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Introduction. Let (M, g) and (M', g) be two (pseudo-) Riemannian
manifolds with metric tensors g and g respectively. A diffeomorphism <p of
M to M' is called a strongly curvature-preserving transformation if <p maps
VkR into V'*-R' for k=0,1, • • •, where V*2? 0&^l) denotes the jfe-th covariant
derivative of the Riemannian curvature tensor R oi g and S/°R=R.

As a different version of the equivalence problem in Riemannian
geometry, K. Nomizu and K. Yano [4, 5] have obtained the following result:

THEOREM A. If M and M' are both irreducible and analytic
Riemannian manifolds, and if <p is a strongly curvature-Reserving trans-
formation of M to M\ then <p is a homothety.

However this kind of problem is important also in pseudo-Riemannian
geometry. When g is an indefinite Riemannian metric, at any point it is
reducible to

(dx1)2 + • • • + (dxpf - (dx*+1)* (dxmf

with respect to some local coordinates (xl, • • •, xm), where m = dim M and
the integer 2p—m is called the signature of g. We may assume that the
signature is not smaller than 0. Of course the signature m implies that the
metric is positive definite. Then the purpose of this note is to show the
following

THEOREM 1. Let M and M be both irreducible and analytic pseudo-
Riemannian manifolds, and assume that the signature of g is not zero in
the case where dim M is even ^ 4, then any strongly curvature-preserving
transformation of M to M' is a homothety.

The proof of Theorem 1 gives the proof also to the following Theorem
which is a generalization of a result in [3] to pseudo-Riemannian manifolds:
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THEOREM 2. Let M and M' be irreducible pseudo-Riemannian
manifolds, if the signature of g is not zero in the case where dim M is
even ̂  4, then any affine transformation of M to M' is a homothety.

1. The linear transformation A. Let g* = <p*g be the metric in M
induced by <p from g. We take an arbitrary point x of M and fix it. Then
by the quite similar argument on infinitesimal holonomy group as in [5] we
have

LEMMA 1.1. The restricted holonomy group yfr(x) of g at x is contained
in that yjr*(x) of g*.

Now we define a linear transformation A of the tangent space Mx at
x by

(1.1) g(AX9Y) = g*(X,Y)

for X, Y in Mx. We shew that A commutes with every element o of yfr(x).
As g, and g* by Lemma 1.1, are invariant by yjr(x\ we have

(1-2)

(1.3)

Then by (1.1), (1. 2) and (1. 3), we have

(1.4) g(Ao-X, oY) = g(*AX, oY).

As g and or are ncn-singular we have Ao'=<rA for any a- of yfr(x). Since
acts on Mx irreducibly, A must be of the form either A = al, or A=aI+bJ,
where / is the identity transformation of Mx and J is a linear transformation
such that J2=—/, a and b are real numbers, (p. 277, [2]) If A — al we have
g^ — ag at x, namely <p is conformal. Thus the essential point is to obtain
the conditions for bJ to vanish. Suppose that A = al+bJ, then by the
symmetry of </*, A and J are symmetric. This implies :

(1.5) g(JX,JY)=-g(X,Y)

for any X, Y in Mx. Thus J satisfies:
( i ) If X and Y are orthogonal, so are JX and JY.
(ii) If X is null, so is JX.
(iii) If X is positive (negative), then JX is negative (positive resp.);
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Thus we have

LEMMA 1.2. The only possible case of existence of J is that dim M is
even and the signature is zero.

Next we find out the system of equations which J must satisfy. By this
we obtain the next:

LEMMA 1.3. When dim M is 2 and the signature is zero, J does not
exist.

Assume that dimM=ra = 2?z and take a basis of Mx such that

/0 - £ \
(1. 6) J = } E: unit n x n matrix.

\E 0/

As any o* <= yfr(x) commutes with A and hence J, yfr(x) is considered as the
real representation of the unitary group U(n):

(Q -R\
(1. 7) a = Q, R: nxn matrices.

\R Ql

By (1. 5) namely lJgJ——g, g is of the form

IB C\
(1. 8) 9 — \ B,C: nxn matrices.

\C -Bl

By (1. 2) namely l<jga=g,Q and R satisfy the following:

(1.9) lQBQ + lQCR + lRCQ - lRBR = B,
(1.10) lQCQ - lQBR - fRBQ - lRCR = C.
So if m = 2, we put Q = q, R = r, B = 0 and C = % then (1.9) and (1.10)
reduce to
(1.11) 0q2

(1.12) 792

The solution (q, r) axe at most two pairs. This implies ^(x) = {identity}. If
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m ^ 4, the number of variables in Q, R exceeds the number of the equations
(1. 9), (1.10). For example, if m = 4, <r has 8 variables and 6 equations.

2. Conformal transformations preserving R and V-B. In this section
we use tensor calculus in a coordinate neighborhood. First we recall the
followings.

LEMMA 2.1. For a conformal transformation of pseudo-Riemannian
manifolds <p:M-> M' such that <p*g = (?ag, if cp maps R into R and if
ra^3, then

(2.1) V/*fc = a,ak - (1/2)ara
rgjk

holds, where ak — dka. (cf. [1, 5])

LEMMA 2.2. Suppose that (2.1) holds for a conformal transformation,
and that da vanishes at a point, then a is constant on M. [ 5 ]

LEMMA 2.3. If m = 3, we have

R'jkl = SlRJk - hiRjt + R\gjk - Rl9jl - (1/2)S(h\gjk-Vkgjt),

where Rjk=Ri
jki is the Ricci curvature tensor and S is the scalar curvature.

Now we prove the following Proposition which was obtained when the
metrics are positive definite in [4, 5]:

PROPOSITION 2.4. Let (M,g) and (M',g) be pseudo-Riemannian
?nanifolds such that di?n M ^ 3. If a conformal transformation cp of M to
M' maps R into R and \/R into V'R, then either da = 0 or R=0 holds on
M.

PROOF. Generally we have

(2.2) V^RJ^-WRVJU

where 9( ) means the tensor field transformed by <p, and

(2.3). Wi^ajBi + a^-a'g^,
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if <p is a conformal transformation. As 9R = i? and 9(\/'R) — V-R, the left
hand side of (2.2) vanishes. We substitute the relation (2.3) into (2.2) and
get

(2.4) 2 ^ i ? ^ + ctiRhJkl + cL3R\kl + akR
i
Jhl + atR^kh

- arR
r
jklhi - arR\klgjh - aJR'^g^ - arRl

jkrgLfl = 0.

Transvecting (2.4) with gjk and 8?, we have

(2. 5) 2 * ^ * ! + alRhl + ^ i ? \ - tfri^81 - arRi
rglh = 0,

(2. 6) (m-3) a , ! ^ , = i? j f c^ - akRjt.

If we contract (2. 5) with respect to i and Z, we get ahS = 0. We assume
that dtf ŝ? 0 everywhere on M otherwise by Lemma 2.2 we have da = 0
on M. Then 5 = 0 holds. Transvecting (2.6) with gjlc, we have
{m-2)arR

r
l = 0. Then (2. 5) implies

2akRjl + a, JRJ.1 + ^i? j f c = 0.

By taking cyclic sum of this equation, we have 0LjRkl = 0, and hence Rkl=0.
If m = 3 we have R = 0 by Lemma 2.3. So we assume that m > 3, then
(2.6) means <xrR

r
jki = 0. Then lowering the index i in (2.4) we have

(2. 7) 2ahRijkl + a , / ? ^ ! + tfjUiwf + akRijhl + tf,#,,w = 0.

Take any point x and a coordinate neighborhood about x such that the vector
ah has the components (ax, 0, • • •, 0) at x.

( i ) If we put h = l, i9j9 k,l^l, then Rijkl = 0 .
(i i) If we put h = l, i = l, j , k,l±?l, then RlJlcl = 0 .
(iii) If h = l, i = l, * = 1, y, Z*rl, then i? l jH = 0.

Thus R = 0, this completes the proof.

3. Proof of Theorem 1. By Lemma 1.2 and 1.3, we have A—al namely
<p is a conformal transformation of M to M ' : <p*g'=eiag. Then by Proposition
2.4, if m ^ 3, we have either <itf = 0 or R = 0. Since M is irreducible we
have da = 0. For the case of dim M = 2, the proof in [5] is valid.

4. Proof of Theorem 2. Contrary to Theorem 1, in Theorem 2 analyticity
is not assumed. As for this we refer Theorem 9.1 in [2], p. 151.

Applications of Theorem 2 will be seen in another paper.
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