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In [1] M. Berger stated a theorem which is equivalent to the following:
Let M be a complete Riemannian manifold whose sectional curvature

K satisfies the inequality

(1) 0< A^K(U)^B,

where A and B are positive constants and II is any tangent plane to M.
Let X be any Jacobi field along a geodesic x = y(s) parameterized with
arclength 5 such that

(2) ||X(0)|| = 1, X'(0) = 0, <X(0), y'(0)> = 1,

then

(3) ||X(s)!| ^ cosVA 5 for O g s g

This statement is made sure of its truth in the case dim M=2 or M is
locally symmetric, using their properties. Regarding this theorem, the author
will investigate the curvature of the following elementary spaces which are
generally non-symmetric.

An elliptic hypersurface Q of order 2:

( 4 )

in the (w + l)-dimensional Euclidean space En+1 with the orthogonal coordinates
#i > * * * > xn+l, is, as well known, an n-dimensional compact Riemannian
manifold with positive sectional curvature. The parallel hypsrsurfaca Qc

of Q which is the locus of the points with distance c from each point on

1) In this paper, Greek indices run from 1 to n + l and Latin indices from 1 to n.
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the normal inner half line through it has the same property as Q for a
suitable value c. If Q is not a sphere, these parallel hypersurfaces are not
symmetric. In this paper, the author will mainly prove the following theorems.

THEOREM A. Let Q be an elliptic hypersurface given by (4) with
0 < al ĝ a2 ^ • • • ̂  an+1. Then, for any constant c such that

( 5 ) *
. " = = 2an+1 '

the sectional curvature K(H) of the parallel hypersurface Qc of Q satisfies
the inequality:

where II is any tangent plane element of Qc.

We call any section curve of Q or Qc by the coordinate planes of En+l

a principal section.

THEOREM B. Along any principal section y of Q or Qc, where

cf^-^1—, the inequality (3) holds for any Jacobi field X satisfying the
2an+\

condition (2).

1. Parallel hypersurfaces of a convex hypersurface in En+1. Let Q
be any closed hypersurface in En+1. At each point x of Q, we take all
orthonormal (rc + l)-frame (x, eu • • •, en , en+1) of En+1 such that (x, eu • • •, en)
is an orthonormal n-frame of Q at x,e=en+1 is the inner unit normal vector
of Q at x. The set of these (n + 1)-frames is a submanifold B of the
orthonormal frame bundle of En+1. On B, we have the 1-forms ©i, • • •, ©n,
coxy. = — ©M, X, /A = 1, 2, • • •, n + 1, such that

( i . i )

and

(1.2)

2 9 dei =

den+1 — — J^^in+i^i

\V A
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From the second of (1. 2), we put

j

and we have, the, 2nd fundamental form of Q

(1. 4) 4> = J ^

Now, for a constant c, we define Qc by

(1.5) x — x + ce, x^Q9

then (2c, ̂  , • • •, en+1) is an orthonormal (w + l)-frame for the immersed
submanifold Qc as (x, el9 • • •, en+1) for Q. The set Bc of all (x, eu — , en+1)
is also a submanifold of the orthonormal frame bundle of En+1, when Qc is
an imbedded submanifold. In such case, we may identify Bc with B by (1. 5).
Then, for Qc we have from (1.1) and (1. 2)

(1.6)

The line element ^52 of Qc is given by

(1.7) ds* =
i

As (1. 3), we put for Qc

(1- 8) «<JI+1 = E -Aii *

then we get from (1. 6)

(1.9) ^ = ^ -

In matrix form, (1. 9) can be written as
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(1.9) A = A(l-cA)

or

(Lie, j - r j L A .

except the case 1/c is one of the eigen values of A. The 2nd fundamental
form <!> of Qc is given by

(1.11) O = E ®i ®i»+i = ID A,,© i ®i

and we have from (1. 6)

(1-12) <£ = 3> - c E «>i»+i ®t«+i = * - ttfo2,

where dor2 denotes the line element of the spherical representation of QdEn+1

or the 3rd fundamental form of Q.
The components of the curvature tensor of Q at x with respect to the

frame (x9 ex, • • •, en) are

(1.13) Rijhk = AikAjh AiflAj}c

and the ones of Qc at x = ^ + cen+1 with respect to (3F, ̂ , • • •, en) are

(1-14) -R-ijhk = AikAjh AihAjk .

Now, we take two orthogonal unit tangent vectors X — ̂  Xt et and
i

Y — 2^ Yi et at x € Qc, then the sectional curvature for the tangent plane
i

element II of Qc spanned by X and Y is given by

(1.15) K(O) = X(X, Y) - fE Ai^X,) fE A^y.Y,) - fe A , ^ Y

In the following, we will express the right hand side of (1. 15) by Xt, Yu

c and Atj. For simplicity, for any vectors X = E ^ e i > Y = ̂ 2Yteiy we

introduce the notations as follows
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Then, by (1.4), (1. 7) and (1.12) we have

where
(1.16) P= {<A{X\ X> - c\\A(X)V} [<A(Y\ Y> - c\\A(YW]

- {<A(X),Y> - c<A(X\A{Y)>Y
and
(1.17) G = {||X||2 - 2c<A(X), X> + c2||A(X)||2}

x {||Y||2-2c<A(F), Y>+c*\\A(Y)r}

, Y> - 2c<A(X), Y> +

In these equations, as well known, we may consider X and Y as
independent vectors on the plane element II. As in (1.15), we assume

then we have

(1.16') P = K(X, Y) - c{\\A(XW<A(Y), Y> + || A(y)||2<A(X), X>

- 2<A(X), Y><A(X), A(Y)>} .

+ c2{i!A(X)H|A(Y)||2 - <A(X), A(F)>2} ,

(1.17') G - l-2c{<A(X), X> + <A(J), Y>]

+ c2{||A(X)||2 + \\A(YW + 4K(X, Y)}

- 2c3 {||A(X)|i2<A(Y), Y> + 1 A(Y)||2<A(X), X>

- 2<A(X), Y><A(X),

+ cHI|A(X)||2||A(y)||2 -

where K(X, Y) denotes the sectional curvature of Q at x corresponding to X
and Y.

Lastly, we choose such a frame (x, eu • • •, en) that

i 0 I
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then we have easily from (1.16) and (1.17)

(1.16 ) P

(1.17") G =

Hence

£ <l-caiyo.-caF{.XiYl-X,Yiy

Here, assuming that Q is convex at x and

(1.19) a^a^-sa,,

then we have for

(1. 20) 0 5S c 52 - i -

and

where the both equalities hold for X=e1? Y=e2 and X=ew_!, y = e n respectively.

2. The range of the sectional curvature of parallel hypersurfaces of
an elliptic hypersurface. In this section, we assume that Q is an elliptic
hypersurface of the 2nd order in En+1 given by (4) and 0<axi=^a2tik • • * ^an+l.
At a point x € Q, we take a unit tangent vector X = 2^X^i, then for the



ON PARALLEL HYPERSURFACES OF AN ELLIPTIC HYPERSURFACE 257

section of Q by the plane through x and parallel to the normal unit vector
en+l and X, we have

(2.1)

where x(s) denotes the point of the section, s is the arclength of the section
measured from x = x(0), and en+1(s) is the unit inner normal vector at x(s).
The components of en+l are clearly

where

(2. 3) p{x) = 1

Considering x in (2. 2) as the coordinates of x(s), we have

Since (—^-\ are the components of X with respect to the canonical
V as A=o

coordinates of En+l, we get from (2.1)

(2.4) E4;

Denoting the length of the radius of Q with the same direction of X by r(X),
we have easily

(2.5)

where £*. are the components of X with respect to the canonical coordinates
of EnJr\ Hence, from (2.4), we have

(2.6)
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The section of Q by the hyperplane through the center of Q and parallel to
the tangent hyperplane at x € Q is also an elliptic bypersurface of the 2nd
order in this hyperplane. We denote the principal radii of this section by

0 < r^x) ^ r2(x) ^ • • • ̂  rn(x).

Since we may consider that the directions of these principal radii are
orthogonal to each other, we choose a frame (x, el9*'*9 en) such that el9.:\

m, en

are parallel to these directions. Then, we have

( 2 ' 7 ) Ui= r-x ~

and

(2. 8) ax ^ ct2 ^ • • • ^ an > 0 .

By means of (2. 7), (2. 8) and (1. 21), for

(2.9) 0^c^^^~

we have

where II denotes any tangent plane element to Qc at x = x+cen+l.
New, in connection with (2.1), we take an auxiliary function

ftp) = i t

of py where a, 0, c are constants such that 0 < a rg /3, 0 5g c. Then, we
have easily

Hence, for

(2.11) :an+1(a
2+/32)

f(p) is a non-decreasing function of ^>in the interval ax ^ p^ an+1. Thus, we
get for c in (2.11)
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v / / _.9 _ . \ / /~>9. _ . \ = "TTTi cp) =~ (a2- can+1)(/3
2-can+l)

Let us come back to the situation in (2.10). We have

(2.13) min ^ \ ^

On the other hand, we suppose that rx{x) and r2(x) correspond to two
unit vectors X and Y with ccmponents £A and rjx with respect to the canonical
coordinates of En+1 which are orthogonal to each other. Then, we have

(2- 14) , y + ~ ^ T T^r +

From (2. 5)

_A + _ -
a2

2

hence we have

4- < -4- —
( ) 2 ( ) 2 2 2

making use of the relations ^ £ i = ^rjt = 1, ]>Z ?A^A = 0. Analogously we

have

(2 16) - + ^ >: -1 + ——
V"* AV/I / \9 / \9 : = = : 9 9

rn^{xf rn(x)2 an
2 an+1

2

Regarding (2.11) and (2.13), we have
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Thus for

(2.18) 0 ̂  c ^

we have

(2 19) ^ — <

and

(2.20) = (r,{xy - cp(x))(r2(xy - cp{x))

Making use of (2.15), we have

2-can+1) - (a?-canJrl)(a?-can+x)

( l -

From (2.17) and (2.18), we have

l-can+l (-j^r + —rrr) ^ 0.

On the other hand, making use of the relations

o 2 :

we have

1 ^ 1 v 1
2 22 Z ^ a S»A L-J 2

2 X V^ u . /*
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that is

rx(x?rlxf - aSaS^Q.

Thus we have

(2. 21) (r&y-ca^Mxy-ca^) ^ (ax> - can+l)(a2* - can+l) .

Analogously, we get

(2. 22) (rn-iixy-caJirnixy-caO ^ ( a , 1 - ^ ) ^ ^ - ^ ) .

From (2.19), (2.20), (2.21) and (2.22), for c in (2.18) we get the inequality

(al-can+1)(at-can+1) '

It is clear that the left equality holds for some II tangent to Qc at (ar — c,
0, • • •, 0) and the right one holds for some II tangent to Qc at (0, 0, — ,
an+i — c). Thus, the proof of Theorem A is completed.

3. The Jacobi equation along a principal section of Q. Let Q be an
elliptic hypersurface of the 2nd order in En+1 given by (4). In the domain of
Q such that ^ n + 1 ^ 0 , we regard xx, • • •, xn as local coordinates of it, then

(3.1) xn+1 = ±an+lF,

(3.2)

In the coordinates, the line element of Q

ds2 =

gives

(3-3) gt)

and

(3.4) g*>:
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From (3. 3), we have

dxk F2 a*a*

and

( + i
2 \dx, dxt

Thus, the Christoffel's symbols of Q in the coordinates are given by

(3.5) n, = E 9»r<,* - p^fK (±. + ̂ ) f. + -^ L ̂ f§-.- •
k A \a>i &i I ai " ai ai ai

Along the principal section 7 given by

(3. 6) x2 = .x3 = • • • = xn = 0,

we have from (3. 5)

V1 — P^J x^ Va — V1 — 0 /y — 9 3 . • . t7
1 11 ^ ^ — j J- t ; — A « l — ^ > Ct — ^ , O, • • • , W ,

and so the equations of parallel displacement of a tangent vector £ with com-
ponents £* along 7 in Q are

4 * - + r j ^ 1 ^ = 0 , 4 f - = °> a = 2>3>• • • >n-2)

a5 a5 a5

2) In general, the equations of parallel displacement of a tangent vector | along a curve
Xi=Xi(s) are

and the equations of a geodesic are
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Hence the vector ea with components S« are parallel displaced along 7. Since
ffi/3 — §ip along y, e2, e3, • • •, en are orthogonal to each other and to y. The
equations above imply also that 7 is a geodesic.

On the other hand, for any vectors X, Y in En+1 with components X\, Y\
with respect to the canonical coordinates, we define

(3.7)

Then, for the 2nd fundamental form <3> of Q, we have easily from (2. 5) and
(2. 6) the equality

(3.8) 9(X9Y)=p(x)Q(X9Y)9

where X, Y are tangent to Q at x, that is

regarding x as the position vector.
By means of (1.13) and (3. 8), for the curvature tensor R of Q and tangent

vectors X, Y, Z to Q at x, we have

(3. 9) < 7 , R(Z, XZ)> = <D(Z, Z) 3>(X, Y) -3>(Z, X) 3>(Z, Y)

= ^>(̂ )2 {Q(Z, Z) Q(X, Y) - Q(Z, X) Q(Z, Y)} .

In general, the equations of a Jacobi field along a geodesic <r is

(3.10) ds ds \ ds ds

Along the principal section y, we get easily

d1 dy\ = J^
ds\ ds) af ,= J^( _J^( = (

ds) af \ ds.) an+1
2 \ ds ) ai

2F2\ ds

Q(x, Y) =
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using (3.1), (3.2) and Q(x, 7) = 0. Now putting Xi=Xi, we have

DX1 _ dXx , r l V1 dxx _ dX1 , piccf x, Vl dxx DX" dX"
~ds dT u ds ~~dT F* a,4 ds ' ds ds 'ds

D DX1 _ d'X1
 2 p(x)2 x, dxt dX1

ds ds ds2 F2 a,4 ds ds

D DX" d*X"
ds ds ds2

anj

< z = 2 , 3, • • • , « .

* an+l
2) aj\\ ds ) '

From (3.9), (3.10) and the calculations above, the Jacobi's equations along
7 are

d'X, npixf x, dxx

ds' ' F2 W ds ds

ds

ds'
(dxl\*x

* \ds) X"

The second part of (3.11) shows that the Jacobi's equations have (n — 1)
solutions X orthogonal to 7 such that X/||X|| = ea, a = 2, 3, • • •, n.

(«) (a) (a)'

4. Proof of Theorem B. Firstly, we show that the principal section 7C:

(4.1) x2 = x3 = • • • = xn+1 = 0

of Qc is also a geodesic as 7 in Q. Making use of the frame {xy eu • • •, en)
along 7 denned in §3, we have

ds ds ds / ax
2an+x*

î, O - 0,

With respect to this frame, we have along 7
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Pixf

(4.2) (A,) =

P(x)

0

Then, from (1. 6) and (4. 2), we have for 7,

dx — dx _,_ r den+! _
dsds ds

d x d
~df = ~ds~

for 7 is a geodesic and so

9 9

ax an+1

1 -
^ 1 ^71 + 1 ds

(mod*B+1)

The equation above shows that 7C is a geodesic of Qc. Along 7C, we have
from the consideration in §3

hence

(4.3)

(modi?n+1),

= 1, z , • • • , w,

where D denotes the covariant differentiation of the space Qc. On the other
hand, with respect to the frame (x, ex, • • •, en), the matrix (Atj) is of a
diagonal form by virtue of (1.10) and (4.2). Then, the Jacobi's equations
along 7C can be written as
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where s denotes the arc length of 7C and X = ^2Xiei and they turn into the
i

following

i

The second part of (4.4) shows that 7C has (n—1) Jacobi fields X orthogonal
(a)

to yc such that X/||X|| = ea, a = 2, 3, — , n, which are also parallel along 7C.
(a) (a)

According to Theorem 1 in [3], the above circumstance along any principal
section of Qc follows that Theorem B is true for the principal section.
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