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1. Introduction. In a previous paper [8 ] we classified almost con tret
Riemannian manifolds which admit automorphism groups of the maximum
dimensions. In this note we clarify the situations (i— 1) — (i — 3) of the main
theorem of [8] , especially, the spaces S2n+Ϊ[H]9 E 2 n + 1 [-3] and (LyCDn)[H\.

In the last section we give examples of compact Sasakian manifolds which
are not regular.

2. Preliminary. Let (φ, ξ, η, g) be an almost contact metric structure on
a connected C°°-manifold M. That is, they satisfy

(2.1) φf = O,

(2.2) φφX=-X+v(X)ξ9

(2. 3) g(ξ, X) - η{X\

where X and Y are vector fields on M. If dη(X, Y) = 2g(X,φY) is satisfied,
then M is called a contact Riemannian manifold. If £ is a Killing vector field,
M is called a X-contact Riemannian manifold. Then we have

(2.4) Vxξ=

where V is the Riemannian connection. If we have the relation

(2.5) (vxφ)(Y) = g(X, Y)ξ - v(Y)X,

then M is called a Sasakian manifold. A Sasakian manifold is a X-contact
Riemannian manifold.

Denote by K(XP9 Yp) the sectional curvature for 2-plane spanned by Xp and
YP9 p£ M. M is said to have constant φ-holomorphic sectional curvature if
K(XP, φXp) is constant for any point p and for any Xp Φ 0 such that v(X) = 0.
A Sasakian manifold M has constant φ-holomorphic sectional curvature H if
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and only if the Riemannian curvature tensor R satisfied ([ 2 ])

(2. 6) 4R\cd = ( H + 3)(8S^c - Sigba)

+ (H-

3. Model spaces of Sasakian manifolds with constant φ-holomorphic
sectional curvature, ( i) S2n+1[H], H> - 3 . Let S2n+1 be the unit hypersphere
in a Euclidean space E2n+2. Consider xz S2n+1 as a unit vector from the origin
to the point x and denote by J the natural complex structure of E2n+2 =CEn+1.
We consider ξ = Jx as a tangent vector at x to S2n+1. Let g be the metric on
g2?ι+i m c [ u c e c [ from the Euclidean metric in E2n+2. Then g and ξ determine η
and φ by V = g(ξ,') and dη(X,Y) = 2g(X,φY). The structure defined above is
Sasakian ([ 5 ], [6 ]).

Now consider the following deformed structure :

η* = Ctη, g* = <Xg + (a2 — Oί)η® η,

where a = 4/(/ί+ 3) > 0. We call this deformation D-homothetic deformation.
Then (φ*, ξ*9 η*> g*> ά) is a Sasakian structure with constant φ-holomorphic
sectional curvature H> — 3 (cf. [7] , p. 709) and we denote S2n+1 with this
structure by S2n+1[H]. By (12.1) and Lemma 6. 4 in [ 7 ], S2n+1[H] is δ-pinched :
δ = H, if - 3 < H < 1 (and δ = H~\ if H>ϊ).

(ii) E2n+ι[-3]. Let (x\ , xn, y\ ,yn, z) be the natural coordinate
system of E2n+1. Then ξ, η, g and φ defined by

f = ( 0 , . . . , 0, 2),

2i? = (-y, ,-yw, o, , o, l),

the other types of components = 0,

t h e o t h e r types of components = 0 ,

define a Sasakian s t ructure on E2n+\ w h e r e a, βz(l9 •••, w) and
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etc. The Riemannian curvature tensor R has the following components (cf. [ 4 ],

[ 5 ] ) :

the other types of components = 0.

Now it is checked that the relation (2.6) holds for H= — 3. We denote E2n+ι

with this structure by E2n+1[-3].

(iii) (L, CDn)[H], H< - 3 . Let (J, G) be a Kahlerian structure of a simply

connected homogeneous complex domain CDn with constant holomorphic sectional

curvature k<0. Since the fundamental 2-form W is a closed form, we have a

real analytic 1-form w (not necessarily unique) such that W=dw. (In fact,

since W is real analytic and closed, we have an open set Uλ and a real analytic

1-form Wi on Uλ such that W = dwx on C7χ. Let £/2 be another open set on

which we have a real analytic 1-form w2 such that W = dw2 on U2. Assume

that UλfλU2 is non-empty and simply connected. Then, as τvι — zv2 is a closed

form, we have a real analytic function / on UXC\U2 such that wx — w2 = df on

UιΠU2. f is extendable to a real analytic function f on U2 and τv2-\-df on £/2

is the extension of wx on UλfλU2. Since CD71 is an open disk, wι is uniquely

extendable to w on CD71.) Then we have a 1-form η — 2w-\-dt on a product

space LxCDn

9 L being a real line with coordinate t. If we consider L as an

additive group, then η is an infinitesimal connection form on the product bundle

(L,CDn). We have ξ = d/dt and g = π*G + η®η where TΓ : (L,CDn)->CDn is

the projection. ^ is written also as η — 2π*w + dt. And we have <î  = 2τr*W.

Therefore, these tensors define a Sasakian structure on (L, CD71) with constant

φ-holomorphic sectional curvature H, where H=k— 3 < — 3 (cf. [3]). We denote

this space by (L, CDn)[H].

Three types of model spaces above are all real analytic and the structure

tensors are also real analytic. Furthermore, spaces are simply connected and

complete.
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4. Uniqueness. We show that three types of model spaces are unique up
to isomorphisms, where an isomorphism means a C°°-diffeomorphism which maps
the structure tensors into the corresponding structure tensors.

PROPOSITION 4.1. Let M2n+1 be a complete and simply connected (C°°-)
Sasakian manifold with constant φ-holomorphic sectional curvature II.

( i ) // H> - 3 , M is isomorphic to S2n+ι[H]

or M is D-homothetic to S2n+ι[l]

(ii) // H= - 3 , M is isomorphic to E2n+1 [-3]

(iii) If H<-3, M is isomorphic to (L, CDn)[H].

PROOF. Since M is of constant φ-holomorphic sectional curvature H, M
admits local φ-holomorphic free mobility ([2]). Since M is complete and simply
connected, M admits global φ-holomorphic free mobility, that is, M admits
an automorphism group Aut(M) such that, for any points p and q, any
φ-holomorphic plane at p is carried to any other φ-holomorphic plane at q by
some element of Aut(Λί). Aut(M) is of (?z + l)2 dimension. Especially, M is
(C°°-) diffeomorphic to a homogeneous space Aut(M)/(isotropy group) and hence
we can assume that M is real analytic, and also that g is real analytic. Denote
by *M one of the model spaces corresponding to H> — 3, = —3 or < — 3, and
denote by (*φ, *ξ9 *η, *g) the structure tensors. For arbitrary points p of M
and *p of *M, let (el9 - , en, φel9 , φen9 ξ) and (*el9 , *en9 *φ*el9 ,
*φ*en9 *ξ) be orthonormal φ-basis at p and *p9 respectively. We define a linear
isomorphism F of the tangent space at p to M onto that at ~*p to ~*M by
Fea = *ea, Fφea = *φ*ea (a = 1, , n) and Fξ = *ξ. Then we have Fφ = *φF
and F is isometric at p. That is, F is isomorphic at p. Since both φ- and
•*φ-holomorphic sectional curvatures are equal to H9 F maps R into *R by (2.6),
F being considered as a map of tensor algebras. The covariant derivatives of φ
and ξ are also written in terms of φ, ξ, g by (2. 4) and (2. 5). Consequently, the
covariant derivative of R is expressed by φ, ξ and g. That is, we see that F
maps the tensor (\/R)P into the tensor (*V*i?) p. Likewise, we see that F maps
the tensors (VkR)P into the tensors (*V**ifyP for every positive integer &.
Then we have an isometry / of M onto *M such that /(/>) = */> and the
differential of / at p is F (cf. [ 1 ], p. 259-261). By (2. 4) and Fφ = *φ F we see
that (V£)p is mapped to (*V*f) p. Thus, we have

Since/ is an isometry, /£ is also a Killing vector field. By (fξ).p = *ξ.p and
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(*V(/£)>p=(*V*f>*> we have/£ = *f on *M. Because φ and η • (*φ and *«y,
resp.) are determined by g and ξ(*g and *£, resp.), /" is an isomorphism between
two Sasakian manifolds M and *M.

REMARK 4.2. Even if (the space of) a complete and simply connected
Sasakian manifold with constant ψ-holomorphic sectional curvature is real
analytic, the structure tensors are not generally real analytic. For example, in
the construction of (L, CDn)[H], let A. be a non-real analytic C°°-function and
replace τv by w' = w + dh. Then we have η (or g) which is C°° and is not
real analytic. Therefore analyticity of the space we need in the proof is
analyticity as a homogeneous space Aut(M)/(isotropy group).

5. Complete Sasakian manifolds with constant H> — 3.

PROPOSITION 5.1. Every complete Sasakian manifold with constant

φ-holomorphic sectional curvature H> — 3 is obtained by a D-homothetic

deformation of a complete Riemannian manifold of constant curvature 1.
Conversely, every odd dimensional complete Riemannian manifold of constant

curvature 1 is a Sasakian ma?ιifold.

PROOF. For the first part, see [ 7 ] , p. 715. For the second part, we apply
J. A. Wolf's result [10] that every odd dimensional complete Riemannian manifold
M of constant curvature 1 inherits a contact structure η" from η on *S 2 n + 1 [l],
That is, η" and the induced metric g" from g of AS27i+1[ 1 ] define a Sasakian
structure on M. Q. E. D.

J. A. Wolf [ 9 ] classified (odd dimensional) homogeneous Riemannian
manifolds M— S'2n+ι/Γ of constant curvature 1 :

( a ) If (2/2 +1) + 1 = 2r(r : odd), then

and Γ is a finite group of matrices of the form λ/r, where λ€ C with | λ | = 1
and Ir is the rXr identity matrix;

( b ) / / (2w + l) + l = 4r, then

where Q is the field of quaternions and Γ is a finite group of matrices of the

form p/ r, where p^Q with \ρ\ = 1.

Conversely, if Γ is a finite group of the type described in ( a ) and ( b ) ,

then M = S 2 n + y Γ is homogeneous.
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Therefore, a homogeneous Sasakian manifold with constant φ-holomorphic
sectional curvature H> —3 is Z)-homothetic to one of the spaces of the type
( a ) o r ( b ) .

The converse is not true in general, as is seen in Remark 6.1.

6. Examples of compact Sasakian manifolds which are not regular.
An almost contact manifold M is said regular if any point of M has a
neighborhood U such that each trajectory of ξ through p£ U meets U once as
a slice. Otherwise we say that M is not regular.

Consider >S3 defined by

For a point q = {a, b, c, d) £ S3, we consider q as a vector. On the other hand,
the structure of *S3 [ 1 ] is induced from the (almost) complex structure J:
(a,b,c,d)-^>( — b,a,—d,c), where (a, b, c, d)z E4 = CE2. If we define a map
φ: S3[1]->S3 (or φ\ E*->Q) by ψ(a,b,c,d) = (a + bi + dj + ck), then we have
a transformation J* of S3 or Q so that J*φ — φJ. That is, J*(a9 b, c, d)
= ( — b,a,d, —c) and the action of J* is just J*: q—>qi. Since ξ* at q is
determined by J*q, ζ* at q = (α, b, c, d) is a vector which has the components
(-b,a,d,-c).

Let p = {a, β, y, δ) € Q with ps — 1 for some integer s, and let Γ be a finite
group generated by pL Every trajectory of ξ* is given by the intersection of
Sz and 2-plane spanned by q and J*q = ξ*. Since (ρI)J*q = pqi = J*(ρl)q, for a
real number t we have

(pIXq + tξ*) = (pI)q + tJ*(pI)q.

Therefore, pi maps f* at q to ξ* at (pl)q. Let [/>] = φ~ι ρl φ. Then [/o] is a
transformation of *S3[1] and preserves g and £. Hence [/>] is an automorphism
of the Sasakian manifold 53[1]. Identifying Γ with a finite group generated by
[p] we have a Sasakian manifold M= S3[l]/Γ.

On the other hand, we have the Boothby-Wang's fiber ing n : S3[l]—>S3[l]/ξ
= CPι

y where CPι is a complex projective space. Since [p] is an automorphism
of 53[1], [p] induces an automorphism of CPι(cί. [8]). Easily we see that p can
be chosen so that the induced automorphism is not trivial on CP1. By the fact
that every automorphism of CP1 has fixed points, we have trajectories of ξ in
S3[ 1 ] which are invariant by [/>]. These great circles are factorized in
M— iS3[l]/Γ, and therefore, M is not regular.
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REMARK 6.1. M=S3[1]/Γ defined above is not homogeneous Sasakian
manifold in the sense that the automorphism group of M is not transitive,
since every homogeneous contact manifold is regular.

REMARK 6. 2. The similar arguments show that S4r+3[ 1 ] (r = 1,2, •)
is factorized by some finite group Γ so that 5 4 r + 3 [ 1 ]/Γ is non-regular Sasakian
manifold with constant curvature.

REMARK 6. 3. Every (4r+l)-dimensional homogeneous Riemannian manifold
of constant curvature 1 is of the form S*r+I[l]/F(t), where F(t) is a finite cyclic
group generated by exp tξ, 2τt/t being an integer.

REFERENCES

[ 1 ] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, Vol. I, Interscience
Tracts No. 15, New York, 1963.

[ 2 ] K. OGIUE, On almost contact manifolds admitting axiom of planes or axiom of free
mobility, Kδdai Math. Sem. Rep., 16(1964), 223-232.

[3] K.OGIUE, On flberings of almost contact manifolds, Kδdai Math. Sem. Rep., 17(1965),
53-62.

[ 4 ] M. OKUMURA, On infinitesimal conformal and projective transformations of normal contact
spaces, Tohoku Mtah. J., 14(1962), 398-412.

[5] S.SASAKI, Almost contact manifolds, Lecture note, Tohoku Univ., 1965.
[6] S.SASAKI AND Y. HATAKEYAMA, On differentiate manifolds with contact metric

structures, J. Math. Soc. Japan, 14(1962), 249-271.
[7] S. TANNO, The topology of contact Riemannian manifolds, Illinois J.Math., 12(1968),

700-717.
[ 8 ] S. TANNO, The automorphism groups of almost contact Riemannian manifolds, Tohoku

Math.J., 21(1969), 21-38.
[ 9 ] J. A. WOLF, Sur la classification des varietes riemanniennes homog&nes a courbure

constante, C. R. Acad. Sci. Paris, 250(2960), 3443-3445.
[101 J. A. WOLF, A con+act structure for odd dimensional spherical space forms, Proc. Amer.

Math. Soc, 19(1968), 196.

MATHEMATICAL INSTITUTE

TOHOKU UNIVERSITY

SENDAI, JAPAN.






