Tôhoku Math. Journ. 21(1969), 451-455

ON A THEOREM OF HAAR

MASAAKI SHIBA

(Received December 20, 1968)

Let $\{\varphi_n\}$ be a set of functions which are orthonormal on [0, 1]. W. Rudin [3] (cf. A. Haar [1]) proved the following result.

PROPOSITION. (I) If $\varphi_n \in BV$ [0, 1] $(n = 1, 2, \dots)$, then $V(\varphi'_n) > An^{1/2}$, and

(II) if
$$\varphi_n \in \Lambda_1[0, 1]$$
 $(n = 1, 2, \dots)$, then $N(\varphi_n') > A'n$,

where A and A' are positive constants, V(f) is the total variation of $f \in BV[0,1]$, $N(f) = \sup_{x \neq y} |f(x) - f(y)| / |x - y|$ for $f \in \Lambda_1[0,1]$ and $\{\varphi'_n\}$ ($\{\varphi''_n\}$) is a rearrangement of $\{\varphi_n\}$ according to non-decreasing $V(\varphi_n)$ ($N(\varphi_n)$).

Recently, J. J. Price [2] showed (I) under the conditions $\sum_{m \leq n} |(\varphi_m, \varphi_n)| < \infty$ and $\|\varphi_n\|_2 = 1$ $(n = 1, 2, \dots)$ instead of $\{\varphi_n\} \in ON[0, 1]$.

In this note we extend W. Rudin's result under a much weaker hypotheses than those of J. J. Price.

Let $\{\varphi_n\}$ be a set of functions in $L^2[0, 1]$ such that

(1)
$$\|\varphi_n\|_2 = 1$$
 $(n = 1, 2, \cdots)$

and

(2)
$$\sum_{m \neq n} |(\varphi_m, \varphi_n)|^2 < \infty.$$

For $f \in \Lambda^p_{\alpha}[0,1]$ $(0 < \alpha \leq 1, 1 \leq p \leq \infty)$ (cf. [4]) we put

(3)
$$N^{p}_{\alpha}(f) = \sup \|f(\cdot+h) - f(\cdot)\|_{p} / \|h\|^{\alpha}.$$

Then, we have the following.

THEOREM. Under the conditions (1) and (2), if $\varphi_n \in \Lambda^p_{\alpha}[0, 1]$ $(n = 1, 2, \dots)$, then

(i) for
$$1 \leq p \leq 2$$
 and $1 \geq \alpha > 1/p - 1/2$,
 $N^p_{\alpha}(\tilde{\varphi}_n) > An^{\alpha+1/2-1/p}$

and

(ii) for
$$2 \leq p \leq \infty$$
 and $1 \geq \alpha > 0$,
 $N^{p}_{\alpha}(\tilde{\varphi}_{n}) > A'n^{\alpha}$,

where A and A' are positive constants depending on the sum (2), p and α , and $\{\tilde{\varphi}_n\}$ is a rearrangement of $\{\varphi_n\}$ according to non-decreasing $N_{\alpha}^{p}(\varphi_n)$.

(1) and (2) are satisfied for $\{\varphi_n\} \in ON[0, 1]$. So we have (I) from (i) and $N_1^i(f) \leq A''V(f)$ for $f \in BV[0, 1]$. We get (II) from (ii) for $p = \infty$ and $\alpha = 1$. Further, we have the result of J. J. Price by (2) and (i).

Now, we need the following lemma.

LEMMA. If $f \in \Lambda^p_{\alpha}(-\pi, \pi)$ and f is 2π -periodic, then (i') for $1 \leq p \leq 2$ and $1 \geq \alpha > 1/p - 1/2$ $\|f - S_n(f)\|_2 = O(n^{-(\alpha+1/2-1/p)})$

and

(4)

(ii') for $2 \leq p \leq \infty$ and $1 \geq \alpha > 0$

$$||f-S_n(f)||_2 = O(n^{-\alpha}),$$

where
$$f \sim \sum_{-\infty}^{\infty} \widehat{f}_n e^{inx}$$
 and $S_n(f) = \sum_{|k| \leq n} \widehat{f}_k e^{ikx}$.

PROOF OF LEMMA. (i') We have

$$f(x+h)-f(x-h)\sim 2i\sum_{-\infty}^{\infty}\widehat{f}_n\sin(nh)e^{inx}.$$

From Hausdorff-Young's inequality we get

452

ÔN À THEÔREM OF HÀAR

$$\begin{split} \left(\sum_{-\infty}^{\infty} |\widehat{f}_n \sin(nh)|^{p'}\right)^{1/p'} &\leq A_p \|f(\cdot+h) - f(\cdot-h)\|_p \\ &= O(h^{\alpha}) \quad \text{for} \quad 1 \leq p \leq 2, \end{split}$$

where 1/p+1/p'=1. Putting $h=\pi/2^{\nu+1}$, then

$$\operatorname{const.}\left(\sum_{2^{\nu-1} < |n| \le 2^{\nu}} |\widehat{f}_n|^{p'}\right)^{1/p'} \le \left(\sum_{2^{\nu-1} < |n| \le 2^{\nu}} |\widehat{f}_n \sin(nh)|^{p'}\right)^{1/p'}$$
$$= O(2^{-\nu\alpha}).$$

For $2^{\mu-1} < |n| \leq 2^{\mu}$,

$$\begin{split} \|f - S_n(f)\|_{2}^{2} &\leq \sum_{|n| > 2^{\mu}} |\widehat{f}_n|^{2} = \sum_{\nu=\mu}^{\infty} \sum_{2^{\nu-1} < |n| \le 2^{\nu}} |\widehat{f}_n|^{2} \\ &\leq \sum_{\nu=\mu}^{\infty} \left(\sum_{2^{\nu-1} < |n| \le 2^{\nu}} |\widehat{f}_n|^{p'} \right)^{2/p'} \cdot 2^{\nu(2-p)/p} \\ &\leq B_{p,\alpha} \sum_{\nu=\mu}^{\infty} 2^{-\nu(2\alpha+1-2/p)}. \end{split}$$

From $2\alpha + 1 > 2/p$, we have

$$\|f - S_n(f)\|_2 = O(2^{-\mu(\alpha+1/2-1/p)}) = O(n^{-(\alpha+1/2-1/p)}).$$

(ii') $\Lambda^p_{\alpha} \subset \Lambda^2_{\alpha}$ for $p \ge 2$, so that by (i')

$$\|f - S_n(f)\|_2 = O(n^{-\alpha}) \quad \text{for} \quad f \in \Lambda^p_{\alpha} \quad (p \ge 2).$$

This is the best possible, because (cf. A. Zygmund [4])

$$f = \sum_{n=1}^{\infty} e^{i c n (\log n)} e^{i n x} / n^{1/2 + \alpha} \in \Lambda_{\alpha} \quad (0 < \alpha < 1),$$

but

$$\|f - S_n(f)\|_2^2 > A \sum_{k>n} 1/k^{1+2\alpha} \sim n^{-2\alpha}.$$

M. SHIBA

PROOF OF THEOREM. From (1) and (2), we have easily the following

(5)
$$\sum_{k=1}^{n} c_{k}^{2} \leq M \|f\|_{2}^{2} \text{ for } f \in L^{2}[0, 1] \text{ and } c_{k} = (f, \varphi_{k}),$$

where M is a positive constant depending on the sum (2). Let $\{\psi_k\}$ be a cosine set on [0, 1] and we put

$$\lambda_n^{p,\alpha} = \sup_{0 < N_{\alpha}^p(f) < \infty} ||f - S_n(f)||_2 / N_{\alpha}^p(f) \quad \text{for} \quad f \in \Lambda_{\alpha}^p,$$

where $f \sim \sum \hat{f}_n \psi_n$, $S_n(f) = \sum_{k=0}^n \hat{f}_k \psi_k$ and $\hat{f}_n = (f, \psi_n)$. From the lemma,

we have

(6)
$$\lambda_{\mu}^{p,\alpha} = \begin{cases} O(n^{-(\alpha+1/2-1/p)}) & \text{for } 1 \leq p \leq 2 \text{ and } 1 \geq \alpha \geq 1/p - 1/2 \\ O(n^{-\alpha}) & \text{for } p \geq 2 \text{ and } 1 \geq \alpha > 0. \end{cases}$$

It follows from the definition of $\lambda_n^{p,\alpha}$ that

$$\sum_{i \ge n+1} (arphi_k, \psi_i)^2 \le (\lambda_n^{p, \, lpha} N^{p}_{\, lpha}(arphi_k))^2.$$

Since $\{\psi_n\}$ is a complete set,

$$1 = \sum_{i=1}^{\infty} (\varphi_k, \psi_i)^2 \leq (\lambda_n^{p, \alpha} N_{\alpha}^p(\varphi_k))^2 + \sum_{i=1}^n (\varphi_k, \psi_i)^2$$

Adding these inequalities for $k = 1, 2, \dots, m$ and applying (5), we get

$$m \leq (\lambda_n^{p,\alpha})^2 \sum_{k=1}^m (N^p_{\alpha}(\varphi_k))^2 + M \cdot n \text{ for every } m \text{ and } n.$$

This inequality holds for $N^p_{\alpha}(\tilde{\varphi}_k)$, so putting n = [m/2M],

$$m/2 \leq (\lambda_n^{p,\alpha} N^p_{\alpha}(\widetilde{\varphi}_m))^2 \cdot m.$$

From (6) we have the results.

454

ON A THEOREM OF HAAR

REFERENCES

- [1] A. HAAR, Über einige Eigenschaften der orthogonalen Funktionen-systeme, Math. Zeit., 31(1930), 128-137.
- [2] J. J. PRICE, On a theorem of Haar, Proc. Amer. Math. Soc., 18(1967), 1056-1057.
 [3] W. RUDIN, L²-approximation by partial sums of orthogonal developments, Duke Math. Journ., 19(1952), 1-4.
- [4] A. ZYGMUND, Trigonometric series I, Cambridge Univ. Press, 1959.

DEPARTMENT OF MATHEMATICS FUKUSHIMA UNIVERSITY FUKUSHIMA, JAPAN