REMARK ON THE GROSS PROPERTY

Tadashi Kuroda and Akira Sagawa

(Received May 1, 1968)

1. Let $w=f(z)$ be a non-constant single-valued meromorphic function in a domain D on the complex z-plane and let Φ_{f} be the covering Riemann surface generated by the inverse function of $w=f(z)$ over the extended complex w-plane. Take a regular point $q_{0} \in \Phi_{f}$ lying over the basic point $w_{0}=f\left(z_{0}\right)(\neq \infty)$ and consider the longest segment l_{θ} on Φ_{f} which starts from q_{0}, consists of only regular points of Φ_{f} and lies over the half straight line $\arg \left(w-w_{0}\right)=\theta \quad(0 \leqq \theta<2 \pi)$ on the w-plane. Here a regular point of Φ_{f} is a point of Φ_{f} not being an algebraic branch point. If l_{θ} has finite length, then l_{θ} is said to be a singular segment with its argument θ of Φ_{f}. The set
of union $\bigcup_{0 \leq \theta<2 \pi} l_{\theta}$ is clearly a domain and is called a Gross' star region with the centre q_{0} on Φ_{f}.

If for any Gross' star region on Φ_{f} the measure of the set of arguments of all singular segments equals zero, then we say that the function $f(z)$ or Φ_{f} has the Gross property. Further, if any non-constant single-valued meromorphic function in D has the Gross property, then we say that the domain D has the Gross property. This was first discussed by Gross [2] for meromorphic functions in the finite z-plane $|z|<+\infty$ and, later, Yûjôbô [6] extended Gross' theorem in the following form (cf. Noshiro [5]) :

If the boundary of D is of logarithmic capacity zero, then D has the Gross property.
2. Suppose that a domain D has an exhaustion $\left\{D_{n}\right\}_{n=1}^{\infty}$ which satisfies the following conditions;
i) the domain D_{n} is compact relative to D and the boundary C_{n} of D_{n} consists of a finite number of closed analytic curves,
ii) $\bar{D}_{n}=D_{n} \cup C_{n} \subset D_{n+1}, \quad \bigcup_{n=1}^{\infty} D_{n}=D$,
iii) the open set $D_{n+1}-\bar{D}_{n}$ consists of a finite number of doubly connected
domains $D_{n}^{j}(j=1, \cdots, N(n))$,
iv) each connected component of $D-\bar{D}_{n}$ is non-compact with respect to D and
v) each connected component of $D-\bar{D}_{n}$ contains at most ρ domains D_{n+1}^{j}.

Every domain D_{n}^{j} can be mapped onto an annulus $1<|\omega|<R_{n}^{j}$ on the ω-plane in a one-to-one conformal manner. We denote by Γ_{n}^{j} the inverse image of the circle $|\omega|=\sqrt{ } R_{n}^{j}$. The quantity R_{n}^{j} is called the harmonic modulus of D_{n}^{j}. We put $R_{n}=\operatorname{Min}_{1 \leq j \leq N(n)} R_{n}^{j}$.

Let $f(z)$ be a single-valued meromorphic function in the domain D and suppose that each boundary point of D is an essential singularity of $f(z)$. On the exceptional values of $f(z)$, Matsumoto [3] proved the very interesting theorem which can be stated as follows (cf. Carleson [1]):

If $R_{n} \rightarrow+\infty(n \rightarrow \infty)$, then the number of exceptional values of $f(z)$ in Picard's sense in any neighborhood of every essential singularity is at most $\rho+1$.

In the proof of this theorem, it plays an important role that spherical length of the image curve of Γ_{n}^{j} by $w=f(z)$ tends to zero as $n \rightarrow \infty$. This follows from the assumption $R_{n} \rightarrow+\infty(n \rightarrow \infty)$ in the theorem and from the following lemma (cf. [3]).

LEMMA. Let $g(z)$ be a single-valued meromorphic function in an annulus $1 \leqq|z| \leqq R$. If $g(z)$ does not take three values w_{1}, w_{2} and w_{3} in the annulus, then there exists a positive constant A depending only on w_{1}, w_{2} and w_{3} such that spherical length of the image of $|z|=\sqrt{R}$ by $w=g(z)$ does not exceed $A / \sqrt{ } \bar{R}$.
3. It seems to be of some interest to discuss the Gross property of a given function in connection with the above Matsumoto's theorem. Here we prove the following theorem from this point of view.

Theorem. Suppose that the domain D in the z-plane has an exhaustion $\left\{D_{n}\right\}_{n=1}^{\infty}$ satisfying i), ii), iii), iv) and

$$
\lim _{n \rightarrow \infty} \frac{N(n)}{\sqrt{R_{n}}}=0
$$

Let $f(z)$ be a single-valued meromorphic function in D with an essential singularity at every boundary point of D. If $f(z)$ has at least three
exceptional values in Picard's sense in some neighborhood of every essential singularity, then $f(z)$ has the Gross property.

Proof. First we note that the assumption vi) implies that the boundary E of D contains no non-degenerate continuum. For every $\zeta \in E$ we can find a positive integer m_{ζ} and a connected component $G_{m_{\xi}}$ of the open set $D-\bar{D}_{m_{\zeta}}$ such that the boundary of $G_{m_{\zeta}}$ contains the point ζ and such that the function $f(z)$ does not take at least three values in $G_{m_{\zeta}}$. Denote by $\widetilde{G}_{m_{\xi}}$ the open set of union of $G_{m_{\xi}}$ and its boundary contained in E. Letting $\widetilde{G}_{m_{\xi}}$ correspond to the point $\zeta \in E$, we get an open covering $\left\{\widetilde{G}_{m_{\xi}}\right\}_{\xi_{\in E}}$ of the set E and can choose a finite number of points $\zeta_{1}, \cdots, \zeta_{v}$ of E so that the union $\bigcup_{k=1}^{\nu} \widetilde{G}_{m_{\xi_{k}}}$ covers E. Put $m_{0}=\operatorname{Max}\left(m_{\xi_{1}}, \cdots, m_{\xi_{\nu}}\right)$. Clearly $f(z)$ does not take at least three values in each connected component $F_{m_{0}}^{j}\left(j=1, \cdots, N\left(m_{0}\right)\right)$ of $D-\bar{D}_{m_{0}}$. We denote by $w_{i}^{j}(i=1,2,3)$ the three values not taken by $f(z)$ in $F_{m_{0}}^{j}$ and by $\left\{w_{k}\right\}_{k=1}^{l}(l \geqq 3)$ the set of all points $w_{i}^{j}\left(1 \leqq i \leqq 3,1 \leqq j \leqq N\left(m_{0}\right)\right)$. It is obvious that $f(z)$ does not take at least three values among w_{1}, \cdots, w_{l} in any connected component of $D-\bar{D}_{n}$ for $n \geqq m_{0}$, so in any $D_{n}^{j}(1 \leqq j \leqq N(n))$ for $n \geqq m_{0}$. From Lemma stated in §2, spherical length $L(n)$ of the image of $\bigcup_{j=1}^{N(n)} \Gamma_{n}^{j}$ by $w=f(z)$ does not exceed $A N(n) / \sqrt{R_{n}}$ for $n \geqq m_{0}$, where A is a constant depending only on w_{1}, \cdots, w_{l}.

Consider any Gross' star region S on the covering Riemann surface Φ_{f} generated by the inverse function of $w=f(z)$ on the extended w-plane. It suffices to show that the set of arguments of all singular segments of S, which end at accessible boundary points of Φ_{f}, is of outer measure zero. This can be easily seen from vi) and from the fact $L(n) \leqq A N(n) / \sqrt{ } R_{n}^{-}$for $n \geqq m_{0}$. Thus we get our Theorem.
4. Here we shall show the existence of a domain D and a function $w=f(z)$ satisfying conditions of Theorem by giving an example.

Consider a general Cantor set $E\left(p_{1}, p_{2}, \cdots\right)$ on the w-plane. This set is constructed as follows. Let $p_{n}(n \geqq 1)$ be a positive number greater than 1 and delete an open interval with length $1-1 / p_{1}$ from the closed interval $I_{0}=[-1 / 2,1 / 2]$ on the real axis of the w-plane so that there remains the closed set I_{1} which consists of two closed intervals $I_{1}^{i}(i=1,2)$ with equal length $l_{1}=1 / 2 p_{1}$. In general, if I_{n} consists of closed intervals $I_{n}^{i}\left(i=1, \cdots, 2^{n}\right)$ of equal length $l_{n}=1 /\left(2^{n} p_{1} \cdots p_{n}\right)$, we delete an open interval of length $l_{n}\left(1-1 / p_{n+1}\right)$ from every I_{n}^{i} so that there remain two closed intervals $I_{n+1}^{2 i-1}$, $I_{n+1}^{2 i}\left(i=1, \cdots, 2^{n}\right)$ with equal length $1 /\left(2^{n+1} p_{1} \cdots p_{n+1}\right)$. The set $E\left(p_{1}, p_{2}, \cdots\right)$
is the set of intersection $\bigcap_{n=1}^{\infty} I_{n}$. It is known that $E\left(p_{1}, p_{2}, \cdots\right)$ is of positive logarithmic capacity if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\log p_{n}}{2^{n}}<+\infty \tag{1}
\end{equation*}
$$

(cf. Nevanlinna [4]).
Denote by F the complementary domain of $E\left(p_{1}, p_{2}, \cdots\right)$ with respect to the extended w-plane. We describe circles

$$
K_{0}^{1}:|w|=1, K_{n}^{i}:\left|w-w_{n}^{i}\right|=r_{n} \quad\left(n \geqq 1,1 \leqq i \leqq 2^{n}\right)
$$

in F, where w_{n}^{i} is the middle point of $I_{n}^{i}, r_{n}=\frac{1}{2^{n} p_{0} p_{1} \cdots p_{n-1}}\left(1-\frac{1}{2 p_{n}}\right)$ and $p_{0}=1$. Clearly $K_{n}^{2 i-1}$ and $K_{n}^{2 i}$ are tangent outside each other and if

$$
\begin{equation*}
1+2 p_{n-1} p_{n}>3 p_{n}(n \geqq 2), \tag{2}
\end{equation*}
$$

then $K_{n}^{2 i-1}$ and $K_{n}^{2 i}$ are enclosed by $K_{n-1}^{i}\left(1 \leqq n, 1 \leqq i \leqq 2^{n-1}\right)$. Let F_{n}^{i} be the doubly connected domain surrounded by three circles $K_{n}^{2 i-1}, K_{n}^{2 i}$ and K_{n-1}^{i} ($n \geqq 1$) and let F_{n} be the domain bounded by $\bigcup_{i=1}^{2^{n}} K_{n}^{i}$ and containing the point $z=\infty$ in its interior. We make a slit L_{n}^{i} in every \bar{F}_{n}^{i} such that L_{n}^{i} is contained in $\left|w-w_{n-1}^{i}\right| \leqq 2 r_{n}$ and only one end point of L_{n}^{i} lies on $K_{n}^{2 i-1} \cup K_{n}^{2 i}$ and we put

$$
\begin{aligned}
& F^{0}=F-\bigcup_{n=1}^{\infty} \bigcup_{i=1}^{2^{n}} L_{n}^{i}-L_{0}^{1}, \\
& F_{k}^{1}=F-\bigcup_{n=2}^{\infty} \bigcup_{i=1}^{2^{n}} L_{n}^{i}-L_{1}^{k}, \quad(k=1,2), \\
& \cdots \bigcup_{n=m+1}^{\infty} \bigcup_{i=1}^{2^{n}} L_{n}^{i}-L_{m}^{k},\left(k=1, \cdots, 2^{m}\right),
\end{aligned}
$$

First we connect two replicas of F^{0} with each other crosswise across the slit L_{0}^{1} and denote by \widehat{F}^{0} the resulting surface which has two free slits
corresponding to every $L_{1}^{k}(k=1,2)$. Next we take a replica of F_{k}^{1}, connect it with \widehat{F}_{0} crosswise across a free slit corresponding to L_{1}^{k} and proceed this process for all free slits of \widehat{F}_{0} corresponding to $L_{1}^{k}(k=1,2)$. Thus we get the resulting surface $\widehat{F}^{\mathbf{1}}$ which has $2(1+2)$ sheets and $2(1+2)$ free slits corresponding to each $L_{2}^{k}\left(k=1, \cdots, 2^{2}\right)$. In general, we connect a replica of F_{k}^{n} with $\widehat{F^{n-1}}$ crosswise across a free slit corresponding to L_{n}^{k} and proceed this for all slits of \widehat{F}^{n-1} corresponding to $L_{n}^{k}\left(k=1, \cdots, 2^{n}\right)$. Thus we get the surface \widehat{F}^{n} with $\prod_{i=0}^{n}\left(1+2^{i}\right)$ sheets. Continuing the procedure indefinitely, we obtain the surface \widehat{F} of planar character which covers no point of the set $E\left(p_{1}, p_{2}, \cdots\right)$. This surface \widehat{F} is considered as the limiting surface of \widehat{F}^{n} and every $\widehat{F^{n}}$ is a subdomain of \widehat{F}. Denote by \widehat{F}_{n} the part of $\widehat{F^{n}}$ lying over F_{n+1}. It is not so difficult to see that $\left\{\widehat{F}_{n}\right\}_{n=1}^{\infty}$ is an exhaustion of \widehat{F} and that the number of doubly connected components \widehat{F}_{n}^{i} of $\widehat{F}_{n+1}-\widehat{F}_{n}$ equals $2^{n} \prod_{i=0}^{n-1}\left(1+2^{i}\right)$. Clearly the harmonic modulus R_{n}^{i} of \widehat{F}_{n}^{i} is independent of i. Putting $R_{n}=R_{n}^{i}$, we easily have

$$
R_{n}>p_{n+1} \frac{1-\frac{1}{2 p_{n+1}}}{1-\frac{1}{2 p_{n+2}}}=\frac{r_{n+1}}{2 r_{n+2}},
$$

because \widehat{F}_{n}^{i} contains the univalent annulus lying over $2 r_{n+2}<\left|w-w_{n+1}^{i}\right|<r_{n+1}$.
Now we map \widehat{F} onto a domain on the z-plane in a one-to-one conformal manner and denote by $w=f(z)$ the inverse function of this conformal mapping. If we denote by D_{n} the subdomain of D which is mapped onto \widehat{F}_{n} by $w=f(z)$, then it is evident that $\left\{D_{n}\right\}_{n=1}^{\infty}$ forms an exhaustion of D and each doubly connected component of $D_{n+1}-\bar{D}_{n}$ is of harmonic modulus R_{n}^{i} and the number $N(n)$ of these components is equal to $2^{n} \prod_{i=0}^{n-1}\left(1+2^{i}\right)$.

So, if we take p_{n} such that

$$
p_{n} \geqq 2^{(n+1)^{2}}
$$

then (1) and (2) are valid and

$$
\lim _{n \rightarrow \infty} \frac{N(n)}{\sqrt{R_{n}}}=0
$$

It is easy to see that $w=f(z)$ has an essential singularity at every boundary point of D and has $E\left(p_{1}, p_{2}, \cdots\right)$ as the set of exceptional values in Picard's sense in any neighborhood of its essential singularity. Thus we get an example which guarantees the existence of a domain D and a meromorphic function $f(z)$ in D satisfying the assumption in our Theorem.

Further, as mentiond already, (1) implies that the set $E\left(p_{1}, p_{2}, \cdots\right)$ is of positive logarithmic capacity, so we see from Nevanlinna's theorem [4] that the boundary of D is also of positive logarithmic capacity. Hence GrossYûjôbô's theorem stated in $\S 1$ can not imply the assertion of our Theorem.

It is still open whether the condition for the number of exceptional values of $f(z)$ in Theorem may be dropped or not.

References

[1] L. Carleson, A remark on Picard's theorem, Bull. Amer. Math. Soc., 67(1961), 142144.
[2] W. Gross, Über die Singularitäten analytischer Funktionen, Monatsh. Math. Phys., 29 (1918), 3-47.
[3] K. Matsumoto, Some notes on exceptional values of meromorphic functions, Nagoya Math. Journ., 22(1963), 189-201.
[4] R. Nevanlinna, Eindeutige analytische Funktionen, Springer, 1953.
[5] K. Noshiro, Open Riemann surface with null boundary, Nagoya Math. Journ., 3(1951), 73-79.
[6] Z. YÛJôBô, On the Riemann surfaces, no Green function of which exists, Math. Japonicae, 2(1951), 61-68.

Mathematical Institute
Tôhoku University
Sendai, Japan
AND
Department of Mathematics
Miyagi University of Education
Sendai, Japan

