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Introduction.

0.1. Let Gc be a connected complex semi-simple Lie group. Following
Chevalley (cf. [2] and [3]), we have a uniquely determined affine group scheme
(i.e. a representable covariant functor G from the category of commutative
rings with a unit into the category of groups) such that

(1) G(C) is a connected complex semi-simple Lie group isomorphic to Gc,
where C is the field of complex numbers.

(2) For any algebraically closed field k> G(k) is a connected semi-simple
algebraic group defined and split over the prime field of k and its type is
the same with that of Gc.

We call G the Chevalley-Demazure group scheme associated with Gc and we
shall say that G is simple, of rank r or simply connected if the Lie group
GG is so. In Section 1, we shall introduce briefly the definition of G.

0.2. Let R be a commutative ring with a unit, α be an ideal of R9 f\
R —> R/a be the natural homomorphism. Then, there is a group homomorphism
G ( / ) : G(R)-^G(R/a). Denote by G(R,a) (resp. G*(R,a)) the kernel (resp.
the inverse image of the center of G(R/a)) of G(f) and we call it the special
(resp. general) congruence subgroup modulo α of G(R). Any subgroup N of
G(R) such that G*(R, α) Ώ N Ώ G(R, α) for an ideal α of R is a normal
subgroup of G(R). Such a normal subgroup of G(R) we shall call a congruence
subgroup of G{R).

0.3. Now, let R be a local ring, m be the maximal ideal and k be the
residue class field R/tn, p be the characteristic of k. W. Klingenberg has
proved (cf. [5], [6]) that if G=SLn+ί or Sp2nf the only normal subgroups of
G(R) are the congruence subgroups provided that the characteristic of k is Φ2
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and kΦFz for the groups G = SL.2 and G — Sp.ln. In this note, for a simple

Chevalley-Demazure group scheme and a local ring R, we shall reduce the

determination of the normal subgroups of G(R) to the determination of certain

submodules of R, except the following cases :

(a) G is of type Ax and p — 2 or k = Fs

(b) G is of type B2 or G2 and k = F2,

where Fq is the finite field with q elements. In particular, if G is simply

connected, we have that the only normal subgroups are the congruence subgroups

provided that the characteristic of k is Φ2 (resp. ^3) if G is of type

Bn, Cn or F 4 (resp. of type G2). The main theorem is stated in Section 1 with the

preliminary definitions. In Section 2, we give some basic properties of certain

subgroups of G(R) for our later use and, in Section 3, we prove a key proposition

(2.17) and then prove our main theorem (1. 9).

The author wishes to express his hearty thanks to Mr. H. Hijikata for

his valuable advises.

1. Chevalley-Demazure group scheme, Statement of the main theorem.
In this section, we shall introduce the Chevalley-Demazure group scheme

associated with a connected complex semi-simple Lie group (cf. [2], [3]) and then

state our main theorem.

1.1. Let Gc be a connected complex semi-simple Lie group, Tc a maximal

torus of Gc. Denote by gc, tc the Lie algebras of Gc and Tc respectively.

Let Δ be the system of roots of gc with respect to tc, Π = {a{ , , cCi} be a

fundamental root system of Δ, gz be a Chevalley lattice of gc generated by

{Haι, , Haf, Xa, a € Δj . For each a e Δ, the element Ha = [Xβ, X_α] is

contained in the submodule tz — gzΓ)tc. We have

( 1 ) <H.) = 2,

( 2 ) if oί, /9 are roots, then β(Ha) = v— μ>, where v, μ are non-negative integers

such that β + ia is a root for each integer —v^i^μ, or

( 3 ) if a,β and a + β are roots, [Xa, Xβ] = NaβXa+β, where Naβ = ± 0 + 1 ) .

1. 2. Let p be a faithful representation of Gc in an n-dimensional vector

space V over C, dp the differential of p which is a representation of gG in V.

Then, there exists a Z-f ree module Vz generated by {τ>i, , vn] in V such

that

( 4 ) (m\yιdρ(Xa)
vιVzdVz for all integers ra^O and all roots <2<=Δ,

( 5 ) df^H^Vi - Ai(Ha)vu Ai(Ha)eZ, for all roots at Δ and all i (l^i^n).
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Such a module Vz is called to be admissible (cf. [2] and [7]). The base
[ι\ , w, vn} of Vz determines the coordinates xi5 (1 fg z, j ^ n) on GL(y)

and the restrictions of x.Lj to GG generate a subring Z[G] of the affine algebra
C{G\ of Gc: The ring Z[G] has a structure of a Hopf algebra and defines a
group scheme G over Z. Namely,

R > G(R) = Horn (Z[G], i?)

is a covariant functor from the category of commutative rings with 1 into the
category of groups. We shall call G the Chevalley-Demazure group scheme
associated with Gc. In particular, if Gc is simply connected of type An (resp.
of type Cn), then G is isomorphic to the functor SLn+ι (resp. *SV3J.

1.3. For any t^C, xa(t) — exp t dρ(Xa) is an element of Gc and the
coordinates of xa(f) are polynomial functions on t with coefficients in Z. Let
Z[ξ] be the algebra over Z generated by one variable ξ. Then we have a
homomorphism of Z[G] onto Z[ξ] which assigns to each x.Lj the (z,./)-coordinate
of xa(ξ). The homomorphism induces an injective homomorphism of groups

Ga(R) = Hom(Z[f ], R) > G(R) = Hom(Z[G], R).

We denote also by xjt\ t £ R, the element of G(R) corresponding to an element
of Ga(R) such that ξ -> t.

1. 4. Let P (resp. X, Pr) the additive group generated by the weights of
all representations of G (resp. the weights of p, the roots of gc). Then, these
are free abelian groups of rank / such that P 2 X 2 Pr X is generated by
Λi , , Λn over Z; if G is simply connected, then P=X. For any
X e Hom(X, C*), h(χ) = diag(%(A0, , %(Λ J ) is an element of GG. Let Z[T]
be the algebra generated by Λ1? ΛΓ1, , Λn, Λ"1 over Z. Then, we have a
homomorphism of Z[G] onto Z[T] which assigns to each xtj the (z, j)-coordinate
of h(χ). The homomorphism induces an injective homomorphism of groups

T(R) = Hom(Z[TJ, R) > G(R) = Hom(Z[G], R).

We denote by h(χ) the element of G(R) corresponding to an element

1.5. DEFINITION. Let R be a commutative ring with 1 and G be
a Chevalley-Demazure group scheme. We denote by G0(R) the subgroup of
G(R) generated by xa{t) for all t e R and all tf € Δ and by h(χ) for all
X € Hom(Z[T], R), and denote by E(R) the subgroup of G(R) generated by xa(t)
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for all t € R and all ci^ Δ. We know that if R is a field or the ring of
integers of a field with a non-archimedean discrete valuation, then G(R) = G0(R).
Further, if G is simple, simply connected of rank > 1 and if R is a semi-
local ring, then G(R) = E(R) (cf. [8]). However, we don't know whether, in
general, G(R) = G0(R) for a group scheme G (not necessarily simply connected)
and a semi-local ring R. We shall show in Section 3 the following.

1.6. PROPOSITION. Let G be a Chevalley-Όemazure group scheme
and R be a local ring, then G{R) = G0(R). hi particular, if G is simply
connected, then G(R) = E(R).

1.7. For a root <X£ Δ, let (ct,a) = ]Γ γ(H"α)
2. The length λ(ac) of a is

defined to be 1 if (a, cί) rg (β, β) for any root β £ Δ, and is defined to be λ if
(a, ά)/(β9 β) = λ for some root β of length 1. If G is of type An (n ^ 1),
Dn (n ^ 4) or En (n — 6, 7 or 8), then λ(#) = 1 for all roots a if G is of
type Bn (n ^ 2), Cn (n ^ 2) or FA (resp. of type G,), there are roots of lengths
1 and 2 (resp. 1 and 3).

1. 8. DEFINITION. Let G be a simple Chevalley-Demazure group scheme.
We call G is of symplectic type if G is of type Cn (n ^ 2) and simply
connected. Let R be a commutative ring with 1, a be an ideal of R and for
a positive integer λ, α(/\} be the ideal of R generated by ~λa, aλ for all a £ Ct.
We shall call α special sub module associated with (G, α) a submodule b of R
such that

( a ) Cΐ2l)ΞhΊ(Λ,, where λ is the length of the long root in Δ,

(b) if G is of symplectic type, r'2b e b for any r^R and be ft,

(1/) if G is not of symplectic type, 0 is an ideal of R.

For convenience, we shall denote α (resp. 6) by αx (resp. αΛ). Thus, by our
notation, for an element xa{i) of G{RΛ, tz- α/Uα) means that ί ζ 0 or b according
as λ(oc) = l or λ. Now, we shall define certain subgroups of GiR). E(R9auaλ)
is the normal subgroup of E{R) generated by xa{t) for all roots a and
t £ αΛ(«) E*(R9 al9 αλ) is the normal subgroup of G(i?) consisting of the elements
x of G(R) such that (x,G(R)) £ J£(2?, α1? α )̂, where for any subsets A, β of
G(R\ (A,B) is the subgroup of G(R) generated by a~ιb~ιab for as A, b e B.
In particular, if αL = aλ, we denote £(/?, α1? aλ) (resp. £"x"(i?, α1? α̂ )) by E(R, ax)
(resp. E%R, aj) and if αi = aλ = R, by definition E[R, αθ = £(i?). Then, our
main theorem is the following which is proved in Section 3.
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1. 9. THEOREM. Let G be a simple Chevalley-Demazure group scheme.
Let R be a local ring, m be the maximal ideal of R, k = R/m be the
residue class field, p be the characteristic of k. Assume that if G is of
type Aγ then p Φ 2 and k Φ FΆ and if G is of type B2 or G2 then k φ F2.
Let N be a subgroup of G(R) normalized by E(R). Then N is normal and
there exist uniquely determined ideal a of R and a special submodule b
associated with (G, α) such that

E\R,a,K)ΏNΏ E(R,a,6).

1.10. COROLLARY. Under the same conditions as (1. 9), if, in particular,
G is simply connected, then G(R, a) = E(R, α) for any ideal a of R.

1.11. COROLLARY. Under the same conditions as (1. 9), if, in particular,
G is simply connected and the characteristic p of k is different from the
length λ of the long root, then, for any normal subgroup N of G(R), there
exists an ideal a of R such that

G%R, a)ΏNΏ G(R, α).

2. Certain subgroups of G(R). In this section, we shall deal with the
structure of certain subgroups of G(R). We assume that ί is a local ring
and G is simple. Notations and definitions are the same as those in the
previous sections.

2.1. DEFINITION. U(R, al9 aλ) (resp. V(R,auaλ)) is the subgroup of G(R)
generated by xa(t\ t € α^) for all positive (resp. [negative) roots oi € Δ. In
particular, if α^fy, we denote it by U{R,a^) (resp. V(R,aλ)), and if ai = aλ=R,
we denote it by U(R) (resp. V(R)). Note that U and V are subgroup schemes
of G. T(R) is the subgroup of G(R) consisting of all h(χ) for all
X £ Hom(Z[7T], R) which is isomorphic to Hom(Z[TJ, R) the direct product of I
copies of Gm(R). T(R) is the subgroup of Ί\R) generated by h(χaιU) for all
roots ctzA and uzR* (the group of units of R) where %α>M(Λi) = uAi{Ha)

(1 ^ ϊ ^ n). T(R, a) is the subgroup of T(R) generated by all h(χ) such that
X(ct)=l (mod α) for all root a. Now, we denote by T(R, alf aλ) the subgroup
of T'(R) generated by h(χatU) for all pairs (a,u) of <χe A and uzR* such
that u = l + st for s £ R and tz aλ(a).

2.2. As for the relations of generators for G(R), we know the following
(cf. [1], [3]).

( 1) h(χa,u) = x-a(u-' -1) χa(ϊ) x_a(u-X) xa(iyιxa(l-u-1) , u € £* .
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( 2 ) Kx)xa(

Let ωa = xa(ϊ)x_Λ(-l)xa(ϊ), then

( 3 ) ωaxβ(t) ω-1 = xWa{β)( ±t) , t € R ,

where wa is the reflection in the hyperplane orthogonal to ct and it is an
element of the Weyl group.

Let Δ+ be the set of the positive roots. If Δ is of type A2,

( 4 ) Δ+ = [a, β, ct+β} λ(α) = λ(/3) = X(cc+β) = 1

and we have

( 5 ) (xa(i), xβ(u)) = xa+β(±tu) for any t,uzR.

If Δ is of type B2y

( 6 ) Δ+ = {a, β, a+β, 2a+β) \{a) = λ(Λ+/8) = 1, λ(/3) == X(2a+β) = 2

and we have

( 7) (xa(t), xβ(tι)) = α:β+/8(±to) x2α+^(zbί2w)

( 8 ) (̂ «(*)f xa+β(μ)) = x2α+/3(±2ίw) for any t,uzR.

If Δ is of type G2,

( 9 ) Δ+ = {Λ, β, Λ+/8, 3Λ + /3, 3^ + 2/9}

λ(α) = λ(Λ+/8) = λ(2rt+^8) = 1, λ(£) = X(3a:+/3) = X(3ct + 2β) = 3

and we have

(10) O«0)> ^(w)) = xa+β(±tu) x2a+β(ztt2u) x3a+β(±t3u)

(11) (xa+β(t), xa(u)) = x^l±2tu) x,a+β(άz3tu2)

(12) {xa+β(t\x2a+e(u)) = x3α+2/3(±3^) for any tyuzR.

Now, we prove the following.

2.3. PROPOSITION. For any ideal a of Ry denote by Eγ{Ry a) (resp.

Eλ(R> a)) the normal subgroup of E(R) generated by xa(t), ί e α , for all roots
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a such that X(ct) = 1 resp. λ(tf) = λ). Then

£(/?, α, 6) = ^(t f , α)

for any sp3cial submodule 6 associated with (G, fl)

PROOF. Since the Weyl group W is generated by τva, a e A and W is
transitive on the set of roots of the same length, from (3), it is sufficient to
show that Xβ{f) £ Ex{R,a) for some root β of length λ and for all t € α. Therefore,
no loss of generality, we may assume that G is of type B2 or G2. First, let
G be of type B2, and let Δ + be the roots (6). From (7) and (8), we have that
x 2 a + β ( ± t 2 u ) a n d x 2 a + β ( ± 2 t u ) a r e i n E x { R 9 o ) f o r a l l t z a a n d u z R . T h u s , b y
definition, we have E(R, a, 6) = EV(R, α). Secondly, let G be of type G2 and let
Δ + be the roots (9).

From (10) and (11) we have z = x3a+β(ztt3u)x3a+2β(ztt3u2) and x3a+2β(±.3tu)

are in E^Rfi) for all tza and u e R. Further, (^(1), z) = xZa+2β(±t3u) e E^R, a)

for all ί € α, and u € i?. Thus by definition, we have E(R,a,h) = EX(R, a), q.e.d.

2. 4. PROPOSITION. Under the same notation as in (2. 3),
( i ) If pΦ\ then E,(R, a) = E(R, α) = E(R, α, 6).

(ii) Eλ(R, α) = E(R, α) provided that, if G is of type G2, k Φ F,.

PROOF. It suffices to prove for the groups of type B2 and G2.

( i ) Let Δ + be the positive roots (6) of type B,. Since pΦ 2,2 is a unit.
(8) for t = 2"v and u € a shows that x2n+β(±:u) e E{(R, α). Now, let Δ + be the
positive roots (9) of type G2. Since pΦ 3, 3 is a unit. (12) for t — 3" 1 and u£ a

shows that x:ia+2β(dzu) € EV(R, α).
(ii) Let Δ + be the positive roots (6) of type B2. Then from (8) for t — 1

and // e α, we have xa+fi(u) € Eλ(R, α). Now, let Δ + be the positive roots (9) of
type Go. Then from (10) for t = l and wen, we have z = xa+β{±.u)x2,xΛβ{ύzίr)

<ΞE\(R,CI) and z = ωβzωβ~
ι = xa(±u)x2a+β(±:u2) e Eχ(R,a). Since k Φ F2, there

exists an element % of Hom(Z[7'J, R) such that χ(ct) = 1 and %(/β) == v where
v and v-l are units of i?. Then h(χ)zh(χyί=xa(ztu)x2a+β(±:vu2)^Eλ(R,a).

Therefore, z~ιh{χ)zΊι{χ)-1 = χ.2a+β{±{v-l)u2) e Eλ{R,a\ This shows x2a+β(u2)

€ EλCR, ex) and we have also xa{u) £ Eλ(R, a). q. e. d.

2.5. PROPOSITION. £αcΛ element of U(R, alf αλ) z's expressible in the

form

-where st £ aλ{βι)(l ^ i ^= N) and βu β2, , β# are the positive roots of A, the
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ordering of the roots is arbitrary chosen and fixed once for all.

Let fX be the set of elements expressible in the form as stated in the
proposition. We call the order of the positive roots (or the negative roots) is

I I

regular if the heigt h(ά) = Σ mt oί ct = Σ ™>idi is an increasing function of

CL. First, we prove the following lemma.

2. 6. LEMMA. Let a, β be two positive roots. For any elements xa(t) e E(R)
and Xβ{u) € U(R, au aλ)> the commutator (xa(t), Xβ(u)) is an element of U which
is expressible by the product of x7(s) for roots γ > a, β, by a regular order.

PROOF. If a+β&Δ, then (xa(t\ xβ(u)) = 1 and the lemma is trivial. We
assume that a+β £ Δ. Let Δ2 be a subsystem of roots in Δ of rank 2 consisting
of the roots ia+jβ, i, j £ Z.

(i) If cέ—βfcΔ, {a, β} is a fundamental system of roots of Δ2. When Δ2

is of type A2, we have (xa(t), Xβ(u)) = xa+β(±tu). If u £ αλ(/3) then tu is also an
element of aλiβ). When Δ2 is of type B2, we have (xa(t),Xβ(u)) = xa+β(±tu)x2a+β
{±t2u) or xa+β(±tu)xa+2β(±tu2) according as X(ά) = 1 or 2. If X(β) = 1
(resp. ==2), then tu € α and t2u£<X2 (resp. tu2£a2). Finally, when Δ2 is of
type G 2, (xa(t\ xβ(u)) = xa+β (±tu) x2a+β (±t2u) x3a+β (ύzt'u) x3a+2β (±ί 3 w 2 ) or

= xa+β(dotu)xa+2β(±tu2)xa+3β(zttuz)x2a+3β(±t2u3) according as X(aί) = 1 or 3. If

\(β) = 1 (resp. = 3), then tu, tu2 € ax and tu\ t2us € α3(resp. t3u,t3u2 € α3), for αx

and α3 are ideals of R.
(ii) If ct—β = y £ Δ and a—2β^Δ, then [β, γ} is a fundamental root

system of Δ2 which is of type B2 or G2. When Δ2 is of type B2, we have
a = γ+/9, a+β = Ί + 2β and \(a) = λ(/8) = 1, λ(α+/8) = λ(γ) = 2. Thus,
(xa(t), xβ(u)) = xa+β(±:2tu). If u € al9 then 2tu € α2. When Δ2 is of type G2, we
haveΛ = γ + /β, a+8 = y + 2β and λ(/S) = X(a) = X(a+β) = 1, X(y) = X(a+2β)
= X(2a+β) — 3. Thus, (xa(t),xβ(uj) = ^a+i8(dz2iw)^:a+2^(±3iw2)x2a+^(dz3i2w). If
w £ cti, then 2ίw € a1? 3ίw2 € a3 and 3ί2w € α3.

(iii) If a—2/3 = γ € Δ and, <x—3β&Δ, then {/3, 7} is a fundamental root
system of Δ2 which is of type G2. We have a = y + 2β, a+β = y-\-3β and
λ(tf)=λθβ) = l, λ(tf + £) = 3. Thus (ΛΓβOO, xάμ)) = xa+β(±3tu). If w ̂  α^ then
3 ίw € α3. q. e. d.

2.7. PROOF OF (2.5). We shall show that U is a subgroup of G(R).
This proves that U = £/(i?, αx, αλ). It suffices to prove that xjf)x £ U' for
any xa(t) € U and x £ t/'. We claim this by induction on a regular order of the
roots a. If a is the highest root then xa{t) = xxα(ί) and the assertion is trivial.
Assume that xa(t)x £ U for any Λ:β(ί) and x^U' such that ct> β. We must
show that x^f)x^U' for any £ € αλ(/8) and xzU'. Let ^ = ^ ( 5 0 ^ , ^ + 0 —
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XβN(sN) be an element of U\ Then xβ(t)xN £ U' is trivial by (2. 6). Now assume

Xβlt)uk € XT for any uk(k>ί) and we show that Xβ(£)x% € t/\ If £=£#,- for any
i^jt=ίN, then this is trivial. Therefore, we may assume that B = β5 for some

j > i. From (2. 6), we have

xβj(t)xt = xβi{t)Xβt(sl)Xi+i = Xβi(sί)xβisj)zxi+1

where 2 is an element of U' expressible by a product of xa(t) £ U' for cc> β.

Further, by our assumption, x^}{s3)zxi+l £ U'. Thus, we have proved xβj(t)Xi £ U'.

q. e. d.

2.8. PROPOSITION. / / aι is a proper ideal of R and αλ is a special

submodule associated with (G, aλ), then

(13) E(R, al9 oλ) - U(R9 al9 aλ)T(R, aί9 aλ)V(R, al9 αλ).

First, we prove some lemmas.

2. 9. LEMMA. For any root ci and a unit element u of R, there exists

h(χ) € T'(R) such that χ(cί) — u2. Further, let Δ be of rank > 1, then there

exists h(χ) € T(R) such that χ(ά) — u if and only if G is not of symplectic

type or λ(rt) = 1.

PROOF. Since χa,u(oc) = u2, the first assertion is trivial. If X=Pr9 the
second assertion is also trivial. We may assume that cc is in II = {ccly cc,},

say a — av and let cc2 be not orthogonal to a{. If Δ 2 = {cti9 cc,} is of type G2,
then Δ = Δ2 and the lemma holds from P— X= Pr. If Δ 2 is of type A2(resp.
of type B2 and λ(Λθ = 1), then % = χa>u-x (resp. = %β„«%„«,«) has the value u at
cc. Thus, we can find h(χ) € T'(R) such that χ(cc) = u except the case G is of
symplectic type and \(ά) = 2. q. e. d.

2.10. COROLLARY. If αx is a proper ideal and xa(t) e E{R, au αλ), then
Kχ)xa(t)Kχy* € £(i?, αx, αλ) for any h(χ)

PROOF. This follows from (2) and the above lemma.

2.11. LEMMA. Let Δ be of rank>l and αx be proper. If u =

-where szR and t € αλ ( α ), ίΛerc χatU(β) = l(mod di) for any root β such that

λ(/β) = 1 and χaiU (β) = l(mod α(λ)) for any root β such that λ(/β) = λ.

PROOF. Note that χa,u(β) = (l + st)^ where ί € α λ ( β ). If λ(/β) = 1, then

= «i is an ideal such that 2 aλ ( β ). Therefore, the assertion is trivial. If
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= λ and \(a) == 1, then we have χa,u(β) = (l + st)±λ = l(mod α(λ)). Finally,
let λ(/S) = X(a) = λ. If G is not of symplectic type, then the assertion follows
from the fact that αλ(α) = aλ{β) is an ideal of R. If G is of symplectic type,
then we have β(Ha) — 2 or 0 according as a = β or a Φ β. Therefore, we have
also %«,„(£) ==l(mod α(λ) ). q. e. d.

2.12. COROLLARY. If αx is a proper ideal and h(χ) € T(R, au αλ),
W"1 ^ E(R, al9 αλ) /or

PROOF. This follows from the relation xa(s)h(χ)xa(s)~ι =xa((l — χ(cίj)s)h(χ)
(cf. (2)) and the above lemma.

2.13. LEMMA. // ax is a proper ideal and xa(t) z E(R, α b αλ), then

(14) x^{s)xa{t)x^a{s)-1 = xa(v)h(ya>u)x.a(w)

for any X-a(s), where xa(v) and x-a(zv) are elements of E(R, au αλ) and h(χaiU)
is an element of T(R, cti, &\).

PROOF. Since t£\n, 1 + st is a unit in R. Therefore, the equation

1 0 \ / l ί \ / 1 0 \ (1 v\/u 0 W l 0

5 l / \ 0 l)\-s l / ~ \ 0 l / \ 0 u

has a solution, i. e., we have u — (l + st)~\ v — t(l + st)~ι and w = —s2t(l + st)~ι.
Thus, we have (14) where h(χa<u) e ΊV(R, au aλ) by definition. Further, if G is
not of symplectic type, xa(v), x_a(zv) € E(R, α1? aλ) for αx and Q.χ are ideals. If
G is of symplectic type, since (l-fsί)"1 = 1 — 5/(mod αλ), v = til — si) = 0,
i ϋ Ξ - Λ ( l - 5 ί ) Ξ θ ( m o d αλ) (cf. 1. 8. (b)). Therefore, we have also xa(v),
x-.a(w)zE(R9al9aλ). q. e. d.

2.14. LEMMA. If αx z5 α proper ideal, xa(t) € £(Λ, α1? αλ) αw<i /9 z5 a
positive root Φ oί, then

(15) x-t£s)xa(f)x-fjίs)-1 = xy /or

where x £ Ϊ7(i?, α1? αλ) and y is a product of x_Ί(u)rs in V(R, au aλ) such that

PROOF. Since a and —β are linearly independent, there exists an element
zv which is a product of ωΎ for some roots γ £ Δ, such that ^ ^ ( ί ) ^ " 1 and
wx-ff/)w~ι are in (7(i?, α1? αλ). Therefore, x^(s)xa(t)x^(s)~l € w~ιU(R, al9 aλ)w.
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From (2.5), any element of U(R, au aλ) can be expressed by the form

xβl(sί)xβ2(s2) XβN(sN), where st € aλm and βu , βN are the positive
roots. If we arrange the order of the roots in such a way that w(βi)>0 for

l^i^j and w(βi)<0 for j + l^i^N, then we have w~ιU(R, au aλ)w

Q U(R, au ax)V(Ru al9 aλ). Since x and y are products of xy(u)fs where 7 are

linear combinations of cί and —β, we have our assertion. q. e. d.

2.15. PROOF OF (2.8). For convenience, denote by UTV the set in the
right side of the equation (13). First, we claim that UTV is a subgroup of
E{R). It suffices to prove that zUT'V C UTV for any element z of UTV of
the form xβ{t), h(χβ<u) and X-β(t). If z = xβ{t), then by (2. 5), we have xβ{t)

UcU. If z = h(χβ,u) z T, then from (2.10), we have h(χβtU)U C UT. Finally,
if z = x~β(t), we show by induction on a regular order of the roots that

(16) X-β(t)UdUTV for any X-β(t)zV.

If — β is the largest negative root, from (2.13) and (2.14), (16) is true. Assume
that (16) holds for any negative root larger than —β. We must show that
X-β(t)χ€UTV for any xzU. If x = xβΐί(s), it is clear from (2.14). Now,
assume that it is true for x = xβirl(si+1) xβN(sN) e U> and let x = xβι(si)x e U.

Then we have again by (2.14), X-β(t)Xβt(sϊ)x = xβi{si)χfyx and by our assumption
yx ^ UTV. Thus we have X-β{t)x £ UTV. This completes the proof of (16).
Secondly, we claim that UTV is normal in E(R). It suffices to show that
x±ai(t)UTVx±ai(t)-1 € UTV for any root a, z Π and any tzR. We have
χai(t)Uxai(tYι C [/ (cf. 2. 6) and xai(t)h{χβ^xaι(t)-1 c E/Γ' for any h(χβtU)zT

and any £ € R(cf. 2.12). The elements of V is expressible by a product of
X-ai(u) and an element of V{i) consisting of elements expressible by a product
of Xy(s) such that 7 are negative roots different from — tff and that s € aλ(Ύ).

Since xalt)x-ai(u)xa<tyι € [ /TV αrcJ xat(t)V™xai(tYι € y ^ (cf. 2.14), we have
. r ^ y ^ X ^ c C / T y . Therefore, we have xai{t)UTΎxai{t)~ι c ί/TV. A
similar calculation applies to X-ai(t). q. e. d.

2.16. PROPOSITION. β(£) - [/(m)T(/?)y(i?) ( r ^ . F(Λ) - U(m)T\R)V(R))
is a subgroup of G(R) (resp. E[R)), where U(m) is the subgroup of U(R)
generated by xa(f) for all tzm and all positive root a.

PROOF. Iwahori-Matsumo:o ([4], Theorem 2.5) have proved this in the case
that R is the ring of integers of a field with a non-trivial, πon-archimedean
discrete valuation and G is an adjoint group. However, their proof remains
valid also in our case.

The following proposition plays a fundamental role in the proof of our
main theorem.
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2.17. PROPOSITION. Let G be a simple Chevalley-Demazure group

scheme, R be a local ring and a a proper ideal of R and b a special

submodule associated with (G,α). Assume that pΦ2 and kΦFs if G is of

type Aλ and that kφ F2 if G is of type B2 or G2. Let N be a subgroup of

G{R) normalized by E(R) such that E*(Ryayh)φNDE(R,a,K). Then N

contains an element xa(t) not contained in E(R, α, b).

The proof will be divided into several steps. We set

Ef(R9 α, b) = U(R, α, h)T*(R, α, V)V(R, α, b)

where T\R, α, b) = TκR)nE%R, a, b). Then £ 0

; (R, α, b) is a subgroup of G{R)

normalized by E(R) such that E*(R, α, b) D Ef(R, a, b) D E(R, α, b). We denote

by N' = N-ES(R,a,K). Then, (2.17) follows immediately from the following

which we shall prove in the next section.

2.18. Assume that k Φ F2, F3 if G is of type Aλ. UN'Φ 0 , then N Π B(R)

Φ9.

2.19. Assume that pΦ 2 and ^ ^ F3 if G is of type Ax and that ^ ^ F2 if

G is of type G2. If JV" Π B(R) Φ 0 , then N' Π x£R)xβ,(R) Φ 0 , where /?, /S

are dominant roots of Δ (for the definition, see 3. 5).

2. 20. Assume that k Φ F2 if G is of type £ 2 or G2. If N'D xβ(R)xβ,(R)Φ 0 ,

then N' Π α:α(i?) ̂  0 for some root Λ.

2. 21. Assume that ^>^ 2 and k Φ F3 if G is of type Ax and that & =£ F 2 if

G is of type B2 or G2, then £ 0 *(^, α, b) = JB*(i?, α, b).

3. Proof of the main theorem. In this section, we prove (1. 6), (2.17)

and then prove our main theorem (1. 9) and its corollaries. We use notations

and definitions same as those in the previous sections.

3.1. PROPOSITION. Let G be a Chevalley-Demazure group scheme. Then

O(C) = U(C)T(C)V(C) is an affine open subset of G{C) and there exists a

rational representation φ of G(C) into a general linear group GLN(C) such

that the coordinate function dtj(g) (l^zjfgJV) of φ(g) is in Z[G] and that

the affine ring of Ω(C) is C[G] [d^\. Further, the mapping

Θ(C) : UiC) x T(C) x V(C) -> G(C)

defined by θ(C)(x, h, y) = xhy induces a ring isomorphism
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where Z[U] (resp Z[V]) is the affine ring of the subgroup U(resp V) of G.

This proposition follows from a theorem in [ 2 ].

3. 2. PROOF OF (1. 6). In (3.1), we denote by G the group scheme defined
by the subring Z[G'] of Z[G] generated by Ji/l^=z, j^N). The homomorphism
ψ defines a homomorphism of group schemes G^>G which we denote also by
φ. Since Θ(R) : U(R)xT{R)xV(R)-*Ω,(R) = Hom(Z[G][Jfi1], R) defined by
θ(R)(x, h, y) = xhy is bijective, we have ίl(R) c G0(R). On the other hand, if
g € G(R, m), then φ(g) e G\R, m). This shows that dn(g)=l (mod m) and dn(g)
is a unit in R. Therefore, g € ίl(i?). Thus, we have G(R, m) c Ω(Λ) c G0(i?).
Now, let φ be the homomorphism of groups G(R) —> G(i?/nt) induced by the
canonical homomorphism of rings i?—•iϊ/m. For any element gzG(R), <p(g)
is an element of G0(k) = G(k). Therefore, g = gxg2 where gx £ G(R, m) and g2 is
an element of G0(R) such that φ(g) — g2. Thus, we have g € G0(R). This shows
that G(R) = G0(R). If G is simply connected, then T(R) = T'(R) c E(R).
Therefore, we have G(R) = E(R). q. e. d.

3. 3. COROLLARY. Let a be a proper ideal of R, then

G{Ry a) = U(R, ά)T(R, a)V(R, a)

G%R,α) = U(R, α)T%R, a)V(R, α),

where T*(R, α) = G*(R, α) n T(R).

This follows easily from the above proposition.

3.4. PROOF OF (2.18). If JVc G*(R,nϊ), then NGB(R) and the assertion
is trivial. If iVς£ G\Ry m), then <p(JV) is a subgroup of G{k) normalized by
E(k) not contained in the center of G(k). Therefore, we have <p(N) (Ί T(k)V(k) Φ1
(cf. [1], p. 50. We assume that if G is of type Al9 k Φ F2, Fz). Thus, there
exists an element g £ N such that <p(g) = φ(h)φ(y) e T(k)V(k) for some elements
h € T(R) and y £ V(R) and that φ(g) is not contained in the center of G(k).
This means that g = g'hy for some g € G(R, m). Since ^' is expressed by the
form xhy where x z U(R, m), K £ T(i?, m) and y € V(i2, m), we have g € JB(JR)

and # € G*(Λ, m). This shows that N Π B(R) Φ 0 .

3. 5. Now, we proceed to prove (2.19). First, we give some preliminary
lemmas on irreducible root systems. Let Δ be an irreducible root system and
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Π = [oLl9 , aL] be a fundamental system of rcots. A root β £ Δ is called to

be dominant if β(Hai)^0 for all α ^ I I . By definition, the highest root is

dominant. Further, if λ(αc) = 1 for all root tf<=Δ, then the highest root is the

only dominant root. On the other hand, if Δ has a root of length 2 or 3, there

exist exactly two dominant roots and the length of these two roots are different

each other (cf. [ 1 ]. Lemma 13, p. 60).

3. 6. LEMMA. Let Δ be not of type G2, then

(i) For any positive root cί£ Δ -which is not in Π, there exists a root

cίi € Π such that a—at € Δ and a + oίi^A.

(ii) For any positive root ctz Δ which is not dominant, there exists a

root cίi € Π, such that a+a% € Δ and a—tf

PROOF. We claim that for any positive root a which is not in Π, there

exists a root a^U such that a(Hat) > 0. We see X(β)a(Hβ) = \(ά)β(Ha) for
I I

any root aβ z Δ. If cc = ]Γ m^, then

>0. Since λ(α)>0, ra^O andλ(Λ j)>0, tf(Hαi)>0 for some tft. Thus Λ-tf*

is a root. As for a positive root which is not dominant, by definition, there

exists a root α* € Π, such that a(Hai)<0. Thus α + ύ ^ is a root. Now, let Δ

be not of type G2. Assume a±a% are roots. Then ±oL, •±ai±((X+a^ and

±r(a:—a:*) are the only linear combinations of a and a% which are roots (cf. [1],

Lemma 2, p. 20). This contradicts to oί(Hai)Φθ. Thus we have our lemma,

q. e. d.

I

3. 7. Let a0 = ^2 mi°ί>i be the highest root. We know that if Δ is of type

Any Bn, Cn, Dn, E6 or E7, then Min m4 = 1 and if Δ is of type E8, F 4 or G2,

then Min w { = 2. In the former case, we set aγ one of the roots <Xi in Π such

that mi = 1 and further, if Δ is of type Any cCi is not orthogonal to cc0 and the

latter case, we set aγ one of the roots at in Π such that πiι = 2 and that ct0

is not orthogonal to at and orthogonal to all roots in Π different from a,.

(There exists exactly one root which has these properties.) Then, the diagram

of Π— {oίi} is connected. Further, we have

i

LEMMA. Let Δ be of type E8, F 4 or G2 and a=Σ mtCCi be a root. Then,
i=l

mi = 2 if and only if a is the highest root.

PROOF. If a = a0, then m1 — 2. Conversely, if a — Σ miCCi is a root such
1 = 1
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that mι = 2 and aφaQ, then we have ct0 — cci{ι)— — <Xm = β for some Ui(j)

where i(.j)Φ-l (l^j^k). This is a contradiction, for cc0 — at £ Δ for all
z > l . q. e. d.

3. 8. We define a subset Δj of Δ closed under addition of roots and an
irreducible subsystem Δo of Δ as follows

Δi = \ a^ Δ <x=Σ ™>i&i> mλ>0 \ ,
( itT J

Δo = I Λ ^ Δ tf = ^ m^i, rax = 0 - .

Let Δx = [βl9 β2, , βm} where βi<βi+ι and /3m = tf0 by a regular order
of Δ. Then from (3. 7), we have

COROLLARY. In a group G(R) whose root system is Δ, for any roots
βι and βj of Ax and for any elements s and t of i?,

(Xβt(s)9 Xβj(t)) = 1 or xao(u) for some uz R.

3.9. LEMMA. Let y be a dominant root in Δo, then y—a^A and
y+ctλ € Δ.

PROOF. Since y is positive and is not a dominant root in Δ, from (3. 6),
y + oti is a root for some tf* € Π. On the other hand, y + cίi is not a root for
all cct € Π, z > l , for y is a dominant root in Δo. Thus a-\-ax is a root. It is
clear that cί—ciλ is not a root. q.e.d.

3.10. Now, let N be a subgroup of G(R) and ΛΓ be its subset stated in
(2.16). Let x = xΊι(s^)xyt(s^) xΎn(sn) be an element of N where γ t -
and {z(l), i(2), ,i(^)} be the set of all indices such that
1 ^ /(I) < z(2) < <i(k)^n. Then a simple calculation shows that x =Xyi(1)(

5<(i))
• xΊi{k) (sί{lc)) is also an element of N'. We call x the reduced form of x.
For a subset Δ of Δ, we denote by t/(Δ') the subgroup of £/(i?) generated by
xa{t) for all positive roots a in Δ' and for all t € R. Then, we have

3.11 LEMMA. Let G be not of type G2. If there exists an element
x ^ JV (Ί {/(Δi), then starting from x by a finite process of taking a commutator
with an element of U(A0) (resp U(A)) and taking its reduced form, we
obtain an element of N' of the form Xβ(t)xβ,(t')β>>(t") (resp xβ(i)xβ,(t')), where
β, β are dominant roots of Δ, β' the highest root and β" is a positive root
such that β" + ax =β\
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PROOF. We may assume that x is of the form Xβk(ti)xβi+ι(tί+ι) xβjtm)
where lrgz'rg ra and tt & dHβi). We prove the lemma by induction on i. If
i — my then the assertion is trivial. Suppose i<Lm and assume that for any
element

( 1 ) x = XβSfk)Xβ*St*+ύ " XβSPώ* k > z, tk ί aλm,

of N the lemma is true. If Bt is not dominant, then, by (3.6. ii), there
exists a root cct £ Π such that a+cc^A and a—a^A. Therefore, if ati^cily

then, by (3. 8), (xai(l), x) = x' can be reduced to an element of N' of the form
( 1). If ai = aι or /β4 is dominant, we may assume that (xβt(tt), xaj(X)) <= E(R,auaλ)

for all ύ ί j ί Π ί l Δo. For, if there exists a root aJ(J>l) such that x = (^ t(ίi),
α:αj(l)) Q= £(i?, α1? c )̂, then x can be reduced to an element of N of the form
( 1). Now, we set x = xβi(ti)x where x = Xβi+ι(ti+ι) xβm(tm). Then we may
apply induction assumption to x. Thus we obtain an element stated in the
lemma. q. e. d.

3.12. COROLLARY. Let G be not of type G2. If there exists an element

χ£ N Π C7(Δ), then starting from x by a finite process of taking a commutator

with an element of C/(Δ) and taking its reduced form, we obtain an element

of N' of the form xβ(t)xβ>(t') where β, β' are dominant roots of Δ.

PROOF. We prove by induction on the rank of Δ. If Δ is of rank = 1,
then this is trivial. Assume that the lemma holds for the groups of rank less
than that of Δ. We set x — xxx^ with xι e C7(Δi) and x0 € C7(Δ0) (cf. 2. 5).
If Xo £ N\ then by induction assumption, we obtain an element x = x[xΎ(s)xΎ>(s')

of N' where x[ e [/(Δi) and γ, γ' are dominant roots of Δo. For, the group
[/(Δi) is stable by taking a commutator with an element of C/(Δ0). Then,
by (3.9), (x, xaι(ϊ)) = x" is an element of [/(Δ^ΠiV. Thus, we may apply
(3.11) to x If. Xo&N , then x1 e UίΔ^ΓiN'. We may also apply (3.11) to xx.

q .e. d.

3.13. P R O O F O F (2.19) FOR T H E GROUP O F N O T T Y P E G2. If G is of

type Au it is known by Klingenberg (cf. [5], 2. 7). Therefore, we assume that

the rank of G i s > l . Let z = xhy £ B{R)ΠN , where x z C7(m), hzT(R) and

y 6 V(R). If x and y are in E(R, au α2), then z = h(χ) € JV'. Therefore, there
exists a root a such that %(tf)^l (mod αλ(α)). Then, (xα(l), h(χ)) = xa(χ(ά)~1--1)

is an element of ΛΓ. Thus, we may assume that x£E(R, αx, α̂ ) or yfcE(E, aly aλ).

Note that, for an element z = xhy€-N',.iί x and y are the reduced forms of

x and y, then z — xhy is also an element of N' which we call the reduced

form of z. For a subsystem Δ' of Δ, denote by G(Δ') the subgroup of G(R)

generated by xa(t) for all ci£ Δ' and all tzR and by T( JR). Now, we prove the
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following (Pn) ( n ^ 2 ) by induction on n.
(Pn) Let G be not of type G2. Suppose there exists an element z = .r/2/y of

ΛΓ Π 5(i?) such that x € t/(Δ') Π t/(m), A € T(Λ) and y € V(Δ') and that
x^E(Rya1,aλ) oτ y&E(R9al9aλ)9 where Δ' is a subsystem of Δ of rank n.
Then, starting from z, by a finite process of taking its reduced form, taking a
conjugate in G(Δ') or taking a commutator with an element of G(Δ'), we obtain
an element of the form x7(s)x7 (V) in Λr', where γ, γ' are dominant roots of Δ\

3.14. P R O O F OF (P2) FOR T H E GROUP OF TYPE A2. Let Δ+ be the

roots (4) and denote

z = xa(sί)xβ(s2)xa+β(s3)h(χ)x^a^β(t3)x_β(t2)x.a(t1).

By (3.12), it suffices to show that we obtain an element of U(R)Γ)N' or
V(R) Π ΛΓ. If x € E(R, α^, the argument is clear. Suppose x £ E(R, aγ).

(i) If Si £ αx and s3 € c ,̂ we have

^_α(l)-^'^_α(l) = xβ(s2 ±s.s)xa+β(ss)h(χ)x.a(l - χ(a))x-a-β(tz±t^x_β(t^x-.a(tι).

Therefore (z, x~β(l)) is conjugate to z'— xβ(zts3)x_a_β(u)x-a(v) for some uy

v ζ R. Then z" — ωβωaz 'ω^ω^1 is an element of U(R)Γ)N'.
(ii) If $! € (*! and s3 € au then we have (2;', x_a-β(ϊ)) is conjugate to

^_α(zb52) :̂_α_y3(τe;) for some zv £ R which is an element of V(R) Π N\
(iii) If 5t ^ <*!, then we have

^ xβ{l) = xa(Si

Therefore, (z , ^(1)) is conjugate to z''< = xa+β{ ±.s^)x^v')k'y for some y
and z;' ^ i?. Then jε" is an element of N' and a similar calculation as one of
the above cases applies to z". q. e. d.

3.15. P R O O F OF (P2) FOR T H E GROUPS OF TYPE B,. Let Δ+ be the

roots (6) and we denote

z = xΛ(sι)xβ(sι)xa+β(s3)x2a+β(si)h(χ)x-ia-^

Suppose x & E(R, aίy aλ). ( i) If sx € ^ and 54 ^ α2, then a direct calculation
shows that (z,X-a(l)) is conjugate to z" = xβ(±.2sz±.s^xa+β(s^)y for some3/ € F(i?)
and (2", x_2α_^(l)) is conjugate to 2" = X-a(±s^)xβ(±sΐ). Then ω^ 'ω j 1 € U(R)ί)N\

(ii) If Si € α1? Sŝ ctx and 54 € α2, then we have
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and (z9 X-2a-β(l)) ιs conjugate to z" = X-.a(±sΆ)xβ(ztsl)x-2a-β(u) for some u£ R.
Then ω2a+βz"ω2-a\β € U(R) Π N.

(iii) If Si £ <*!, s2 £ α2> 53 € αx and 54 € α2, then (z',x-a-β(ϊ)) is conjugate to
x^a{d-t2)x-2a-β(u) for some uz R which is an element of V(R) Π ΛΓ.

(iv) If 5χ £ al9 we have

= xXsι)xa+β(±:sι)x2a+β(±s2

1)xβ(s2)xa+β(s3)x2a+β(sA)

and (2, ^(1)) is conjugate to z" = xa+β(±sι)x2a+β(dzslί)xβ(v')hy', for some
v € JR, Λ € 2XR) and 3;' £ V(R). A similar caluculation as one of the above
cases applies to z .

3.16. PROOF OF (P n _ 1 )=^(P n ) for rc^3. No loss of generality, we may
assume n = I. Denote z — xιxohyoyι where xγ € U(Δi)9 xQ € [/(Δo), h = h(%) € T(i?),
3;0 € V(Δo) and ^ x 6 V(Δ0 (cf. 2. 5, 3. 7 and 3. 8). Suppose zo = xohyo£Ef(Ry al9 αa)
and xo&E(R, au aλ) or yo^E(R, al9 aλ). Then, by (Pn_i), we obtain an element
x[xy(s)xr(s )y[ of N' such that xγ(5)^ γ ($') € £(JR, α1? αΛ) where γ, 7' are dominant
roots in Δo. For ί/(Δi) and V^Δj) are stable by taking a conjugate by an element
of G(Δ0)or a commutator with an element of G(Δ0). Therefore, we may assume
that z = x ^ ! for j:χ € [/(Δi) and 3/x € y(Δx). Then, by (3.11), we obtain an
element z = Xβ(t)Xβ>(t')xβ"(f")yΊ where /S, /3' are dominant roots and β" is a
positive root such that aγΛ-β" — β' is the highest root and where y[^V(Δι)f

for y(Δχ) is stable by taking a commutator with an element of ί7(Δ0) or taking
a reduced form. Further, we may assume that x[ is commutative modulo
E(R, ctx, aλ) for all α:αi(l), i > 1, (cf.proof of 3.11) and that z is a reduced
form. Now, let Δ' be the set of roots 7 such that X-.y(u) is a factor of y[ for
Mΐα2(y). If Δ' = 0, then z s U(R)Γ\N'. If Δ' Φ 0, we may assume that there
exists a root 7 Φ aγ of Δ'. For, otherwise, ωaιz'ω~ϊ eU(R)Γ)N'. For a root
7 € Δ', if there exists <Xi€Ώ(i>ϊ) such that — γ + a ^ s Δ and —7 — Λ ^ Δ ,
then (j2',Λrβi(l))€ V(i?)ΠiV". Otherwise, by (3. 6. i), for any root γ ^ Λx of Δ',
— 7 + Λ x€Δ and — 7—#1 £ Δ. Therefore, we may assume that x1 = xβ(t). For,
if Xp(t') is a factor of xl9 (z,x..ai(ϊ))eU(R)nN' and further if xβ»(t") is a
factor of x[9 (z,X-a'(ϊ)) is conjugate to an element of V(R)ΠN\ Thus we have
(z, xaι(l)) £ V(R) Π N, since/S + ̂ j is not a root. Thus we have proved (JPW).

This completes the proof of (2.19) for the groups of not type G2.

3.17. PROOF OF (2.19) FOR THE GROUP OF TYPE G
2
. Let z = xhy

zB(R)nN'. We may assume that x£E(R,aί9aλ) or 3; € E(R9 al9 aλ). Further,
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since k φ F2y we may assume that h = 1. Let Δ + be the roots (9) and denote

x = xa(s1)xβ(s2)xa+β(s3)x2a+β(sA)x3a+β(s5)x3a+2β(sQ)

Let u be a unit of R such that u—1 is also a unit, and %l,M(resp. %β<u) be an
element of Hom(Z[TJ, i?) such that %!,«(#) = u, χaiU(β) = 1 (resp. χ'β,u(ct) = 1,
Xβ,u(β) — u). We denote by 2' the reduced form of 2.

( i ) If sx € al9 s2€0L3 and s3 £ al9 then (h(χβιU), z) is conjugate to
2 =#3α+/8((tt~1 — l)55)x3«+2^((w— I)s6)y', for some y € V(R). Therefore, if sQ<£a3,
then (x_f£L)9z") is conjugate to 2 / / r = ^ + (±(u— l)sβ)y" and (j:_3α_2/Q(l),2:/'/) is
conjugate to x_ffc±(u —1)56). If 56 € α3 and 55 £ α3, (x_3α_2/3(l), 2 ') is conjugate
to x^β{±{u~ι —1)55). Finally, if s4 € Oi and s5, s6 z α3, then (x_3α_2/3(l),2') is
conjugate to

and we have

Then, (h(χβtU), z") is conjugate to ^ (4) = ^ α + / Q (±(w-l)5 4 ) . ^3α+/3(^)^3α+2/3(^) and
(Λ(χβ,«), £(4)) is conjugate to 2 ( 5 ) = xa+β(±sl)x3a+β(v') where 54 ^ αx. If ^ ' ^ α 1 ? we
have (xβ(l), z{5)) = x3a+2β(±v).

(ii) If sι € CLί9 s2€&3 and 5 3 ^αi, we may assume that 54 ^ d, 55 ^ α3 and
s6 € α3. For, if it does not hold, then (h(χ3a+2β,u), z) has the form of the case
( i ) . Now let z=xa+β (s3)y, then (Λr_3β_2i8(l), 2') is conjugate to

z" = x-2a-β(±s3)x_a(±s*3)xβ(±sl)x-.3a_β(±sf)

and we have

z"= ω2a+βz
/ω2a

1

+β= X2a+β(±s3)xa+β(d-sl)xβ(±sf)x3a+2β(±sf).

Then, (h(χ3a+βtU)z") is conjugate to ^ ( 4 ) = x2α+^(db(w-1-l)53)^(z;)j:3α+2yQ(z£;) and

(h(χa>u),z{i)) is conjugate to z{s)= xia+β{s'z)x^v/)9 where 53 ^ αx. If v' £ α1? we

have (x3α+/Q(l), 2(5)) is conjugate to x3α+2/3(±:^/)
(iii) If sλ £ ax or s2 € ct3, taking a conjugate of (Λ(χά,tι), «') or (h(χ'βtU\ z)

if necessary, we may assume that either s ^ c t i and 53 € α3 or sλ € αi and s3 ^ α 3 .
Then a conjugate of (^α(l), z) or (^(1), z) has the form of the case (ii).
q. e. d.

3.18. PROOF OF (2. 20). If the roots of Δ have all length 1, then it is
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clear. Assume that Δ has two roots whose lengths are different. If G is of
rank > 2, then there exists a root 7 linearly independent to β, β' such that
(arranging β9 β' in a suitable order) β + y is a root and β—y9 # + 2γ, 2/S+γ β'— y
and β'+y are not roots (cf. [ 1 ], Lemma 13, P. 60). Then, if t£aiiβ)9we have
(xΎ(l), xβ(t)xβ,(t')) = xβ+7(±t) € N\ Now, let G be of type B2. Since k φ Fu

there exists a unit u of R such that u — 1 is also a unit. Let :r = xa+β(t)x2a+β(t').
If ί ία i ( β + i β ) , we have y = <θβxωf=xa(±:t)x2a+β(±t') and (/ι(%^)M),3;)=:j:α+/3(±(w~l)ί)
£ ΛΓ. If G is of type G2, since X=Pr9 we can prove easily. q. e. d.

3.19. PROOF OF (2.21). Since G*(R9xn)DE*(R,αl9αλ)9 by (3.3), we have
B(R) oE*(R, αl9 αλ). Now, assume that E*(R, αl9 αλ)^Et(R9 αl9 αλ). Then, (2.18),
(2.19) and (2.20) apply to N= E*(R9 αl9 αλ), we have an element xα(t) of
E*(R, αί9 αλ) not contained in E\R, αί9 αλ). This is a contradiction. q. e. d.

3. 20. PROOF OF (1. 9). If R is a field, then the theorem is a well known
result of Chevalley (cf. [ 1 ], [10]). Further, if the rank of G is = 1, the result
has been given by Klingenberg (cf. [ 5 ]). If N is a central subgroup of G(R)9

the theorem is trivial, for £%R,{0}) contains the center of G(R) and E(R,{O}) = 1.
Therefore, we may assume that the rank of G is > 1, R is not a field and N
is not central. Let αx and ĉ  be the ideal of R and the special submodule of
R associated with (G, αt) which are maximal satisfying ΛΓD£(JR, α1? α )̂. If ax = jR,
then by definition αλ= R and we have E*(R) = G(R)^N^E{R). Therefore, we
may assume αx is proper. Now, assume that E*(R ycιly αλ)dpN. Then, by (2.17),
there exists an element xα(t) £ N which is not contained in E(R, αu αλ). Further,
if G is of symplectic type and λ(α) = λ, then xα(r2t) £ N for any rzR and
otherwise, we have xα(rt) £ N for any r £ R. Now, let α[ be the ideal of R
generated by α1 and t, and (̂  be the special submodule associated with α[
generated by α̂  and t. Then N contains E(R, αu α) (cf. 2. 4). This contradicts
to the maximality of αx and αλ. Thus, we have E*(R,αuαλ)DNi)E(R, αl9 αλ).
Note that if NΏE(R9αl9αλ) and NDE{R,huhx) where αl9 &i are ideals of R
and α̂ , hλ are special submodules associated with αl9 bx respectively, then
NDE(R9tl9cλ) where cx is the ideal generated by αλ and hl9 and ĉ  is the special
submodule associated with tι generated by αλ and hλ. Therefore, αx and α̂  are
uniquely determined by N. Finally, the result shows that N is a normal
subgroup of G(R). q. e. d.

3.21. PROOF OF (1.10) AND (1.11). From (1.9), we have E*(R, α)
DG(i?,α) =)£(#, α). If G is simply connected, 7\Λ, α) = T'(JR, α). Therefore,
from (3. 3), we have G(i?,α) = E(R, α). This shows (1.10). (1.11) follows from
(1.10) and (2. 4). q.e.d.
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