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1. Let E be a totally disconnected compact set in the complex z-plane
and let G be the complementary domain of E with respect to the extended
z-plane. Consider a domain in G whose relative boundary consists of at most a
countable number of analytic curves clustering nowhere in G. Such a domain
is called a subregion in G. If for any subregion in G there exists no non-
constant single-valued. bounded analytic function whose real part vanishes
continuously on its relative boundary, then the set E is said to be in the
class N§.

It is known that if E is of logarithmic capacity zero, then E belongs to the
class N% and that there exists a compact set of positive logarithmic capacity
and belonging to N% (Kuroda [5]).

It is also known that there exists no non-constant single-valued bounded
analytic function in the complementary domain of E< N%, that is, N% is a
subclass of the class Np in the sense of Ahlfors-Beurling [1].

If E is of logarithmic capacity zero, then there exists an Evans-Selberg’s
potential which is harmonic in G except at 2=oco and whose boundary value
at every point of E is positively infinite. Such a function plays an important
role to study the covering property of meromorphic functions in G.

In this paper, we shall treat Noshiro’s theorem on cluster sets [10] in
detail. In §2, by the argument due to Matsumoto [7], we shall give a
sufficient condition in order that there exists an analogous function to an
Evans-Selberg’s potential in the subregion inside G. As its application, in
§3 we shall prove a theorem which is an improvement of Noshiro’s theorem [10]
on cluster sets under the so-called Hervé’s condition. §4 is devorted to show
that in the theorem, Hervé’s condition can not be dropped. In Appendix,
Kuroda’s criterion for E to be in the class N% is proved in a correct form.

2. First we shall prove the following.

THEOREM 1. If E is a compact set of the class N%, then any closed
subset Ey of E is also in the class Nb.
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PROOF.  Contrary to the assertion, we'suppose that there exists a closed
subset E, of E not belonging to N$.

We denote by G and G, the complementary domains of E and E, with
respect to the extended z-plane, respectively. Then there exist a subregion
A, in G,, whose boundary consists of a closed subset of E, and the relative
boundary 7, and a non-constant single-valued bounded analytic function f(z)
in A, whose real part vanishes continuously on 7. We put

'YO—')’omE:'Y and AQ—AQOE:A.

It is obvious that A is a subregion in G with the relative boundary ¥ and
the above function f(2) is also non-constant, single-valued, bounded and
analytic in A and the real part of f(z) vanishes continuously on 7. Hence
the set E does not belong to N%, which is a contradiction.

Using Theorem 1, we can get the following theorem.

THEOREM 2. If A is a subregion in G whose boundary consists of the
relative boundary Y and a compact set E* belonging to N% and if each point
of E* belongs to a non-degenerate boundary continuum of A, then there
exists a positive harmonic function u(z) in AUY whose boundary value at
each point of E¥* is positively infinite.

PROOF. We denote by {D,} (n=1,2,--+) the sequence of such com-
plementary continua of A with respect to the extended z-plane that for each
n, the boundary of D, contains at least one point of E*. Let A, (n=1,2,---)
be the complementary domain of D, with respect to the extended z-plane.

Since D, is a non-degenerate continuum by our assumption, A, is a simply
connected domain of hyperbolic type containing A. The boundary of A,
consists of a part ¥, of ¥ and a compact subset E, of E* and clearly

E* =\ JE,.
n=1

Since E, belongs to N% from Theorem 1, the harmonic measure of E,
with ‘respect to the simply connected domain A, vanishes (cf. Kuroda [5]).
Therefore, by virtue of a theorem due to F. and M. Riesz [11], there exists
a function u,(z) such that u,(z) is positive and harmonic in A,U", and such that
the boundary value of u,(z) at every point of E, is positively infinite.
Further, we can find a sequence {c,} (n =1,2,-++) of positive numbers such

o

that the series Y c,u.(2)) converges at a fixed point z, in A.

n=1

By Harnack’s principle, the series ) c,u,(z) converges uniformly to a

n=1
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limiting function #(z) on any compact subset of AU?. It is evident that #(z)
satisfies the condition of the theorem.

3. Let D be a domain on the =z-plane, I' its boundary, E a totally
disconnected compact set contained in 1' and 2, a point of E such that
Ulzo)N('—E) = ¢ for every neightorhood U(z,) of z,. Let f(z2) be a non-
constant, single-valued and meromorphic function in D. Suppose that the set
Q=Cx(f, 20)—Cr_g«f, z0) is not empty. Here Cy(f, 2,) and Cr_u(f, z,) are the
interior cluster set and the boundary cluster set of f(2) at 2, (cf. Noshiro [9]).

The following was proved by Tsuji [13]:

If E is of logarithmic capacity zero, then Q is an open set and
Q—Ry(f, z0) is at most of logarithmic capacity zero. Here Ry(f, z,) is the
range of values of f(z) at 2, (cf. Noshiro [9]).

Noshiro [10] considered the case of E€ N% and proved the following :

If E belongs to the class N%, then Q is an open set and Q—R,(f, 2,) is
an at most countable union of sets of tne class Np.

Now we prove the following as an application of Theorem 2.

THEOREM 3. If E belongs to the class N% and if each point of
E belongs to a non-degenerate boundary continuum of D, then the set

Q—R,(f, 20) is of logarithmic capacity zero.

REMARK. The second assumption that each point of E belongs to a
non-degenerate boundary continuum of D, is called Hervé’s condition for E

(cf. Hervé [3)).

PROOF. We follow an argument due to Noshiro [9].
We denote by e, (n=1,2,---) the set of values in Q which f(z) does
not take in {z||2—=2,| <1/n}ND. Then it is easy to see that e, is a closed

set with respect to Q, e,Ce,., and Q—Ry(f, 2,) = Uen. So, if we suppose the

n=1
contrary to the assertion, then there exists a set e, of positive logarithmic
capacity.

We can find a point w, € e, such that for any positive number p the part
of e, contained in the disc |w—w,| <p is of positive logarithmic capacity.
We select a positive number » such that the circle K: |z—z2,| = 7 does not
intersect E and f{z) % w, on KN D and such that w, does not belong to the

closure M, of UCD(f, ¢) for ¢ belonging (I'—E)N(K), where (K) denotes
4
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the closure of the interior (K) of K.

We can choose a positive number p, less than the distance of w, from
M, such that |fiz)—w,| >p, on KND. Since w,<c Cy(f,=,), the function
w = f(2) takes a value belonging to (¢): |w—w,| <p, at z,€ (K)ND. We
consider the component A of the inverse image of (¢) inside (K)ND by
w = f{z) which contains the point z,. Obviously, A is a subregion in the
complementary domain of E with respect to the extended z-plane and the
boundary of A consists of a closed subset E* of E and at most a countable
number of analytic curves 7.

Since, by the assumption, A satisfies the condition of Theorem 2, there
exists a positive harmonic function #(z) in AUY having the positively infinite
boundary value at each point of E*.

Since (c)Ne, is of positive logarithmic capacity, we can find a closed subset
e of (¢)— e, such that e is of Ppositive logarithmic capacity. So there exists
a positive bounded harmonic function o(w) in (¢)—e which vanishes continuously
on the circle ¢: |w—w,| = p,. We consider the composed function e(f(2))
in A.

By the maximum principle, we have

o fz)) = U2)
(fl@) = 4=

in A for any positive number A, whence follows that o(f{2))=0 in A.
Thus we arrive at a contradiction.

4. In the next section we shall show that Herve’s condition in Theorem
3 can not be dropped.

For the purpose, first we prepare an example which guarantees the existence
of a compact set E of positive logarithmic capacity which belongs to N% and
of a single-valued meromorphic function f{z) in the complementary domain D
of E such that f(z) has an essential singularity at every point of E and such
that the set of exceptional values of f(z) in Picard’s sense at each point of E
is of positive logarithmic capacity but belongs to N%. This example was used
for the other purpose in [6].

Consider a general Cantor set E(p,, p»,+++) on the w-plane. This set is
constructed as follows.

Let p, (n=1) be a positive number greater than 1 and delete an open
interval with length 1—1/p, from the closed interval I, = [—%,%J on the
real axis of the w-plane so that there remains the closed set I; which consists
of two closed intervals It (i=1,2) with equal length [, =1/2p,. In general,
if I, consists of closed intervals I% (1=1,2,---,2") of equal length
l,=1/2"p, «++ p,, we delete an open interval of length /,(1—1/p,.,) from
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every I, so that there remain two closed intervals I3, I3, (i=1,---,2")
with equal length 1/(2"*'p; ««« ppsy).

The set E(py, p»,+ -+ ) is the set of intersection ﬂIn. It is known that

n=1

E(py, ps,+++) is of positive logarithmic capacity if and only if

oo

(1) SAEL o
n=1
(cf. Nevanlinna [8]).
Denote by F' the complementary domain of E(p,, ps, +-+) with respect to
the extended w-plane. ‘

We describe circles

K}: |lw|=1, Ki: |lw—wi| =7, n=1,1=7i=2")

. o . . . 1 1\
n F wh ¢ is the middl t of I, r, = (1— d
1 where w, 1S € mil e pOlI'l O 7. 2"popl . Pn_l an) an
Do = 1.

Clearly KZ ' and K2 are tangent outside each other and if
(2) 14+ 2p1pn >3 (n=2),

then K% and K% are enclosed by K, (1=n, 1 <i=2""). Let F! be the
doubly connected domain surrounded by three circles K3, K3 and K, (n=1)

27‘
and let F, be the domain bounded by U K and containing the point 2=oc in
i=1

its interior. We make a slit L% in every F? such that L. is contained in
|lw—wéi_i| = 2r, (wi=0) and such that only one end point of L% lies on
KZ'yK% We put

FO:F—'OOL;_' (},

n=1 1i=1

B=F—\J\J Li- I, (k=1,27),

n=2 i=1

]T:F_ U UL;’L_Li‘H’ (k___l’.v,.’2m),
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First we connect two replicas of F° with each other crosswise across the

AN
slit L} and denote by F° the resulting surfacée which has two free slits
corresponding to every Lf (k=1,2). Next we take a replica of Fi and connect

ay
it with F° crosswise across a free slit corresponding to LY (2 =1,2). Doing
Ay
this for every free slits of F° corresponding to LY (k=1,2), we get the

resulting surface F which has 2(1+2) sheets and 2(1+2) free slits correspond-
ing to each Lf (k=1,---,2%). In general, we connect a replica of F? with

AN
F™ ! crosswise across a free slit corresponding to L% and proceed this for all
N A\
slits of F"~! corresponding to L% (k=1,--.,2"). Thus we get the surface F"
with J[ (142 sheets.
i=0 ™
Continuing the procedure infinitely, we obtain the surface F of planar
character which covers no point of the set E(py, ps,*++).
ey P N
This surface F is considered as a limiting surface of F™ and every F™ is
AN AN N\
a subdomain of F. Deaote by F, the part of F* lying over F,,,.

N VAN
It is not so difficult to see that {F,};_, is an exhaustion of F and that

. . ~
the number N(n) of doubly connected components F} of F,., — ﬁ, equals
Ton-1 o

2" I (1+2%.

=0

Denote log pé the harmonic modulus of Fj. Putting logv, = min log u,
2
we easily have

Tz

log v, > log 5
n+1l

b

/\ .
because F; contains the univalent annulus lying over 2r,., <|w—wi,,| < 7,41
Therefore, we have

1
n 1L
3" log v;—log N(n) > log(p, p * * * Pns1) — %logz_‘_log 21;.
=0 _
2Pn+2

So, if we take p, as such as
(3) Pn — 2(n+1)2,

then (1) and (2) are valid and
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n

lim{ Y log v, — log N(n){ = + o and limlogv, = +oo.

=0

Hence, by a criterion proved in Appendix, any subregion on the covering
/\ . . .
surface F carries no non-constant single-valued bounded analytic function with
the real part vanishing continuously on its relative boundary provided that (3)
holds.
2\
Now we map F onto a domain G on the extended z-plane in a one-to-one

N
conformal manner such that G contains the point z=co. Denote by f(2) the

inverse of this conformal mapping.

By the definition the complementary set E of G with respect to extended
z-plane belongs to N§. ~

We deno/t\e by w = @(p) projection of F' on the extended w-plane and we
put w = @(f(2)) = f(2). It is easy to see that w = f(z) has an essential
singularity at every point of E and has the set E(p,, ps,+++) as the set of
exceptional values in Picard’s sense in any neighborhood of its essential
singularities.

Further, as mentioned already, (1) implies that the set E(py, ps, ) is of
positive logarithmic capacity, so we see from Nevanlinna’s theorem [8] that the
set E is also of positive logarithmic capacity.

Thus we see that the set E and the function f{z) satisfy the requirements
stated in the begining of this section.

5. From the above example, we can show the fact that Theorem 3 does

not hold if we exclude Herve’s condition on E.
In fact, we take a circle K} = K in the above example and denote by S a

component of 2 ——I/?—? _: whose projection lies on the disc (K) bounded by K.

The counter image D of S by ﬁz) is a subregion in G whose boundary
consists of a countable number of closed analytic curves I' and a compact subset
E* of E. Theorem 1 implies that E* belongs to Ns. Each point 2, of E*
does not satisfy Hervé’s condition, because the circle K does not intersect with
E(Ph Diee )

Obviously, Cy(f; 2,) is the closed disc (K) and Cr_g(f, 2,) is the circle K,
50 Q=Cy(f, 20)—Cr_p(f, 2,) is the open disc (K).

Further Q—Ry(f, 2,) coincides with the compact set (K)NE(p,, psy-+-+)
of positive logarithmic capacity.

REMARK. Hillstrom-Kametani’s theorem [2], [4] can be formulated in
the following form.
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Let E be a compact set of logarithmic capacity zero contained in a
domain D. Suppose that w=f(2) is single-valued meromorphic in D—E and
has an essential singularity at every point 2, of E. Then the complement
of Ry x(f, 20) is at most of capacity zero.

By our example, it is immediately seen that in the above Hillstrém-
Kametani’s theorem the condition “E is of logarithmic capacity zero” can not
be replaced by the condition “E belongs to Ng.

APPENDIX

A sufficient condition for a compact set E to belong to N% was stated by
Kuroda [5], however, as he pointed out, his statement and the proof were
incorrect, so here we state a correct form and its proof given by himself. It
is quite similar to the proof of a criterion for E € Ny given in Appendix I of
Sario-Noshiro’s book [12].

Let E be a totally disconnected compact set in the complex z-plane and
let F be the complementary domain of E with respect to the extended z-plane.

Let {F,} (n=0,1,---) be an exhaustion of F such thch that F, is compact
with respect to F and the boundary I', of F, consists of a finite number of
analytic curves in F and such that each connected component of F—F, is
non-compact and further such that F, ul',C F,...

The open set F,—F,_, (n=1) consists of a finite number of connected
components F¥ (k=1,2,--+, N(n)). We denote by log u; the harmonic modulus

of F% and we put max log p; = log v,.
1=k=N(n)

THEOREM A. If there exists an exhaustion of the complementary
domain of E such that, for a positiv constant 8,

logv; >8 (j=1,2,+-+)
and

lim sup {>_ log »; — log N(n)} = 400,
noee i=1

then E belongs to N5.

PROOF. We denote by log g, the harmonic modulus of F, — F,_, and

consider the graph 0 <u(z) <R = log ps, 0<v(2) <27 associated with the

n=1

exhaustion {F,} (n=0,1,---) in the sense of Noshiro [9].
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The niveau curve 7,: w(z) =r (0 <7 < R) consists of a finite number of
analytic closed curves Vi (z=1,2,« -, m(r)).
We put

Ar) = f dv,  maxA(r)=AG) and 7, =3 logp.
7k 1= =1

Suppose that there exists a non-compact subregion A on F with the
relative boundary C and a non-constant single-valued bounded analytic function
f(2) in A whose real part U(z) vanishes continuously at every point on C.

We denote by A, the open subset of A, where u(z) <r. The part 6, of
the niveau curve 7, contained in A consists of a finite number of components
0 (:=1,2,-++,n(r). We set O(r)= max f dv.

1=i=n(r) i

If we denote by D(r) the Dirichlet integral of f{z) taken over A,, then

the argument of Kuroda [5] yields

6211‘0 er) < Dkr)

Since BO(r) = A(r), it follows that

St — D)

= D) *

On the other hand, it holds that
A [ Udw) = 2 U—— ds = 2D(r)
dar \J,,
for 7, <r<wv, m=1,2,---), whence follows that

f D) dr = lim Uzdv —lim [ Udv=2:M?,

—Tp— T—-Tp+0 o,
where M = max|U|.
A
Therefore, we have

(%) f i gy < 2

="D0) -

n-1
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It is evident that

Ar) = 27 10885 o logp
log p# log v;

for vic Ff. Hence, we have

T n—1
drglZl -+1 log 7,

0gv; + 45— r—T,_
0 A(r) 27 pry g% 27 log p, ( »
for 7., <r <7, and
Tn g (47 ) .zlog v
e fo A4 dr= _lvo,gfpn‘ e’=1 (1_e—log u,,) .
Ta-1 log vy
Since B 1 = N(n) ,
lOg Hn k=1 log Hen 10g v,
Tn 27!“" jl?:._ élog vi—1 g N(n)
(s#%) f e A = Lim (1—e?).
Tt

By (%), (%) and the assumption of theorem, E bLelongs to NY.
From the proof of Theorem A, we can get easily the following theorem.

THEOREM B. If there exsists an exhaustion of the complementary
domain of E such that

Todr

T o
: Jo i
lim su e dr = +co
p >
Tu-1

then I belongs to N,
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