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1. Introduction. Recently, in [1] W. B. Arveson presented a theory of
non-self-ad joint operator algebras which he called the subdiagonal algebra.
His theory of subdiagonal algebra was motivated from the earlier work of
H. Helson and D. Lowdenslager on matrix-valued analytic functions [3] and of
R. V. Kadison and I. M. Singer on triangular operator algebras [4]. And
subdiagonal algebra theory added some unity to these very different theories.

Let Φ be a faithful normal positive idempotent linear map of a von
Neumann algebra M into itself. A subalgebra SI of M is said to be
subdiagonal with respect to Φ if (i) SI + 21* is σ-weakly dense in M; (ii)
Φ(AB) = Φ(A)Φ(B) A, Be 31; (iii) Φ(Sl)cM; (iv) (StnSl*)2 is non-degenerate.

The definition of subdiagonal algebra resembles to that of weakrr-Dirichlet
algebra. From this point of view, W. B. Arveson generalized some properties
of weak^-Dirichlet algebras to subdiagonal algebras. For instances, factorization
theorem, Jensen's inequality and Szegδ's theorem were shown to be valid in
some examples.

In this note, we shall show that the analogue of simply invariant subspace
theorem, which is an another fundamental property for weak^-Dirichlet
algebras, is valid in the antisymmetric finite subdiagonal algebras.

2. Definitions. Throughout this note, M will be a von Neumann algebra
on a separable Hubert space §, Φ be a faithful normal positive idempotent
linear map of M into itself, and SI be a subdiagonal subalgebra of M w.r.t. Φ.

The cr-weak closure (3lΠ9ί*)~ of (Sin 31*) is a von Neumann algebra and
Φ is an expectation on (3ln3l*)~. ([1], Prop. 2.1.4). A subdiagonal subalgebra
81 of M is said to be finite if some faithful normal finite trace r of M
preserves the expectation associated with 31 (i.e. τ o φ = τ ) ; in this case, M i s
a finite von Neumann algebra necessarily. A subdiagonal algebra is said to be
antisymmetric if 3ln3l*={λ/}, scalar multiples of identity operator /.

Let 31 be a finite subdiagonal subalgebra of M w.r.t. Φ, and r be a Φ-
preserving faithful normal finite trace of M. We write U{M,τ) (resp. L\M,τ))
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the space of all integrable (resp. square integrable) operators for the gage
space (My φ, r) in the sense of I. E. Segal [5]. From the finiteness of T, M is
contained in Lp(My T) for p = 1, 2. It is well known that V(Myτ) becomes a
Banach space and U(M,τ) becomes a Hubert space. Let || ||p denote the
norm in LP(M, T), ( , ) denote the inner product in L2(M, τ). Then
l|X||! - τ( j X\) for X e Lι(My r), (X, Y) = r(Y*X) for X, Y € L\M9 r). For a
subset βj of Lp(M,τ) />= 1,2. [&\p will denote the closed subspace of Lp(M,τ)
generated by &.

Let %={Tz%; Φ(T) = 0}. Clearly X is an ideal in SI and Sl = 2ln8l* + 2:.
Hence SI+ 91* = SίΠ Sl̂  + Ϊ + Ϊ * = SI + X* is σ-weakly dense in M. A closed
subspace 9JΪ of LP(M, r) p — 1,2 is said to be left (resp. right) simply
invariant if [$2K]P 5 9K (resp. [2RΪ],, S 3R). If 9K is left (resp. right) simply
invariant, then 501 is left (resp. right) invariant i.e. [8l9Ql]pC2R (resp. [9K8l]pC9M).

3. Simply invariant subspace theorems. In this section, we shall show
the analogue of simply invariant subspace theorems for weak*-Dirichlet algebras
for antisymmetric finite subdiagonal algebras.

Let SI be an antisymmetric finite subdiagonal subalgera of M w.r.t. Φ and
T be a Φ-pre serving faithful normal finite trace of M. Notice that if 3t is
antisymmetric, then necessarily Φ(X) = τ(X)I for every X £ M. Hence we
can replace Φ by r, and we call 3ί an antisymmetric subdiagonal subalgebra of
M w.r.t. r. Moreover r is multiplicative on 81 (i.e. τ(AB) = τ(A) τ(B) for

THEOREM 1. Let Si be an antisymmetric finite subdiagonal subalgebra
of M zv.r.t. T. Then every left (resp. right) simply invariant subspuce 9JΪ
of L\M9τ) is of the form [SM7|2 (resp. [f/5l|2) for some unitary operator U
in M.

PROOF. Suppose sUί is left simply invariant. Since [ΐ9Jί.|2 is a proper
subspace of U(M, r), there exists a non-zero operator U in 9Jf 0 [XΌJί]2. We
may assume \\U\\, - 1. Let A 6 Si. Then A-τ(A)Ie X and

r(UU*A) = (AU, U) = ((A-τ(A)I)L\ U) + (τ(A)C7, U)

= τ(A)(J7,C7)=7<A).

By taking the adjoint on both sides, we have τ{UU*A*) = r(A*). Hence
we have r(UU*A) = τ(A) for all A s §ί + Sl*. That is

( ( / - UU*), A) = 0 for al 1 A e II + 81* .
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Since 91 + 91* is σ-weakly dense in M, 91 + SI* is dense in L\M, τ). So
I-UU* = 0 in L\M9τ). But r is faithful, this implies that UU*=L Since
M is finite, we have U*U=I. Hence U is unitary.

Clearly [ W ] , c TO as 9l£/c TO and TO is closed. Let B <Ξ 3K θ [8H7]2.
Then τ(Bt/*A*) = (A Af/) = 0 for all Ae%. Also since Ϊ B c [ ϊ 9 J ί ] 2 , we
have τ{BU*T) = (T5, U) = 0 for all Tz%. So

τ(BU*X) = (X, CΛB*) = 0 for all

But 9l"x' + ΐ = 91 + 91* and by the same reason as above, we conclude that

CΛB* = 0. But U is unitary, so J3 = 0. It follows that TO = [81C7]2.

The assertion for right simply invariant subspace may be proved in just
the same way.

In the following sentences, since we can discuss left and right symmetri-

cally, we shall state the left case only.

LEMMA 1. If Xz L\M,τ) and X^[XX]2, then X=UA where Ue [X9t]2

is unitary and [A9l]2 = [9l]2.

PROOF. Our assumption implies that [X9l]2 is a right simply invariant

subspace of U{M, T), and hence by Theorem 1,

[X9ί]2 = [£/9t]2, U is unitary in M.

So X = UA where A € [9ί]2, since [C78l]2 = ^r[9l]2. Since

C7[A9l]2 = [f/A9l]2 - [X9l]2 = [ί79l]2 = ί/[9l]2,

we have [A9l]2 = [9l]2. Clearly Us [C78l]2 = [X9ί2]. This completes the proof.

LEMMA 2. If Xz L\M,τ) and X£[X£] 2 , then |X| 1 / 2^[|X| 1 / 22:] 2 . where

|X|=(X*X) 1 / 2,

PROOF. Let X = F | X | be the polar decomposition of X, and put

X, = V \ XI1/2. Assume that | X|1 / 2 € [ | X| ^X].2, then

X = X, I X|1/2 € Xx[ I X | ^ %\ c [X, I X|1/2 %\ = [X%],.

This is a contradiction.
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LEMMA 3. If X« L\M,τ) and Xm[XX]lt then X=YZ where F e [XS(],
ΠL !(M,τ) and Zs[SI]2.

PROOF. By Lemma 1 and 2, |X|1 / 2 = UZ where E7e [|X|1/231]2, Ze [81],
and [ZSl]2 = [Sl]2. Let X = V | X | be the polar decomposition of X and put
Y=VI X|1 / 2 t/. Clearly Y € L2(M, T) and

YZ = F|X|1 / 2C/Z= F|X|1 /2 |X|1 /2 = V |X | = X .

Since [Z3l]2 = [2l]2. For arbitrary € > 0, there exists a Ae5ί such that
| |ZA-/||2<£/im|2. From

\\XA-Y\U = \\Y(ZA-I)\U < \\Y\U\\ZA-Γ\U<€,

one has Y £ [X§ί]i. This completes the proof.

THEOREM 2. Let 31 fo an antisymmetric finite subdiagonal subalgebra
of M τυ.r.t. r. Then every left simply invariant subspace 9Jί of L\My T) /S
o/ ί/ι̂  form 9JΪ = [3lϊ7]i /or 5om^ unitary U in M.

PROOF. Put 9ϊ = fflίnL2(M,τ). By the Schwarz inequality, 9Ϊ is a closed
subspace of U(M, T). We begin with showing that 9i is a left simply
invariant subspace of L2(M,τ).

At first sight it is even not clear that 9ΐ should contain any non-zero
operator at a l l ; this is actually shown as follows: So by the assumption of
simple invariance there exists an operator X in ΪJΐXtΐϋDt]!. In particular
X<£[%X]U and by Lemma 3 we can write X = ZY where Zz [8t]2, Yz [31XL
Γ)L%M9τ). As aXcSJt, y^CStXLcaJl. Thus 9ί is non-empty.

Now we claim that Y^[%91]2. Indeed, if Y€ [£8l]2, there exists a sequence
{An} in £9ΐ such that | |An-Y||2 -> 0. As ZΞ[91] 2 , there also exists a
sequence {£„} in 31 such that \\Bn-Z\\2 -> 0. But then βΛAn

and

= ||B.(A,,-Y) + (Bn-ZY)\U

Hence X = ZY s [XTl^. This contradicts our selection of X. This shows that
9i is a left simply invariant subspace of L2(M, T). By the Theorem 1, there
is a unitary U in M such that 9ΐ = [Sl£7],.
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Thus we proved that 3l{7c[3«7]2 = 9ίc9JΪ. Taking the L1-closure on
bothe sides, we get [3l[/]iC2Jl. Our perpose is to show the converse inclution
2Rc[8llΓ]i. In fact, it is at least true that STOXtXSTOLctaCTL because if
Xe SRM ŜWL, then X = ZY with Zζ [Sl]2, Y€ % as we showed in a previous
paragraph. Now if Yz[%Wl\ι, then X+Y e W^Xm],. Hence
However, Xz [WU]^ Hence Ye [%U]U and the proof is completed.

4. Maximality of antisymmetric finite subdiagonal algebras. A
subdiagonal subalgebra of M w.r.t. Φ is said to be maximal if it is contained
properly in no larger subdiagonal algebra of M w.r.t. Φ. For a given finite
subdiagonal subalgebra 31 of M w.r.t. Φ, we put

3ίm - {Xe M; Φ(XT) = 0 for all T e %} .

Then it was shown in [1] that 3tm is the maximal subdiagonal subalgebra of
M containing SI. ([1], Cor. 2.2.4).

In this section, using the results obtained in previous section we shall
show that for an antisymmetric finite subdiagonal algebra 31, the σ-weak
closure 3l~ of 31 is the maximal subdiagonal algebra containing 31 i.e.

LEMMA 4. [31]^ {Xs L\M,r) : τ(XT) = 0 for all Tz%}.

PROOF. If Xe [31L, then clearly τ(XT) = 0 for all Tz X. Conversely let
XzL\M,τ) satisfies τ(XT) = 0 for all Tz %. We have to show that Xe [8ΓL.
We may assume that τ(X) Φ 0 by adding some constant if necessary. So
X«[XΪ] i and by the Lemma 3, we have X = YZ where Y € [XSΓh Π L\M, τ\
Z^[3ί]2. Since %%aZy Yz[X%\x and τ(XΓ) = 0 for all Ts%. One has

τ (yT) = (Y, T*) = 0 for all Tz %. But L\M, r) = [3l]2 Θ [ ϊ * ] a . We have
y^tSlLctSlL, by the Schwarz inequality. Hence X = YZ e [3l]2[3l]2 c [31]̂
This completes the proof.

THEOREM 3. Let 31 be an antisymmetric finite subdiagonal subalgebra
of M w.r.t. T. Then the maximal subdiagonal subalgebra of M which
contains 31 is the σ-weak closure 3l~ of 31.

PROOF. Put 3ί m = {XeM; τ(XT)=0 for all Tz %}. As we pointed out
in the first part of this section 3lm is the maximal subdiagonal subalgebra of
M containing 31. So it suffices to show that 3lm=3l~. It is clear that 3l~c3lm

by the σ-weak continuity of r. Since the σ-weak topology on M is the
σ(M,L\Myτ))-topology by the map MxL\M,τ)z <X, Y> -> r(XΓ).

To establish the reverse inclusion it suffices to show that the oolar of 31



472 N KAMEI

in V(M,τ) is contained in the polar of 2ίm, i.e. If Y& L\M,τ) and τ(SϊY)=0,
then τ(Slmy) - 0 . Let Y€ L\M,τ) and τ(A7)=0 for all A s Si. Then by the
Lemma 4, we have Γ e [91]! and τ(Y) = 0. Hence there exists a sequence {An}
in 31 such that \\An-Y\U -»0.

The Lemma 4 implies that 3l m c[3t] 1 nM Hence for every X in %m,
there exists a sequence {Bm} in 31 such that \\Bm — X\\t —• 0. Then

Hence for arbitrary 6" > 0, there exists a m0 such that

\\BnAn-XY\\ι<\\BmA\\An-Y\\1+€

Fix mOy and letting n —> °o? there exists a /z0 such that

Hence we can choose the subsequences {An<}, {Bmt} such that

\\BmiAnt-XY\\1-+0.

Hence we have XY z [W^. Since

\ and τ(BmiAnt)

We have τ(XY) = τ(X)τ(Y) = 0. Hence Y is in the polar of S(w. This
completes the proof.

The above Theorem also implies that σ-weakly closed antisymmetric finite
subdiagonal algebra is always maximal.

The author wishes to express his hearty thanks to Prof. M. Fukamiya
and Prof. M. Takesaki for their many valuable suggestions in the presentation
of this note.
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