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1. Introduction. In a previous paper [8] we classified almost contcet
Riemannian manifolds which admit automorphism groups of the maximum
dimensions. In this note we clarify the situations (;—1)~ (i—3) of the main
theorem of [ 8], especially, the spaces S***'[H], E*"*'[—3] and (L, CD")|H|.

In the last section we give examples of compact Sasakian manifolds which
are not regular.

2. Preliminary. Let (¢, & 7, ¢g) be an almost contact metric structure on
a connected C~-manifold M. That is, they satisfy

(2.1) $6=0, 2(¢X)=0, (=1,
(2.2) ppX = — X+n(X)E,
2.3 g€ X)=n(X), g(¢X¢Y)=g(X.Y)—n(X)n(Y),

where X and Y are vector fields on M. If dn(X,Y)=29(X,pY) is satisfied,
then M is called a contact Riemannian manifold. If £ is a Killing vector field,
M is called a K-contact Riemannian manifold. Then we have

(2. 4) ViE=—9¢X,
where ¥ is the Riemannian connection. If we have the relation
(2.5) (Vxp)Y) = g(X, Y)E—n(Y)X,

then M is called a Sasakian manifold. A Sasakian manifold is a K-contact
Riemannian manifold.

Denote by K(X,,Y,) the sectional curvature for 2-plane spanned by X, and
Y, pec M. M is said to have constant ¢-holomorphic sectional curvature if
K(X,, $X,) is constant for any point p and for any X, # 0 such that »(X)=0.
A Sasakian manifold M has constant ¢-holomorphic sectional curvature H if
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and only if the Riemannian curvature tensor R satisfied ([ 2])

(2. 6) 4R% g = (H+ 3)(8391,5—8‘:9“)
+(H—1)(1048 + E0cgpa— ENaGpe— 1575
— Sy + PiPs. — 2P5deq) -

3. Model spaces of Sasakian manifolds with constant ¢-holomorphic
sectional curvature. (i) S*"*'[H], H> —3. Let S*"*! be the unit hypersphere
in a Euclidean space E*"*%. Consider x < S***! as a unit vector from the origin
to the point x and denote by J the natural complex structure of E***? =CE"*!,
We consider £ =Jx as a tangent vector at x to S*"*!. Let g be the metric on
S2"+! induced from the Euclidean metric in E***%. Then g and £ determine 7
and ¢ by 7= g(¢,) and dn(X,Y) = 29(X, ¢Y). The structure defined above is
Sasakian ([5], [6]).

Now consider the following deformed structure :

¢*=¢, =a’f,

7% =an, g*=ag+(@—ammn,

where a=4/(H+3)>0. We call this deformation D-homothetic deformation.
Then (¢*, &%, n*, g%, a) is a Sasakian structure with constant ¢-holomorphic
sectional curvature H> —3 (cf. [7], p.709) and we denote S?**! with this
structure by S?"*![H]. By (12.1) and Lemma 6.4 in [7], S*"*'[H]is §-pinched :
8=H, if —3<H<1 (and §=H", if H>1).

(i) E**'[—3]. Let («%,+--, x", ¥',+++,y" 2) be the natural coordinate
system of E?"*!, Then &, 7, g and ¢ defined by

§=(0>"’, O’ 2)’
277 =(_y1: °cc ;—yn’ O: M) 0, 1>,
4gaﬁ = 8:1;3 +y"yﬂ, 4.9-:*/3* = 8&.@’

g: 4gaA: 49Aa = —y"> 4gAA = 1’
the other types of components =0,

¢Z" = 85’ ¢?; = —873) ¢§' = y37

the other types of components =0,

define a Sasakian structure on E***!, where a, B<(1,---, n) and a*=a+n,
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etc. The Riemannian curvature tensor R has the following components (cf.[4],

[5D:

Ry = (= 80"y +8y"y")/4,
Rinsr = (— 28,48, — 84,88+ 825y°y")/ 4,
RA gy = (5% +85)/4,
Riups = — (28,48, +8.,985)/ 4,
R guyep = (881)/4,
Rins = R pper = — (8asy®)/4,
Roans = R ppee = (85)/4,

the other types of components = 0.

Now it is checked that the relation (2.6) holds for H= —3. We denote E>"*!
with this structure by E2"*![—3].

(i) (L,CD")[H], H< —3. Let (J,G) be a Kdhlerian structure of a simply
connected homogeneous complex domain CD" with constant holomorphic sectional
curvature k£ <<0. Since the fundamental 2-form W is a closed form, we have a
real analytic 1-form w (not necessarily unique) such that W=dw. (In fact,
since W' is real analytic and closed, we have an open set U, and a real analytic
1-form w,; on U, such that W =dw, on U,. Let U, be another open set on
which we have a real analytic 1-form w, such that W =dw, on U,. Assume
that U;NU, is non-empty and simply connected. Then, as w,—w, is a closed
form, we have a real analytic function f on U,NU, such that w,—w,=df on
U,NU.,. f is extendable to a real analytic function f on U, and w,+df on U,
is the extension of w, on U;NU,. Since CD" is an open disk, w, is uniquely
extendable to w on CD™) Then we have a 1l-form 7=2w+dt on a product
space LXCD", L being a real line with coordinate z. If we consider L as an
additive group, then % is an infinitesimal connection form on the product bundle
(L,CD"). We have £ =9/0t and g =n*G+n7Qn where = : (L,CD*)—CD" is
the projection. 7 is written also as 7 =27*w+dt. And we have dn=2a*W.
Therefore, these tensors define a Sasakian structure on (L, CD"™) with constant
¢-holomorphic sectional curvature H, where H=k—3 < —3 (cf.[3]). We denote
this space by (L, CD™)[H].

Three types of model spaces above are all real analytic and the structure
tensors are also real analytic. Furthermore, spaces are simply connected and
complete.
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4. Uniqueness. We show that three types of model spaces are unique up
to isomorphisms, where an isomorphism means a C-diffeomorphism which maps
the structure tensors into the corresponding structure tensors.

PROPOSITION 4.1. Let M?"*' be a complete and simply connected (C™-)
Sasakian manifold with constant ¢-holomorphic sectional curvature H.

(1) If H> —3, M is isomorphic to S*"*'|H];

or M is D-homothetic to S*"*'[1] ;
(i) If H= —3, M 1s isomorphic to E***'[—3];
(i) If H< =3, M is isomorphic to (L, CD")[H].

PROOF. Since M is of constant ¢-holomorphic sectional curvature H, M
admits local ¢-holomorphic free mobility ([ 2]). Since M is complete and simply
connected, M admits global ¢-holomorphic free mobility, that is, M admits
an automorphism group Aut(M) such that, for any points p and ¢, any
¢-holomorphic plane at p is carried to any other ¢-holomorphic plane at ¢ by
some element of Aut(M). Aut(M) is of (n+1)* dimension. Especially, M is
(C=-) diffeomorphic to a homogeneous space Aut(M)/(isotropy group) and hence
we can assume that M is real analytic, and also that g is real analytic. Denote
by *M one of the model spaces corresponding to H>—3, =—3 or <—3, and
denote by (*¢, *&, *5, *g) the structure tensors. For arbitrary points p of M
and *p of *M, let (e;,++, e, ¢e,-++,¢e, &) and (¥ey, .- -, *e,, *p*e, -,
*¢p¥e,, ¥£) be orthonormal ¢-basis at p and *p, respectively. We define a linear
isomorphism I’ of the tangent space at p to M onto that at *p to *M by
Fe, = *e,, F¢e,=*¢p*e" (a=1,-+-,n) and FE=*f. Then we have Fp = *¢pF
and F is isometric at p. That is, F' is isomorphic at p. Since toth ¢- and
*@-holomorphic sectional curvatures are equal to H, I maps R into *R by (2.6),
F being considered as a map of tensor algebras. The covariant derivatives of ¢
and £ are also written in terms of ¢, £, g by (2.4) and (2.5). Consequently, the
covariant derivative of R is expressed by ¢, £ and ¢g. That is, we see that F
maps the tensor (VR), into the tensor (¥*V*R).,. Likewise, we see that F' maps
the tensors (V*R), into the tensors (¥*\/**R)., for every positive integer k.
Then we have an isometry f of M onto *M such that f(p)=*p and the
differential of f at pis F (cf.[1], p.259-261). By (2.4) and F¢ = *¢ F we see
that (V§£), is mapped to (¥*7*§).,. Thus, we have

(*NV(fE) =f(VE,=F(VE),= *7*E)ep

Since f is an isometry, f§ is also a Killing vector field. By (f§).,=*£., and
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(FV(fE))p= (¥*V*E)p, we have fE=*E on *M. Because ¢ and 7 (*¢ and *n,
resp.) are determined by g and £(*g and *£, resp.), f is an isomorphism between
two Sasakian manifolds M and *M.

REMARK 4.2. Even if (the space of) a complete and simply connected
Sasakian manifold with constant ¢-holomorphic sectional curvature is real
analytic, the structure tensors are not generally real analytic. For example, in
the construction of (L, CD")[H], let h be a non-real analytic C*-function and
replace w by w’' = w+dh. Then we have 7" (or g) which is C* and is not
real analytic. Therefore analyticity of the space we need in the proof is
analyticity as a homogeneous space Aut(M)/(isotropy group).

5. Complete Sasakian manifolds with constant H> —3.

PROPOSITICON 5.1.  Every complete Sasakian manifold with constant
¢-holomor phic sectional curvature H> —3 is obtained by a D-homothetic
deformation of a complete Riemannian manifold of constant curvature 1.
Conversely, every odd dimensional complete Riemannian manifold of constant
curvature 1 is a Sasakian manifold.

PROOF. For the first part, see [ 7], p. 715. For the second part, we apply
J. A. Wolf’s result [10] that every odd dimensional complete Riemannian manifold
M of constant curvature 1 inherits a contact structure 5 from 7 on S2**![1].

That is, 7 and the induced metric ¢ from g of S?**'[1] define a Sasakian
structure on M. Q.E.D.

J. A. Wolf [9] classified (odd dimensional) homogeneous Riemannian
manifolds M= S?"*!/I" of constant curvature 1 :

(a) If Cn+1)+1=2r(: odd), then
St = (@, 2) € CF |2 e e ]2 = 1)

and T is a finite group of matrices of the form AI,, where Ae C with |A| =1
and I, is the X7 identity matrix ;

(b) If Cn+1)+1=4r, then
Smt=1(g'---,90€Q; g+ - +1g" =1}
where Q is the field of quaternions and T' is a finite group of matrices of the

form pl,, where pe Q with |p| =1.

Conversely, if T" is a finite group of the type described in (a) and (b),
then M= S?"*'/I' is homogeneous.
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Therefore, a homogeneous Sasakian manifold with constant ¢-holomorphic
sectional curvature H> —3 is D-homothetic to one of the spaces of the type

(a) or (b).

The converse is not true in general, as is seen in Remark 6. 1.

6. Examples of compact Sasakian manifolds which are not regular.
An almost contact manifold M is said regular if any point of M has a
neighborhood U such that each trajectory of & through pe U meets U once as
a slice. Otherwise we say that M is not regular.

Consider S® defined by

S*={(g=a+bi+cj+dk)c Q ; |q| =1}.

For a point ¢ =(a, b,¢,d) € S?, we consider ¢ as a vector. On the other hand,
the structure of S®[1] is induced from the (almost) complex structure J:
(a,b,¢c,d)—>(—b,a, —d,c), where (a, b, ¢, d)e E*=CE*. If we define a map
@:S8[1]-8 (or @: E*—Q) by @la, b, c,d)=(a+bi+dj+ck), then we have
a transformation J*¥ of S* or Q so that J*@=g¢J. That is, J*¥a,b,c,d)
=(—b,a,d, —c) and the action of J* is just J*: g¢— gi. Since £* at ¢ is
determined by J*q, £* at ¢ = (a, b,c,d) is a vector which has the components
(=b,a,d, —c).

Let p=(a,B,7v,8)e Q with p*=1 for some integer s, and let I" be a finite
group generated by pl. Every trajectory of £* is given by the intersection of
S? and 2-plane spanned by g and J¥*q = £*. Since (pl)J*q = pgi = J*(pl)q, for a
real number £ we have

(PI)(g+2E*) = (pI)q+tJ*(pI)g.

Therefore, pI maps £* at g to £* at (pl)q. Let [p] =@ '-pI-@. Then [p] is a
transformation of S°[1] and preserves g and £. Hence [p] is an automorphism
of the Sasakian manifold S%1]. Identifying I' with a finite group generated by
[p] we have a Sasakian manifold M= S*[1]/1".

On the other hand, we have the Boothby-Wang’s fibering = : S*[1]—S°[1]/&
= CP', where CP' is a complex projective space. Since [p] is an automorphism
of S%1], [p] induces an automorphism of CP!(cf.[8]). Easily we see that p can
be chosen so that the induced automorphism is not trivial on CP!. By the fact
that every automorphism of CP' has fixed points, we have trajectories of £ in
S[1] which are invariant by [p]. These great circles are factorized in
M= S1)/T, and therefore, M is not regular.
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REMARK 6.1. M= 8*1]/I' defined above is not homogeneous Sasakian
manifold in the sense that the automorphism group of M is not transitive,
since every homogeneous contact manifold is regular.

REMARK 6.2. The similar arguments show that S**[1] (»=1,2,--")
is factorized by some finite group I' so that S***[1]/I" is non-regular Sasakian
manifold with constant curvature.

REMARK 6. 3. Every (47 +1)-dimensional homogeneous Riemannian manifold
of constant curvature 1 is of the form S*"*'[1]/F(¢), where F(¢) is a finite cyclic
group generated by exp t£, 27/t being an integer.
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