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In [1] M. Berger stated a theorem which is equivalent to the following :
Let M be a complete Riemannian manifold whose sectional curvature
K satisfies the inequality

(1) 0< A< K@) =B,
where A and B are positive constants and II is any tangent plane to M.

Let X be any Jacobi field along a geodesic x = v(s) parameterized with
arclength s such that

(2) 1XO0) =1, X(©0) =0, <X0),y0)>=1,
then
(3) [X(s)] =cosi/As for 0=s= g\l/"E )

This statement is made sure of its truth in the case dim M=2 or M is
locally symmetric, using their properties. Regarding this theorem, the author
will investigate the curvature of the following elementary spaces which are
generally non-symmetric.

An elliptic hypersurface Q of order 2:

(4) 2

A=1

z—x‘iz-_l (al"",an—l>0)l)

in the (n+1)-dimensional Euclidean space E"*' with the orthogonal coordinates
Zy,v**, Tns, 15, as well known, an #n-dimensional compact Riemannian
manifold with positive sectional curvature. The parallel hypersurface Q.
of Q which is the locus of the points with distance ¢ from each point on

1) In this paper, Greek indices run from 1 to n+1 and Latin indices from 1 to 7.
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the normal inner half line through it has the same property as Q for a
suitable value ¢. If Q is not a sphere, these parallel hypersurfaces are not
symmetric. In this paper, the author will mainly prove the following theorems.

THEOREM A. Let Q be an elliptic hypersurface given by (4) with
O<a,=a,=---=ay,,. Then, for any constant ¢ such that
a,’

<c<
(5) 0=C: Aaﬂ‘f'l,

the sectional curvature K(II) of the parallel hypersurface Q. of Q satzsﬁes
the inequality :

2

al An+1
(6) (a,?—ca))(ay 2 —ca,) = =K@ = (a)® —cagzsy)(@lt—cayy)’

where 11 is any tangent plane element of Q..

We call any section curve of Q or Q. by the coordinate planes of E™*!
a principal section.

THEOREM B. Along any principal section v of Q or Q. where
cé—L the inequality (3) holds for any Jacobi field X satisfying the

Ap+1
condition (2).

1. Parallel hypersurfaces of a convex hypersurface in E**!. Let Q
be any closed hypersurface in E™*'. At each point x of Q, we take all
orthonormal (n+1)-frame (x, e, -+, e,,¢e,.,) of E"! such that (x,e,---,e,)
is an orthonormal n-frame of Q at x,e=e,,, is the inner unit normal vector
of Q at x. The set of these (n+1)-frames is a submanifold B of the
orthonormal frame bundle of E**!. On B, we have the 1-forms w;, «--, o,
o1 = —oa, L, p=1,2++-, n+1 such that

dzx = Z @; €y, de; = 3 085 + @ins1nins
i

j

(1.1)
de,,, = — Z @Din+1 €
i
and
dw, ;ij/\mji’ ZwiAbin+l =0,
1.2) ! !

doyw =2 on\woy,.
v
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From the second of (1.2), we put

1.3) O = 2 Aoy, A=Ay
j

and we have the 2nd fundamental form of Q

(1.4) P = Zwt @Dip+1 = Z Ao 0;.
i 1,4

Now, for a constant ¢, we define Q. by

1.5) T=x+ce, zx€Q,

1

then (Z,e;,-+-,e,.;) 1is an orthonormal (n+1)-frame for the immersed
submanifold Q. as (x, e, --+,€,,,) for Q. The set B, of all (z,e,+--,¢e,.,)
is also a submanifold of the orthonormal frame bundle of E**!, when Q. is
an imbedded submanifold. In such case, we may identify B, with B by (1.5).
Then, for Q, we have from (1.1) and (1. 2)

di = Z ®;€; = Z (wt_cwin-l-l) €,
(1.6)

®; = 0;—CWip41 = Z (Sij—CAU)wj .
J

The line element d5® of Q. is given by

(1.7) st =2 o, = 3 (8,—2cA,+c* L s Ak,.) ; ;.
i ij

As (1. 3), we put for Q,

(1.8) Oiner = ;A‘”aﬁ A=Ay,

then we get from (1. 6)

(1.9 A=A, - ¢ 2 Ay Ay
k

In matrix form, (1.9) can be written as
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(1.9) A= A(1—cA)
or

. A
1. T e
(1. 10) A i

except the case 1/c is one of the eigen values of A. The 2nd fundamental
form ® of Q. is given by

(1.11) d = > @ @i = > Zf“w,-a)j
i i,J
and we have from (1. 6)

(1.12) D=D— D @iy @ins1 =P — cdo®,

where do® denotes the line element of the spherical representation of Q C E"*!
or the 3rd fundamental form of Q.

The components of the curvature tensor of Q at x with respect to the
frame (x,e,,---,e,) are

(1- 13) Rtjhk = Ay Ajh — A Aj)c

and the ones of Q, at x = x + ce,,, with respect to (Z,e,+++,e,) are

(1.14) R = Au Ay — Ain Ay -

Now, we take two orthogonal unit tangent vectors X = > X,e, and

Y=>Y,e at zeQ,, then the sectional curvature for the tangent plane

elemerllt II of Q. spanned by X and Y is given by
2
115 (D) = RX,Y) = (z Zl"inin) (z A—”Yin) _ ( 5 mfxty,)
1,4 I\ Y, .

In the following, we will express the right hand side of (1.15) by X, Y,,
¢ and A,; For simplicity, for any vectors X=> X,e;,, Y =3>Y,e;,, we

introduce the notations as follows

<X, Y> = Z XY, “X” = ~/<X, X>, A(X) = Z Ainjei .

i,J
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Then, by (1.4), (1.7) and (1.12) we have
K() = P/G,

where
(1.16) P={<AX), X> = | AX|} {(<AX), Y> — ¢c| A1}

— {[<KAX),Y> — c<AX), AY)>}?
and

1.17) G = {|X|* - 2.c<A(X), X> + A%
X {[Y[P—2c<AY), Y>+c*| AV}
— (<X, Y> — 2c<AX), Y> + *<AX), A(Y)>}2.

In these equations, as well known, we may consider X and Y as
independent vectors on the plane element II. As in (1.15), we assume

IX| = Y] =1, <X,Y>=0,
then we have
(1.16") P=KXY) - c{||A(X)||2<A(Y), Y> + |AQ)|IP<AX), X>
—2< AX), Y><AX), AY)>) .
+ A PIAD) — <AX), AY)>?
(1.17) G =1-2{<AX), X> + <A®Y),Y>}
+ AKX + JAD)|? + 4K(X, Y))
— 23 (JAX)P<A®Y), Y> + [AD)P<A(X), X>
— 2<AX), Y><AX), AY)>}
+ G IAXPIAD)|* — <AX), AX)>Y,

where K(X,Y) denotes the sectional curvature of Q at x corresponding to X
and Y.
Lastly, we choose such a frame (z,e,+--,e,) that

a, 0
a,

A=Ay =

o el
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then we have easily from (1.16) and (1.17)

(L16) P=3X(-ca)a XY (1-ca)ay; — (T 1-ca) aXY.)

= Z(l—cdi)(l—ca]) didj(Xin—XjYi)Q N

i<j
117" G =3 (A-2ca;+ca®) XY 1—2ca;+c’a?)Y ?
P j
~{Ta-za+canxy.|
- Z (1 —Cdi)z(l _Cd])Z(X;LYj _XjYi)2 .
i<j
Hence

1— i 1- J i in— Yi2
(1.18) I—{(X’Y)zg( ca)(1—ca;) aa(X.Y,—X,Y,)

2 A—ca)’ 1—ca) (XY, — X,Y.)

i<
Here, assuming that' Q is convex at x and

(1.19)

then we have for

(1. 20) 0=c= 27;;
Q—ca)1—cay)a,a, = P=(1—ca,_)(1—ca,) a,_a,,
(A—ca)’l—ca,) =G = (1—ca, )’ (1—ca,)’,

and ' |

(1. 21) A

>FK > a, &,
Tcani—ca) = 0= Toa, i —ean)
where the both equalities hold for X=e,, Y =e, and X=e,_;, Y =e, respectively.

2. The range of the sectional curvature of parallel hypersurfaces of
an elliptic hypersurface.

In this section, we assume that Q is an elliptic
hypersurface of the 2nd order in E™*! given by (4) and 0<a,=a,

=ccr=apea.
At a point x€ Q, we take a unit tangent vector X =Y X,e,, then for the
i
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section of Q by the plane through x and parallel to the normal unit vector
e,+; and X, we have

d’x(s) _ de,.(s) _
(2. 1) < ds® en+l(s) >8=0— - <X, ds ?:o— %Aini XJ

where x(s) denotes the point of the section, s is the arclength of the section
measured from x=x(0), and e,,,(s) is the unit ipner normal vector at x(s)
The components of e,,; are clearly

(2.2) L= —px) %,
as
where
- E2
2.3) P =1/, T

Considering x in (2.2) as the coordinates of x(s), we have

dl 1 d d
G = —p@ G+ b log p(a).
Since iz;—") are the components of X with respect to the canonical
S /s=0

coordinates of E"*!, we get from (2.1)

@.4) T AKX, = T o (i}?)

§=0

Denoting the length of the radius of Q with the same direction of X by #(X),
we have easily

(2.5) P L =1,

where £, are the components of X with respect to the canonical coordinates
of E**'. Hence, from (2.4), we have

_ _px)
(2. 6) ZA,,XX o
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The section of Q by the hyperplane through the center of Q and parallel to
the tangent hyperplane at € Q is also an elliptic hypersurface of the 2nd
order in this hyperplane. We denote the principal radii of this section by

O<n@=r@=-=r).
Since we may consider that the directions of these principal radii are

orthogonal to each other, we choose a frame (z, ey, - -+, €,) such that e,,++ -, e,
are parallel to these directions. Then, we have

L= *_jl(xf)r — ] — oo o
(2' 7) . al (ri(x))z s 4 13 29 s,
and
(2.8) azay=-=a,>0.

By means of (2.7), (2.8) and (1.21), for

r(x)?
(2.9 0=c= m
we have
2.10 e P(‘T)Z . <= T < P(x)Q
( 1 ) (rn—l(x)2_ cp(x))(r,,(x)2 _cp(x)) = K(H) = (7‘1(113)2"‘ cp(x))(r2(x)2_cp(x)) ,

w here II denotes any tangent plane element to Q, at x=x+ce, ..
Ncw, in ccnnection with (2.1), we take an auxiliary function

___
IO = = ep@—cp)

of p, where a, B, ¢ are constants such that 0 <a =8, 0=c. Then, we
have easily

(o — P28’ — cp(a®+8%)}
PO =" cpyia—cpy

Hence, for

(2.11) 0=c=_ 208

f(p) is a non-decreasing function of pin the interval a, = p= a,,,. Thus, we
get for ¢ in (2.11)
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2. a,’ 2 . an+12
(2.12) (@*—ca,)(B —cal) — (@P—cp)B—cp) T (az— €ani) (B2 —can. )

Let us come back to the situation in (2.10). We have

2. ()’ _ a)’ .
(2.13) Teq 2p(x) 2a,.1

On the other hand, we suppose that 7 (x) and r,(x) correspond to two
unit vectors X and Y with ccmponents & and 7, with respect to the canonical
ccordinates of E"*! which are orthogonal to each other. Then, we have

1 1 1 1
2.14 + = + .
@14 n@ T @ = @ ey
From (2.5)
1 .11 1
a’>  a,® r(x)? ry(x)?

-1 .1 ‘ _s 1
= al z EA Z a‘i m

A

v

21;2 (A=&—n) + - ! (1 Ei—m) — 2 Z(EV‘_"‘

3=A
—_ _‘1 R 77717_ e 2 +1 — _l,,_ g2 Y =
- <6112 a32>(1 & "'71) + (a22 PR >(1 & "72) =0,
hence we have

(2.15) 1 o, 1 1 1

Tl(x)2 rg(x)z = alz a22

b

making use of the relations D> & =2 7 =1, > £ =0. Analogously we
r A A

have

1 1 -1 1
2.16 SO SR T
( ) 7‘"_1(.’17)2 T.,,(.Z')2 - anz an+12

Regarding (2.11) and (2.13), we have

2.17) ‘ a’ _  a’ay —  n@n@?
) 2a,., T an+1(a1 +a2) = n+1{7‘1(x) +r2(x)}
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Thus fér

2. 18) 0=c=_
2a,41

we have

2.19 al : ‘. P(x)2

@19 @ ca)ra @ —cay = e @ = cp D) = P @) =K
and

.20 J )’
(2.20) I = @ @) —cp@)
A’

= (rl(x)z_cani-l)(rﬁ(x)z _Can+1) )

Making use of (2.15), we have

(rl(x)2_can+l)(r2(x)2_Can+1) - (alz_can+l)(a22—can+l)
= r(x)’ry(x)® — a,’ay’ — cap. {ir(x)* +ri(x)* —a,’—a,’}

= r(x)’r(x)* — a,’ay’ — can,(r(x)* +7ry(x)?) (1" 71%)

={r,(x)2r2(x)2—a12a22}{l—ca,”l( 1 - 1 )}

ri(x) ro(x)?

From (2.17) and (2.18), we have

1 1
1— - 4+ - =0
Capy ( Tl(x)2 + rz(x)2 ) =

On the other hand, making use of the relations
1
E=2m=1, 2 hm=0= Z;?fxm,
A A A A “

we have

1 1 _ 1 ,,}_ y 1,
a,’ay’ - rl(x)2r2(x)2 = a’ay’ Z 47\2 & ;a 2 T

_s (L

A<p

1
Za#2 )(‘El”lu - f#"h)2 =0,

al ag
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that is
r(x)? ryx)® — a*a* =0.
Thus we have-
(2. 21) (rl(x)2 - ca,,,,l)(rz(x)” —Cpi) = (a®— Can+1)(¢122 —Capyy) -
Analogously, we get
(2- 22) (Tp-1(x)*— Cal)(rn(v":)2 —ca;) = (a,"—ca)(ni* —cay) .

From (2.19), (2.20), (2.21) and (2.22), for ¢ in (2.18) we get the inequality

al‘ KH an+12 i
(a*—ca)api—car) — ( )—(al Cayir)(A—Cayyr)

It is clear that the left equality holds for some II tangent to Q. at (a,—c,
-, 0) and the right one holds for some II tangent to Q. at (0,0,---,
ans1—c). Thus, the proof of Theorem A is completed.

3. The Jacobi equation along a principal section of Q. Let Q be an
elliptic hypersurface of the 2nd order in E"*! given by (4). In the domain of
Q such that z,,,>0, we regard x,,--+,x, as local coordinates of it, then

(3. 1) Tp1 = =+ an+1F,

= —_ xiz
(3.2) F w/ -2
In the coordinates, the line element of Q:

ds* =) dxrdxy = 3 gi;dx,dx;
A i,J

gives

— an+12 i X
3.3 a5 =8 + TF' aja)
and
(3.4) g =8, — pla)t Tt

a’a
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From (3. 3), we have

39, Apii’ 1 2a,.," xx;%

J = n+l +1 k

S = s (Sikxj+8jkxi)+_ﬁﬁl4 1T
ZTr a;’a; a;"a;’ay

and

Tyjr= 1 (agzk + Y 8.%:')

2 \oz;, oz, ox

2
—“"“-{w & GumtBim) + o Bumet b))
k i i k kil
2F? ai ij4k J J J* it
2

— (8T 8y }_,_ An+y” LT,

a’a; B+ By:) F*  aj’ajla’

Thus, the Christoffel’s symbols of Q in the coordinates are given by

o 3 gk playry (1 . 1) & p@) zaxx
3.9 P”_Z(/ Do =55 % ( at) a? T a;*aa’

k l

Along the principal section v given by
3.6) Xy =Xy =+++=x, =0,

we have from (3.5)

x)x
{1:%, I1ta]_Pa1— a:2>37"'7n7
1

and so the equations of parallel displacement of a tangent vector £ with com-
ponents £ along v in Q are

ag ,d:c; - ag* _ — 93 e gD
s + I =0, s 0, a=23, , 7.

2) In general, the equations of parallel displacement of a tangent vector ¢ along a curve

x;=x;(s) are
dté dxy

21”"* 2.1‘ ¥ =

and the equations of a geodesic are
&y
ds®

i dxj dxy -0

‘ +j2 Tjx ds ds
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Hence the vector e, with components &, are parallel displaced along fy. Since
gis = ;5 along v, e, e, +++,e, are orthogonal to each other and to v. The
equations above imply also that v is a geodesic.

On the other hand, for any vectors X, Y in E™*' with components X3, Y3
with respect to the canonical coordinates, we define

3.7) 0XV) =% ;1; X,Ys.

Then, for the 2nd fundamental form ® of Q, we have easily from (2.5) and
(2. 6) the equality

(3.9 (X,Y) =p(x) QX Y),
where X, Y are tangent to Q at z, that is

Qx, X)=Q(xY)=0,
regarding x as the position vector.

By means of (1.13) and (3. 8), for the curvature tensor R of Q and tangent
vectors X, Y, Z to Q at x, we bave

(3.9  <Y,R(Z X2)> = ®(Z, 2)NX,Y) —0(Z, X) D(Z,Y)
= p(x)*{Q(Z, 2) QX,Y) — Q(Z, X) Q(Z,Y)} .

In general, the equations of a Jacobi field along a geodesic o is

D DX do' do
(3.10) LD DX+ R(9Z,x97)=0.

Along the principal section v, we get easily

Q(ﬂ dy 1 dx1)+ 1 <é£,,i2~ 1 dxl)z,

ds’ ds) ds Auii® \ ds T alF*\ ds
d 1 d 1 dx,. _ 1 dx
QG X) = o e Kot L S X = o X,

QX,Y) = 2F2XY +Z L x.v.

“
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using (3.1), (3.2) and Q(x, Y)=0. Now putting X*=X,, we have

DX' _ dX L i dx, _ dX | pa) x yndxy, DX* _ dX*
ds dslf+PnX ds ds +e F? a,“X ds > ds ds ’

D DX' _ d*X! +2P(x)2 z, dz, dX'

ds ds  ds F* a* ds ds +
e O O F R S IC AL
D DX~ _ d*X*

D DX*_ X" 493 ... 5.
ds ds ds® ’ T a

From (3.9), (3.10) and the calculations above, the Jacobi’s equations along
v are

X, | g pa) 2 dxy dX,
ds* F* a* ds ds
Copp@ L (1 2 &t g1 1 } dr Y, =
(3.11) a;‘F{anH (alz an+lz)alz+3(a Anir? ) 1=
22X, pa) dxl =03

The second part of (3.11) shows that the Jacobi’s equations have (n—1)
solutions (X)' orthogonal to v such that X)/ ||%(|1 =, A=2,3+:4.n
a (a a)

4. Proof of Theorem B. Firstly, we show that the principal section 7,:
4.1 Xy =Ty =+ =12y, =0

of Q. is also a geodesic as ¥ in Q. Making use of the frame (x,e,---,e,)
along 7 defined in §3, we have

Ble,, ) = p)Q (D1, ALY = ) (d Y _plo)

ds ’ ds alF?\ ds a’a, .

b

Dle,, e2) = 0, Dle, €5) = p(2) Qlew, e5) = LTes_

adg

With respect to this frame, we have along 7.
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"—j:(x)3 2 0
a," A4
)
a,’
4.2 (Ayy) =
0 P(l)
a,?

Then, from (1.6) and (4.2), we have for v,

AT AN
4 B i
for v is a geodesic and so
_%e;,_ =0 (mod e,,,) .

The equation above shows that 7, is a geodesic of Q..

from the consideration in §3

(mOd en+1) ’

hence

vD*eiA: y 1=1.2. .-

(4.3) a

. n,

265

de,

ds

Along 7., we have

where D denotes the covariant differentiation of the space Q.. On the other

hand, with respect to the frame (Z, e, - -

-,¢e,), the matrix (4;;) is of a

diagonal form by virtue of (1.10) and (4.2). Then, the Jacobi’s equations

along 7. can be written as

X
ds*

+ ZRHMX,C = 0,

k
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where 5§ denotes the arc length of v, and X = _ X'e, and they turn into the

following

ax -0 dz X« + ) p(x)‘X“

“.4 ds* 0 ds? {a,2a,.,"— cp(x)*} {a.’ ——cp(x)}

The second part of (4.4) ‘shows that ¥, has (n—1) Jacobi fields X orthogonal
to 7, such that (X;/ “EX |=e., a=23+--,n, which are also parallel along ..

According to Theorem 1 in [3], the above circumstance along any principal
section of Q, follows that Theorem B. is true for the principal section.
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