‘1,2,"'),

Jj=1

then {§,} is a sequence of positive random variables and is monotone
increasing with respect to n. Denote further by s,, s, and £, the weighted
averages of x,, x,, and 3, respectively, so that s, = s,+#,, and we find

Efs,} = E{s:} + E{t.}
=E{zi} + E{t.},

since by the martingale equality E{x,} = E{x]} for all n.
Hence, from the assumption (1) we get

sup E{£,} =sup E{[s,|} + E{|zi]} <o
and again from the inequality

E{lsal} = E{lsal} + Efta}
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we find sup E{[sn|} < oo. Hence applying thz case (i) to the martingale
{Zns Fns =1} we get sup E{|x,|} < oo. As {3,} is an increasing sequence,

IimE{3,} = E{lim3,} = E{lim¢,} = sup E{¢,},

n—soo

and then sup E{8,} < oo, so that
sup E{|z,|} =sup E{|x,|} + sup E{3,} < oo.
This completes the proof.

THEOREM 2. Let {x,, &.,n=1} be a submartingale. Let w,, w,, ---
be positive numbers such that W,=w,+ +++ +w, > as n— o and let

S be the Borel field generated by the field U&m Suppose that any A< F.

satisfies the following condition :

(H): for any &> 0, there exist an integer m and a set A, € §, such that
ACA and P{A—A,} <&

Then the sequence {x,} and the sequence of their weighted averages

sp=(w 2y + ++« + w,x,)/W, are equiconvergent almost surely.

PROOF. It is enough to prove that if {s,} converges on A, then {z,}
does almost surely on A, since the converse is evident. Further we shall
show the almost sure convergence of {x,} on A under weaker assumption
that the sequence {s,} is bounded almost surely on A.

Clearly we may suppose A<J. and P{A} > 0. For any &> 0, we can
find a positive constant M and a set A¥ ¢ J.. such that

A* = ANn{|s,| <M for all n}
and P{A—A*} < &/2. By the assumption (H) we can find an integer m and
a set A, <&y such that A,CA* and P{A*¥—A,} < &/2. Therefore we have
PA—A,} <& AnePn and on A,, |s,| < M for all n.
The process {x,1),, &, n=m} is a submartingale, since for n > m,

E{zy14,180-1} = L E{za [§ani} = Zaoi 1,

From the preceding fact the weighted averages of this martingale s,1,,
satisfy that

M;f |5, |dP = E{|s,14,|}



300 N. KAZAMAKI AND T. TSUCHIKURA

for all n=m. Hence by Theorem 1 sup E{|x,14,|} < oo, and by the classical
theorem lim x,1,, exists and finite almost surely, or so does limz, on A,.

As & is arbitrary we complete the proof.

REMARK. We give an example which shows that the condition (H) in
Theorem 2 cannot be suppressed. Let (Q, B, P) be the Wiener probability
space with Q=[0, 1[, B¥ the class of all linear Borel sets in O and P the
Lebesgue measure. Let w,=1 for all » and define

1 for 0=w<1/2
xl(w) ={

1 for 1/2§a)<1
~1 for I=0<1/2
Zy(w) = 7 for 12=w<5/8

—1 for 5/8=w<1
and generally ‘
' Zo(@) for 0w <a,

Zuii(@) = 1 (=D"2"+3) for a, =0 <auy

(=" - for =<1

where a,=1/2, a —1/2+Zl/2"+2 (n=2,3,---). Let F, be the Borel field

mduced by z,+--, T then {Zny Fup n=1} is a martingale. The set
= [3/4,1[ does not belong to the field U%n, but is contained in {.. and
P{A} > 0. Moreover on A, x, =(—1)", and hence s, =(z; + -+ + z,)/n

converges to zero whereas x, diverges.

COROLLARY 1. Let p=1 be a constant. Under the same assumption
of Theorem 1, the two conditions sup E{|s,|?} << oo and sup E{|z,|?} < =

are equivalent to each other.

PROOF. We get easily the conclusion along the same lines as in the
proof of Theorem 1 after a suitable use of the Minkowski inequality.

Instead of the weighted averages we shall consider those of the Nérlund
type

Sn = (w”xl + wn_1x2 + e + wlxn)/Wn (n = 1, 2, LA ),
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then we can show the following corollary.

COROLLARY 2. For a submartingale {x,, F,n=1}, let p=1 be a
constant and suppose that

lim (Max wy)/W, =0

moeo  1Sjs

I’f sup E-{[s,,}”} < oo, then sup E{ix,,l”} < o, and conversely, under the
condztwn (H ) zf hm 15, exists and is ﬁmte almost surely on A, then so does

lim z,, and conversely

n—>oco

PROOF. If we follow the corresponding lines of the proofs of Theorems
1 and 2, the only points to be noticed are:

(wn + Wy-1 oo+ wn-N-l-l)/Wn_—-)O

and (wWpey + +++ + w)/W,—1 as n— oo for N fixed. These facts are
immediate consequences of the additional assumption of {w,}.

Finally we mention the Abel mean analogue to the above results. Denote
the Abel mean of {z,} by

= (l—r)ir’xj O<r<l.
J=0

COROLLARY 3. For a submartingale {x,, §,,n=1}, if sup E{]|A,|?}
<r<1

< oo, then supE{|z,|"} < oo and conversely, where p=1 is constant.

Under the condition (H) of Theorem 2, if li§noAr exists and is finite almost

surely on A, then so does lim z,, and conversely.

N-—>c0

PROOF. Let m be a fixed positive integer. If {z,, F.,n=1} is a
martingale, then

E{|A.|?} = E{E{|A,|?|3n}}

%Ell {(1 r)Er’x,%—(l r)Zr’x,

J=0 j=m

|

g
= Ha r)wa,+(1 A za S }

j=m
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pl.
)

m-—1
2z,
j=0

= 915 0 B |7} — (1—r>vl~:fl

Make r —1—0 for fixed m, and we get
supE(|A, |7} = 2'7E{|za|"} .

In this case the first conclusion of Corollary was proved; the submartingale
case is treated along the similar way to the proof of Theorem 1, and so are
the other conclusions.

REFERENCE

[1]1 J. L. DOoB, Stochastic Processes, Wiley, New York, 1953.

MATHEMATICAL INSTITUTE,
TOHOKU UNIVERSITY
SENDAI, JAPAN.





