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Introduction. Let (M,g) and (M, ¢) be two (pseudo-) Riemannian
manifolds with metric tensors g and ¢ respectively. A diffeomorphism ¢ of
M to M’ is called a strongly curvature-preserving transformation if @ maps
V*R into V(R for £=0,1,---, where V*R (k=1) denotes the k-th covariant
derivative of the Riemannian curvature tensor R of ¢ and V°R=R.

As a different version of the equivalence problem in Riemannian
geometry, K. Nomizu and K. Yano [4, 5] have obtained the following result :

THEOREM A. If M and M’ are both irreducible and analytic
Riemannian manifolds, and if @ is a strongly curvature-preserving trans-
formation of M to M’', then @ is a homothety.

However this kind of problem is important also in pseudo-Riemannian
geometry. When ¢ is an indefinite Riemannian metric, at any point it is
reducible to

(dx')? + + -+ + (da?)® — (dxP*')? — « -« — (dx™)?

with respect to some local coordinates (x',---,z™), where m = dim M and
the integer 2p—m is called the signature of . We may assume that the
signature is not smaller than 0. Of course the signature 7 implies that the
metric is positive definite. Then the purpose of this note is to show the
following

THEOREM 1. Let M and M’ be both irreducible and analytic pseudo-
Riemannian manifolds, and assume that the signature of g is not zero in
the case where dim M is even =4, then any strongly curvature-preserving
transformation of M to M’ is a homothety.

The proof of Theorem 1 gives the proof also to the following Theorem
which is a generalization of a result in [3] to pseudo-Riemannian manifolds :
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THEOREM 2. Let M and M’ be irreducible pseudo-Riemannian
manifolds, if the signature of ¢ is not zero in the case where dim M is
even = 4, then any affine transformation of M to M’ is a homothety.

1. The linear transformation A. Let ¢g* = @*;' be the metric in M
induced by @ from g. We take an arbitrary point x of M and fix it. Then
by the quite similar argument on infinitesimal holonomy group as in [5] we
have

LEMMA 1.1. The restricted holonomy group y(x) of g at x is contained
in that ¥*(x) of ¢*.

Now we define a linear transformation A of the tangent space M, at
x by

(1.1) Y(AX,Y) = g¥(X, Y)

for X,Y in M,. We shcw that A commutes with every element o of yr(x).
As ¢, and ¢* by Lemma 1.1, are invariant by y(x), we have

(1.2 Y(0X, oY) = g(X,Y),
1.3 g*¥(@X, oY) = g¥(X, Y).
Then by (1.1), (1.2) and (1.3), we have

(1. 4) ¢(AcX, oY) = ¢(cAX, oY).

As ¢ and o are non-singular we have Ao=0¢A for any o of Y(x). Since Y(x)
acts on M, irreducibly, A must be of the form either A=al, or A=al+bJ,
where I is the identity transfcrmation of M, and J is a linear transformation
such that J°=—1I a and b are real numbers. (p. 277, [2]) If A=al we have
g*=ay at x, namely @ is conformal. Thus the essential point is to obtain
the conditions for &J to vanish. Suppose that A = al+bJ, then by the
symmetry of ¢*, A and J are symmetric. This implies:

(1.5) 9JX,JY) = —g(X,Y)

for any X, Y in M,. Thus J satisfies:
(i) If X and Y are orthogonal, so are JX and JY.
(ii) If X is null, so is JX.
(iii) If X is pcsitive (negative), then JX is negative (positive resp.);
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Thus we have

LEMMA 1.2. The only possible case of existence of J is that dim M is
even and the signature is zero.

Next we find out the system of equations which J must satisfy. By this
we obtain the next:

LEMMA 13. When dim M is 2 and the signature is zero, J does not
exist.

Assume that dim M=m=2n and take a basis of M, such that

0 -
(1.6) J = ( ) E: unit nXn matrix.
E 0

As any o€ Y(x) commutes with A and hence J, Y(x) is considered as the
real representation of the unitary group U(n):

Q -R
a7 a:(

) Q, R: nXn matrices.
R Q
By (1. 5) namely *JgJ= —g, ¢ is of the form
B C
(1.8) g = ( ) B, C: nXn matrices.
C -B
By (1. 2) namely ‘ogo=g, Q and R satisfy the following :
1.9 ‘QBQ + 'QCR + 'RCQ — ‘RBR =B,
(1.10) t{QCQ — 'OBR — ‘RBQ — ‘RCR = C.

Soif m=2 weput Q=¢q, R=r, B=8 and C=v, then (1.9) and (1.10)
reduce to

(1.11) Bq¢*+ 2vyrq —Br*=28,
(1.12) vq: —2Brq —yr: =v.

The solution (g, r) are at most two pairs, This implies Y(x)= ({identity}. If



248 S. TANNO

m = 4, the number of variables in Q, R exceeds the number of the equations
(1.9), (1.10). For example, if m = 4, ¢ has 8 variables and 6 equations.

2. Conformal transformations preserving R and VR. In this section
we use tensor calculus in a coordinate neighborhood. First we recall the
followings.

LEMMA 2.1. For a conformal transformation of pseudo-Riemannian
manifolds @:M— M such that ¢*¢ = &g, if @ maps R into R and if
m =3, then
2.1) Via = aa, — (1/2)a. a’ g,
holds, where a, = 9.a. (cf.[1,5])

LEMMA 22. Suppose that (2.1) holds for a conformal transformation,
and that da vanishes at a point, then a is constant on M. [5]

LeEMMA 23. If m=3, we have
R = 8 Ry — &Ry + Rigu — Rigyu — (1/2)S@1 96 —8i95) 5
where R;,=R';,; is the Ricci curvature tensor and S is the scalar curvature.

Now we prove the following Proposition which was obtained when the
metrics are positive definite in [4, 5]:

PROPOSITION 24. Let (M,g) and (M,g) be pseudo-Riemannian
manifolds such that dim M = 3. If a conformal transformation @ of M to
M maps R into R and VR into V'R', then either da=0 or R=0 holds on
M.

PROOF. Generally we have
(2.2) VPR ) = "(V' R )il

= —WulCR) s + WCR ) s + WiCR ) 50 + W (PR ) i,

where ?( ) means the tensor field transformed by @, and

(2.3) Wi = a,8 + a,8) — a'y,,
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if @ is a conformal transformation. As R’ = R and ?(V'R’) = VR, the left
hand side of (2.2) vanishes. We substitute the relation (2.3) into (2.2) and
get '

(2.4) - 20, RY + a'Ry i + a; Ry + dthjhlv + a, R,

— &R 8, — @' Ry gjn — @ Ry — @ Ry g, = 0.
Transvecting (2.4) with ¢’* and 3}, we have
(2.5) 2a,R" + a'R,, + a;,R', — a,R",8, — a’R', ¢, =0,
(2.6) (m—3)a,R";, = R,a, — a,R,, .

If we contract (2.5) with respect to 7 and /, we get «,S =0. We assume
that da >0 everywhere on M otherwise by Lemma 2.2 we have da =0
on M. Then S=0 holds. Transvecting (2.6) with g¢% we have
(m—2)a,R", =0. Then (2.5) implies

ZCZ,CRﬂ + d,R“ + alek = 0.

By taking cyclic sum of this equation, we have a;R,, =0, and hence R,,=0.
If m =3 we have R =0 by Lemma 2.3. So we assume that m >3, then
(2.6) means a,R";;,; =0. Then lowering the index 7 in (2.4) we have

(2. 7) Zan”H + aithkL + de“Lkl —+ dkR'ijhl + a[R[jkh = 0.

Take any point x and a coordinate neighborhood about x such that the vector
a, has the components (a,,0,+--,0) at x.

(i) If we put h=1, 4,5,k 11, then R;;,, =0.

(ii) If we put h=1, i=1, j,k, I x1, then R;, = 0.

(i) I h=1, i=1, k=1, j,I>1, then R, =0.
Thus R=0, this completes the proof.

3. Proof of Theorem 1. By Lemma 1.2 and 1.3, we have A=al namely
@ is a conformal transformation of M to M': ¢*¢'=e**g. Then by Proposition
24, if m =3, we have either da =0 or R =0. Since M is irreducible we
have da=0. For the case of dim M = 2, the proof in [5] is valid.

4. Proof of Theorem 2. Contrary to Theorem 1, in Theorem 2 analyticity
is not assumed. As for this we refer Theorem 9.1 in [2], p. 151.
Applications of Theorem 2 will be seen in another paper.
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