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Let [xn, $w, n g: 1} be a submartingale. For a given sequence of positive
numbers wly w2, • • *, we consider the weighted averages

sn• = (w^! + • • • + wnxn)/Wn (n = 1, 2, • • •)

where Wn = tf i 4- • • • -f wn. Although the sequence {sn} need not be a
submartingale, we may expect some similar properties to the original
submartingale.

THEOREM 1. For the submartingale {#„, 3?w, w S 1}, using the above
notations, suppose that limW^ = oo. Then the following two conditions

n-*oo

are equivalent to each other:

(1) SUpE{|5n|} < o o ,
n

(2) supE{|o:n|} <oo .

By the classical submartingale convergence theorem, the condition (2) is
sufficient to insure the almost sure convergence of {xn}, hence so is the
condition (1).

PROOF. It is easy to get (1) from (2), in fact,

E{|5n|} ^ E | —W\~~

To show that (1) implies (2) we consider the two cases of martingale
and submartingale.

( i ) Let [xn, f$fn, n i^ 1} be a martingale. If m < n, we have by the
definition of conditional expectations and the martingale equality

E{|5n|} =E{E{|*J|3fm}}
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-p ww w
(

Wm+l-\ \rWn ^ ( . n W1E{\X1\} + \-WmE{\xm\}

Making n —> oo? m being fixed,

since Wn —> oo and (zvm+1+ • • • +wn)/Wn —> 1 as n —> oo. Thus we get (2)
in this case.

(ii) Now let {xn, ^ny n ^ 1} be a submartingale. Then we can write
([1] P- 296)

where {^, 5W, n ^ 1} is a martingale, and Â  ^ 0 (j ^ 1). Denote

then {8n} is a sequence of positive random variables and is monotone
increasing with respect to n. Denote further by sn, s'n and tn the weighted
averages of xm xn, and 8n respectively, so that sn = s'n + tn, and we find

E{sn] =E{s'n} +E{tn}

= E&} + E{tn},

since by the martingale equality E{x'n} = E{x[] for all n.
Hence, from the assumption (1) we get

and again from the inequality

K|}5SE{|s n | } +E{tn}
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we find supE{|5n|) < oo. Hence applying the case (i) to the martingale
n

{xn,^n,n^l} we get supE{|.r»|} < oo. As {8n} is an increasing sequence,
n

limE{8n] = E{lim8n] = E{lim*M} = supEfo,} ,

and then supE{8n} < oo, so that
n

supE{|.rn |} ^ supE{ | j c ; | ] + supE{8w) < oo .
n n n

This completes the proof.

THEOREM 2. Let {.xn, 3fn, w i= 1} be a submartingale. Let wuw2,
mmm

be positive numbers such that Wn = xvl-\- • • • + wn —> oo as n —» oo and let
ôo be the Borel field generated by the field \^J ft^. Suppose that any A € $«>

m

satisfies the following condition :
(H): for any S > 0, there exist an integer m and a set Am e $m such that

A m cA and P{A-Am] <S.
Then the sequence {xn} and the sequence of their weighted averages

-4- • • • + wnxn)/Wn are equiconvergent almost surely.

PROOF. It is enough to prove that if {sn} converges on A, then {xn}
does almost surely on A, since the converse is evident. Further we shall
show the almost sure convergence of {xn} on A under weaker assumption
that the sequence {sn} is bounded almost surely on A.

Clearly we may suppose A^ 3\» and P{A] > 0. For any € > 0, we can
find a positive constant M and a set A* € ̂ ^ such that

A* = A n {|sn I < M for all n]

and P{A—A*} < 6/2. By the assumption (H) we can find an integer m and
a set Am€gm such that AmcA* and P{A*-Am] < 8/2. Therefore we have
P(A-Am] < £, Ame %m and on Am, \sn\ < M for all n.

The process [xnlAm, $n> n^m} is a submartingale, since for n> m,

From the preceding fact the weighted averages of this martingale sn lAm

satisfy that
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for all n ^ m . Hence by Theorem 1 sup E{|^nlAm |} < °°, and by the classical
n

theoirenv Km i n lAw exists and finite almost surely, or so does lim;rn on Am.
n—>°° n—»oo

As S is arbitrary we complete the proof.

REMARK. We give an example which shows that the condition (H) in
Theorem 2 cannot be suppressed. Let (O, 33, P) be the Wiener probability
space with O = [0,1[, 35 the class of all linear Borel sets in £t and P the
Lebesgue measure. Let ?&>w = l for all n and define

x^co) = 1

x2(co) = •

and generally

/ I \7

/ -| \r

- 1

1

r - l

7

— 1 '

I

for

for

for

for

for

+1 + 3)

1/2^

5/8^

for

for

for

<l/2

<l/2

a><5/8

where ^ = 1/2, an = l/2 + £ l/2fc+2 (TI=2, 3,....-)- Let %n be the Borel field

induced by ^ , • • •, xn, then {xn, $n, n ^ 1} is a martingale. The set

A = [3/4,1[ does not belong to the field \^$w> but is contained in $«, and
n

P{A} > 0. Moreover on A, xn = (—l)n, and hence sn = (xx + • • • + ^n)/n
converges to zero whereas xn diverges.

COROLLARY 1. Let p^l be a constant. Under the same assumption
of Theorem 1, the two conditions supE{|sw|p} < oo and sup E{|xn \

p} <oo

equivalent to each other.

PROOF. We get easily the conclusion along the same lines as in the
proof of Theorem 1 after a suitable use of the Minkowski inequality.

Instead of the weighted averages we shall consider those of the Norlund
type

WxXn)/Wn (n = 1, 2,
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then we can show the following, corollary.

COROLLARY 2. For a submartingale {#w, 3?n, w ^ l } , let p^ 1 be a
constant and suppose that

lim (Max w*)/Wn = 0

If sup-E{'\sn\
PY< °°> then s"upE{|ov|p} < °o, and conversely, under the

condition (H), z/ lim 5n exists and is finite almost surely' on A, then so does
W->oo

:n, and conversely.

PROOF. If we follow the corresponding lines of the proofs of Theorems
1 and 2, the only points to be noticed are t

(wn + wn_x + • • • + wn.N+x)/Wn -> 0

and (wn-N -+• • • • + w\)/Wn —> 1 as n —> oo for N" fixed. These facts are
immediate consequences of the additional assumption of {wn}.

Finally we mention the Abel mean analogue to the above results. Denote
the Abel mean of {xn} by

COROLLARY 3. For a submartingale {xn, %n, n^l}, if supE{|Ar|
p]

0<r<l

< oo? then supE{|:rw|p} < oo and conversely, where p ^ l is constant.
n

Under the condition (H) of Theorem 2, if lim Ar exists and is finite almost
r-*l-0

surely on A, then so does lim:rw, and conversely.

PROOF. Let m be a fixed positive integer. If {xn, %n, n Ŝ  1} is a
martingale, then

E{|A r |"} =
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Make r—>1—0 for fixed m, and we get

In this case the first conclusion of Corollary was proved; the submartingale
case is treated along the similar way to the proof of Theorem 1, and so are
the other conclusions.
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