ON THE ABSOLUTE NÖRLUND SUMMABILITY OF THE
 FACTORED FOURIER SERIES

Kōsı Kanno

(Received October 15, 1968)

1. Let $\left\{s_{n}\right\}$ denote the n-th partial sum of a given infinite series $\sum a_{n}$. Let $\left\{p_{n}\right\}$ be a sequence of constants, real or complex and let

$$
P_{n}=p_{0}+p_{1}+\cdots \cdots \cdots \cdots+p_{n}, P_{-1}=p_{-1}=0
$$

The sequence $\left\{t_{n}\right\}$, given by

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} s_{k}=\frac{1}{P_{n}} \sum_{k=0}^{n} P_{k} a_{n-k} \tag{1.1}
\end{equation*}
$$

defines the Nörlund means of the sequence $\left\{s_{n}\right\}$ generated by the sequence $\left\{p_{n}\right\}$.
Then, the series $\sum a_{n}$ is said to be summable $\left|N, p_{n}\right|$, if the sequence $\left\{t_{n}\right\}$ is of bounded variation, that is, the series

$$
\begin{equation*}
\sum_{n}\left|t_{n}-t_{n-1}\right| \tag{1.2}
\end{equation*}
$$

is convergent.
When the special cases in which $p_{n}=\frac{\Gamma(n+\alpha)}{\Gamma(\alpha) \Gamma(n+1)}, \alpha>0$, and $p_{n}=\frac{1}{n+1}$, summability $\left|N, p_{n}\right|$ are the same as the summability $|C, \alpha|$ and the absolute harmonic summability, respectively.
2. Let $f(t)$ be a periodic function with period 2π and Lebesgue integrable over $(-\pi, \pi)$. We assume, without any loss of generality, that the constant term in the Fourier series of $f(t)$ is zero and that the Fourier series of $f(t)$ is given by

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=1}^{\infty} A_{n}(t) . \tag{2.1}
\end{equation*}
$$

We write

$$
\begin{aligned}
& \varphi_{x}(t)=\phi(t)=\frac{1}{2}\{f(x+t)+f(x-t)\}, \\
& \lambda(n)=\lambda_{n} \quad \text { and } \quad \Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1} .
\end{aligned}
$$

Dealing with the $\left|N, p_{n}\right|$ summability of Fourier series, T. Singh [6] proved the following theorem.

THEOREM A. If $\varphi(t)$ is a function of bounded variation in $(0, \pi)$ then the series

$$
\sum \frac{(n+1) p_{n}}{P_{n}} A_{n}(t)
$$

is summable $\left|N, p_{n}\right|$, at $t=x$, where $\left\{p_{n}\right\}$ is a non-negative nonincreasing sequence such that $\left\{(n+1) p_{n} / P_{n}\right\}$ is of bounded variation and the sequence $\left\{\Delta p_{n}\right\}$ is non-increasing.

In this paper, we prove the following theorem.
THEOREM. Let $\left\{p_{n}\right\}$ and $\left\{\Delta p_{n}\right\}$ are both non-negative and non-increasing sequences. Let $\lambda(t), t>0$, be a positive, non-decreasing function satisfying the condition $\left\{\lambda_{n} / P_{n}\right\}$ is non-increasing*).

If the conditions

$$
\begin{equation*}
\sum_{n=k}^{\infty} \frac{\lambda_{n} p_{n}}{P_{n}^{2}}=O\left(\frac{\lambda_{k}}{P_{k}}\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\pi} \lambda\left(\frac{\kappa}{t}\right)|d \varphi(t)|<\infty \tag{2.4}
\end{equation*}
$$

for some constant $\kappa>0$ hold, then the series

$$
\sum_{n=0}^{\infty} \frac{(n+1) p_{n}}{P_{n}} \lambda_{n} A_{n+1}(t)
$$

[^0]is summable $\left|N, p_{n}\right|$ at $t=x$.
If $\lambda(t)$ is a constant function the condition (2.3) is satisfied automatically, because
$$
\sum_{n=k}^{\infty} \frac{p_{n}}{P_{n}^{2}} \leqq \sum_{n=k}^{\infty} \frac{P_{n}-P_{n-1}}{P_{n} P_{n-1}}=\sum_{n=k}^{\infty}\left(\frac{1}{P_{n-1}}-\frac{1}{P_{n}}\right)=O\left(\frac{1}{P_{i c}}\right) .
$$

Therefore, our theorem includes Theorem A. Applying this theorem, we can deduce several known and unknown theorems about Fourier series.
3. Proof of Theorem. We need some lemmas for the proof of our theorem.

Lemma 1 [3]. If $\left\{p_{n}\right\}$ is non-negative, non-increasing, then, for $0 \leqq a$ $\leqq b \leqq \infty, 0 \leqq t \leqq \pi$ and any n, we have

$$
\left|\sum_{k=a}^{b} p_{k} e^{\imath(n-k) t}\right| \leqq P_{\tau}
$$

where $\tau=[1 / t]$ and $P_{n}=p_{0}+p_{1}+\cdots+p_{n}$.
Lemma 2 [6]. If $\left\{p_{n}\right\}$ and $\left\{\Delta p_{n}\right\}$ are both non-negative and nonincreasing then the sequence $\left\{\left(p_{k}-p_{n}\right) /(n-k)\right\}$ is also non-increasing for $k<n$.

Lemma 3 [6]. If $\left\{p_{n}\right\}$ is non-negative and non-increasing, then $\left\{\left(P_{n}-P_{k}\right)\right.$ $/(n-k)\}$ is a non-increasing sequence for $k<n$.

Lemma 4 [6]. Under the same assumptions as those of Lemma 1 the sequeuce $\left\{\left(p_{k}-p_{n}\right) / P_{n-k}\right\}$ is non-increasing.

Proof of Theorem. Using (1.1) we have
where

$$
\begin{gathered}
t_{n}=\frac{1}{P_{n}} \sum_{k=0}^{n} P_{k} v_{n-k} \lambda_{n-k} A_{n+1-k}(t), \\
v_{n}=\frac{(n+1) p_{n}}{P_{n}} \text { and } A_{n}(x)=\frac{2}{\pi} \int_{0}^{\pi} \phi(t) \cos n t d t .
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
t_{n}-t_{n-1} & =\sum_{k=0}^{n-1}\left(\frac{P_{k}}{P_{n}}-\frac{P_{k-1}}{P_{n-1}}\right) v_{n-k} \lambda_{n-k} A_{n+1-k}(t) \\
& =\frac{2}{\pi} \int_{0}^{\pi} \varphi(t)\left\{\frac{1}{P_{n} P_{n-1}} \sum_{k=0}^{n-1}\left(P_{n} p_{k}-P_{k} p_{n}\right) v_{n-k} \lambda_{n-k} \cos (n+1-k) t\right\} d t \\
& =\frac{2}{\pi} \int_{0}^{\pi} d \varphi(t) \frac{1}{P_{n} P_{n-1}} \sum_{k=0}^{n-1}\left(P_{n} p_{k}-P_{k} p_{n}\right) v_{n-k} \lambda_{n-k} \frac{\sin (n+1-k) t}{n+1-k} .
\end{aligned}
$$

Thus, by (1.2), to prove our theorem, it is enough to show that

$$
\begin{aligned}
& \sum_{n}\left|t_{n}-t_{n-1}\right| \\
& \leqq \frac{2}{\pi} \int_{0}^{\pi}|d \varphi(t)|\left|\sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{k=0}^{n-1}\left(P_{n} p_{k}-P_{k} p_{n}\right) v_{n-k} \lambda_{n-k} \frac{\sin (n+1-k) t}{n+1-k}\right|=O(1)
\end{aligned}
$$

Considering the condition (2.4), it suffices for our purpose to prove that

$$
\begin{align*}
\sum & =\sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{k=0}^{n-1}\left(P_{n} p_{k}-P_{k} p_{n}\right) v_{n-k} \lambda_{n-k} \frac{\sin (n+1-k) t}{n+1-k}\right| \tag{3.1}\\
& =O\left(\lambda\left(\frac{\kappa}{t}\right)\right), \quad \text { uniformly for } 0<t<\pi .
\end{align*}
$$

Let us write $\tau=[\kappa / 2 t]$ and $m=[n / 2]$, where $[x]$ denote the integral part of x.

Now, we observe that

$$
\begin{align*}
\sum \leqq & \sum_{n=1}^{2 \tau} \frac{1}{P_{n} P_{n-1}}\left|\sum_{k=0}^{n-1}\left(P_{n} p_{k}-P_{k} p_{n}\right) v_{n-k} \lambda_{n-k} \frac{\sin (n+1-k) t}{n+1-k}\right| \tag{3.2}\\
& +\sum_{n=2 \tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum^{m}\left(P_{n} p_{k}-P_{k} p_{n}\right) v_{n-k} \lambda_{n-k} \frac{\sin (n+1-k) t}{n+1-k}\right| \\
& +\sum_{n=2 \tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{k=m+1}^{n-1} P_{n}\left(p_{k}-p_{n}\right) v_{n-k} \lambda_{n-k} \frac{\sin (n+1-k) t}{n+1-k}\right| \\
& +\sum_{n=2 \tau+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left|\sum_{k=m+1}^{n-1}\left(P_{n}-P_{k}\right) v_{n-k} \lambda_{n-k} \frac{\sin (n+1-k) t}{n+1-k}\right| \\
= & \sum_{1}+\sum_{2}+\sum_{3}+\sum_{4}, \quad \text { say. }
\end{align*}
$$

Since $P_{n}=p_{0}+p_{1}+\cdots \cdots \cdots \cdots+p_{n}>(n+1) p_{n},|\sin (n-k) t| \leqq(n-k) t$ and λ_{n} is non-decreasing, we get

$$
\begin{align*}
\sum_{1} & \leqq \sum_{n=1}^{2 \tau} \frac{P_{n} \lambda_{n}}{P_{n} P_{n-1}} \sum_{k=0}^{n-1} \frac{p_{k}(n+1-k) t}{n+1-k}=A t \sum_{n=1}^{2 \tau} \frac{\lambda_{n} P_{n-1}}{P_{n-1}} \tag{3.3}\\
& =O\left(\lambda\left(\frac{\kappa}{t}\right)\right)
\end{align*}
$$

where A denote an absolute constant. For the inside summation of \sum_{2}, by Abel's transformation, we get

$$
\begin{aligned}
I= & \sum_{k=0}^{m}\left(P_{n} p_{k}-P_{k} p_{n}\right) \frac{p_{n-k}}{P_{n-k}} \lambda_{n-k} \sin (n+1-k) t \\
= & \sum_{k=0}^{m}\left(P_{n}-\frac{P_{k} p_{n}}{p_{k}}\right) \frac{p_{n-k}}{P_{n-k}} \lambda_{n-k} p_{k} \sin (n+1-k) t \\
= & \sum_{k=0}^{m-1} \Delta\left[\left(P_{n}-\frac{P_{k} p_{n}}{p_{k}}\right) \frac{\lambda_{n-k} p_{n-k}}{P_{n-k}}\right] \sum_{\nu=0}^{k} p_{\nu} \sin (n+1-\nu) t \\
& +\left(P_{n}-\frac{P_{m} p_{n}}{P_{m}}\right) \frac{\lambda_{n-m}}{P_{n-m}} p_{n-m} \sum_{\nu=0}^{m} p_{\nu} \sin (n-\nu+1) t \\
= & I_{1}+I_{2}, \text { say. }
\end{aligned}
$$

By virtue of Lemma 1 and the hypotheses of our theorem, we have

$$
\begin{align*}
\sum_{n=2 \tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|I_{2}\right| & \leqq P-\sum_{n=2 \tau+1}^{\infty} \frac{\lambda_{n-m} p_{n-m}}{P_{n} P_{n-m}} \tag{3.4}\\
& =A P_{\tau} \sum_{n=\tau}^{\infty} \frac{\lambda_{n} p_{n}}{P_{n}^{2}}=O\left(\lambda\left(\frac{\kappa}{t}\right)\right) .
\end{align*}
$$

Since

$$
\begin{aligned}
& \Delta\left[\left(P_{n}-\frac{P_{k} p_{n}}{p_{k}}\right) \frac{\lambda_{n-k}}{P_{n-k}} p_{n-k}\right] \\
& =\frac{\lambda_{n-k-1} p_{n-k-1}}{P_{n-k-1}} \Delta\left(P_{n}-\frac{P_{k} p_{n}}{p_{k}}\right)+\left(P_{n}-\frac{P_{k} p_{n}}{p_{k}}\right) p_{n-k} \Delta\left(\frac{\lambda_{n-k}}{P_{n-k}}\right)
\end{aligned}
$$

$$
+\left(P_{n}-\frac{P_{k} p_{n}}{p_{k}}\right) \frac{\lambda_{n-k-1}}{P_{n-k-1}} \Delta p_{n-k},
$$

we obtain

$$
\begin{align*}
& \quad \sum_{n=2 \tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|I_{1}\right|=A P_{\tau}\left[\sum _ { n = 2 r + 1 } ^ { \infty } \frac { 1 } { P _ { n } P _ { n - 1 } } \left\{p_{n} \sum_{k=0}^{m-1} \left\lvert\, \Delta\left(\frac{P_{k}}{p_{k}}\right) \frac{\lambda_{n-k-1} p_{n-k-1}}{P_{n-k-1}}\right.\right.\right. \\
& \left.\left.+\sum_{k=0}^{m-1}\left(P_{n}-\frac{P_{k} p_{n}}{p_{k}}\right) p_{n-k}\left|\Delta\left(\frac{\lambda_{n-k}}{P_{n-k}}\right)\right|+\sum_{k=0}^{m-1}\left(P_{n}-\frac{P_{k} p_{n}}{p_{k}}\right) \frac{\lambda_{n-k-1}}{P_{n-k-1}}\left|\Delta p_{n-k}\right|\right\}\right] \\
& \text { 3. 5) } \quad=\sum_{2,1}+\sum_{2,2}+\sum_{2,3}, \quad \text { say. } \tag{3.5}
\end{align*}
$$

First we consider $\sum_{2,1}$.

$$
\begin{align*}
\sum_{2,1} & =A P_{\tau} \sum_{n=2 \tau}^{\infty} \frac{p_{n}}{P_{n}^{2}} \sum_{k=0}^{m-1} \frac{\lambda_{n-k-1} p_{n-k-1}}{P_{n-k-1}}\left(\frac{P_{k+1}}{p_{k+1}}-\frac{P_{k}}{p_{k}}\right) \tag{3.6}\\
& =A P_{\tau} \sum_{n=2 \tau}^{\infty} \frac{p_{n}}{P_{n}^{2}} \frac{\lambda_{n}}{P_{n}} \frac{p_{n-m}}{P_{n-m}} \sum_{k=0}^{m-1}\left(\frac{P_{k+1}}{p_{k+1}}-\frac{P_{k}}{p_{k}}\right) \\
& =A P_{\tau} \sum_{n=\tau}^{\infty} \frac{p_{n} \lambda_{n}}{P_{n}^{2}}=O\left(\lambda\left(\frac{\kappa}{t}\right)\right),
\end{align*}
$$

because $\left\{\lambda_{n} / P_{n}\right\}$ is non-increasing and $\left\{P_{n} / p_{n}\right\}$ is non-decreasing.
Obviously,

$$
\begin{align*}
\sum_{2,2} & =A P_{\tau} \sum_{n=2 \tau+1}^{\infty} \frac{P_{n} p_{n-m-1}}{P_{n} P_{n-1}} \sum_{k=0}^{m-1}\left(\frac{\lambda_{n-k-1}}{P_{n-k-1}}-\frac{\lambda_{n-k}}{P_{n-k}}\right) \tag{3.7}\\
& =A P_{\tau} \sum_{n=\tau}^{\infty}-\frac{p_{n} \lambda_{n}}{P_{n}^{2}}=O\left(\lambda\left(\frac{\kappa}{t}\right)\right) .
\end{align*}
$$

It is easy to see that

$$
\begin{align*}
\sum_{2,3} & =A P_{\tau} \sum_{n=2 \tau+1}^{\infty} \frac{\lambda_{n-m}}{P_{n-1} P_{n-m}} \sum_{k=0}^{m-1}\left(p_{n-k-1}-p_{n-k}\right) \tag{3.8}\\
& =A P_{\tau} \sum_{n=\tau}^{\infty} \frac{\lambda_{n} p_{n}}{P_{n}^{2}}=O\left(\lambda\left(\frac{\kappa}{t}\right)\right) .
\end{align*}
$$

Observing that

$$
\sum_{2}=\sum_{n=2 \tau+1}^{\infty} \frac{|I|}{P_{n} P_{n-1}} \leqq \sum_{n=2 \tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left(\left|I_{1}\right|+\left|I_{2}\right|\right)
$$

we have, by (3.4), (3.5), (3.6), (3.7) and (3.8),

$$
\begin{equation*}
\Sigma_{2}=O\left(\lambda\left(\frac{\kappa}{t}\right)\right) . \tag{3.9}
\end{equation*}
$$

We now treat \sum_{3}. Since

$$
\sum_{3} \leqq \sum_{n=2 \tau+1}^{\infty} \frac{1}{P_{n-1}}(|J|+|K|)=\sum_{3.1}+\sum_{3,2}, \quad \text { say }
$$

where

$$
J=\sum_{k=m+1}^{n-\tau}\left(p_{k}-p_{n}\right) \frac{\lambda_{n-k} p_{n-k}}{P_{n-k}} \sin (n+1-k) t
$$

and

$$
K=\sum_{k=n-\tau+1}^{n-}\left(p_{k}-p_{n}\right) \frac{\lambda_{n-k} p_{n-k}}{P_{n-k}} \sin (n+1-k) t,
$$

it is enough to estimate $\sum_{3,1}$ and $\sum_{3,2}$ respectively.
Using Abel's transformation we have

$$
\begin{aligned}
|J| \leqq & \left|\sum_{k=m+1}^{n-\tau-1} \Delta\left[\left(p_{k}-p_{n}\right) \frac{\lambda_{n-k}}{P_{n-k}} p_{n-k}\right] \sum_{\nu=0}^{k} \sin (n+1-\nu) t\right| \\
& \left.+\left|\left(p_{n-\tau}-p_{n}\right) \frac{\lambda_{\tau} p_{\tau}}{P_{\tau}} \sum_{\nu=0}^{n-\tau} \sin (n+1-\nu) t\right|+\left(p_{m+1}-p_{n}\right) \frac{\lambda_{n-m-1} p_{n-m-1}}{P_{n-m-1}} \sum_{k=0}^{m} \sin (n-k) t \right\rvert\, \\
= & \frac{A}{t} \sum_{k=m+1}^{n-\tau-1}\left[p_{n-k} \Delta\left\{\frac{\left(p_{k}-p_{n}\right) \lambda_{n-k}}{P_{n-k}}\right\}+\left(p_{k+1}-p_{n}\right) \frac{\lambda_{n-k-1}}{P_{n-k-1}}\left(p_{n-k-1}-p_{n-k}\right)\right] \\
& +\frac{A p_{\tau} \lambda_{\tau}}{t P_{\tau}}\left(p_{n-\tau}-p_{n}\right)+\frac{A p_{m} p_{n-m-1} \lambda_{n-m-1}}{t P_{n-m-1}},
\end{aligned}
$$

by Lemma 4 and the hypotheses of the theorem.

Applying this to $\sum_{3,1}$, we obtain

$$
\begin{aligned}
\sum_{3,1} & =\frac{A p_{r}}{t} \sum_{n=\tau}^{\infty} \frac{p_{n} \lambda_{n}}{P_{n}^{2}}+\frac{A \tau p_{\tau} \lambda_{\tau}}{t P_{\tau}^{2}} \sum_{n=2 \tau}^{\infty}\left(p_{n-\tau}-p_{n-\tau+1}\right)+\frac{A}{t} \sum_{n=\tau}^{\infty} \frac{p_{n}^{2} \lambda_{n}}{P_{n}^{2}}{ }^{2} \\
(3.10) & =A \frac{\tau p_{\tau} \lambda_{\tau}}{P_{\tau}}+\frac{A \tau^{2} p_{\tau}^{2} \lambda_{\tau}}{P_{\tau}^{2}}+A \tau p_{\tau} \sum_{n=\tau}^{\infty} \frac{p_{n} \lambda_{n}}{P_{n}^{2}} \\
& =O\left(\frac{\tau p_{\tau} \lambda_{\tau}}{P_{\tau}}\right)=O\left(\lambda\left(\frac{\kappa}{t}\right)\right),
\end{aligned}
$$

because

$$
p_{n-\tau}-p_{n}=\sum_{k=1}^{\tau+1}\left(p_{n-k}-p_{n-k+1}\right) \leqq \tau\left(p_{n-\tau}-p_{n-\tau+1}\right) .
$$

Next,

$$
\begin{align*}
\sum_{3,2} & \leqq \sum_{n=2 \tau+1}^{\infty} \frac{1}{P_{n-1}} \sum_{k=n-\tau+1}^{n-1} v_{n-k} \frac{p_{k}-p_{n}}{n+1-k} \lambda_{n-k}|\sin (n-k+1) t| \\
& \leqq A \sum_{n=2 \tau+1}^{\infty} \frac{1}{P_{n-1}} \sum_{k=n-\tau}^{n-1} \frac{\left(p_{k}-p_{n}\right) \lambda_{n-k}}{n+1-k}=A \lambda_{\tau} \sum_{n=2 \tau+1}^{\infty} \frac{p_{n-\tau+1}-p_{n}}{\tau P_{n-1}} \sum_{k=n-\tau}^{n-1} 1 \\
& =A \tau \lambda_{\tau} \sum_{n=2 \tau}^{\infty} \frac{p_{n-\tau}-p_{n-\tau+1}}{P_{n}}=A \frac{\tau \lambda_{\tau}}{P_{\tau}} \sum_{n=\tau}^{\infty}\left(p_{n}-p_{n+1}\right)=O\left(\lambda\left(\frac{\kappa}{t}\right)\right), \tag{3.11}
\end{align*}
$$

by Lemma 2 and $v_{n}=O(1)$.
We devide \sum_{4} into two parts.

$$
\begin{equation*}
\sum_{4} \leqq \sum_{n=2 \tau+1}^{\infty} \frac{P_{n}}{P_{n}}(|L|+|M|)=\sum_{4,1}+\sum_{4,2} \tag{3.12}
\end{equation*}
$$

where

$$
L=\sum_{k=m+1}^{n-\tau}\left(P_{n}-P_{k}\right) v_{n-k} \lambda_{n-k} \frac{\sin (n+1-k) t}{n+1-k}
$$

and

$$
M=\sum_{k=n-\tau+1}^{n-1}\left(P_{n}-P_{k}\right) v_{n-k} \lambda_{n-k} \frac{\sin (n+1-k) t}{n+1-k}
$$

By the reason that $\left\{\lambda_{n}\right\}$ is non-decreasing and $\left\{\left(P_{n}-P_{k}\right) /(n-k)\right\}$ is nonincreasing,

$$
\begin{align*}
& \sum_{4,2}=A \sum_{n=2 \tau+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{k=n-\tau+1}^{n-1} \frac{P_{n}-P_{k}}{n-k} \lambda_{n-k}=A \sum_{n=2 \tau+1}^{\infty} \frac{\lambda_{\tau} p_{n}\left(P_{n}-P_{n-\tau+1}\right)}{\tau P_{n-1}{ }^{2}} \sum_{k=n-\tau+1}^{n-1} 1 \\
& \text { 3) }=A \lambda_{\tau} \tau \sum_{n=\tau}^{\infty} \frac{p_{n}{ }^{2}}{P_{n}^{2}}=A \tau \lambda_{\tau} \sum_{n=\tau}^{\infty} \frac{v_{n}^{2}}{n^{2}}=O\left(\lambda\left(\frac{\kappa}{t}\right)\right) . \tag{3.13}
\end{align*}
$$

Before the estimation of $\sum_{4,1}$, we must calculate L.
By Abel's lemma we have

$$
\begin{aligned}
L= & \sum_{k=m+1}^{n-\tau}\left(P_{n}-P_{k}\right) \frac{\lambda_{n-k}}{P_{n-k}} p_{n-k} \sin (n+1-k) t \\
= & \sum_{k=m+1}^{n-\tau-1} \Delta\left\{\left(P_{n}-P_{k}\right) \frac{\lambda_{n-k}}{P_{n-k}} p_{n-k}\right\} \sum_{\nu=0}^{k} \sin (n+1-\nu) t \\
& +\left\{\left(P_{n}-P_{n-\tau}\right) \frac{p_{\tau} \lambda_{1}}{P_{\tau}} \sum_{k=0}^{n-\tau} \sin (n+1-k) t-\left(P_{n}-P_{m}\right) \frac{p_{n-m} \lambda_{n-m}}{P_{n-m}} \sum_{\nu=0}^{m} \sin (n+1-\nu) t\right\} \\
= & A \tau \sum_{k=m+1}^{n-\tau-1} \frac{P_{n-k-1} \lambda_{n-k-1}}{P_{n-k-1}}\left(P_{k+1}-P_{k}\right)+A \tau \sum_{k=m+1}^{n-\tau-1}\left(P_{n}-P_{k}\right) p_{n-k}\left|\Delta\left(\frac{\lambda_{n-k}}{P_{n-k}}\right)\right| \\
& +A \tau \sum_{k=m+1}^{n-\tau-1}\left(P_{n}-P_{k}\right) \frac{\lambda_{n-k-1}}{P_{n-k-1}}\left|\Delta p_{n-k}\right|+A \tau\left\{\frac{\tau p_{\tau} \lambda_{r} p_{n-\tau}}{P_{\tau}}+\frac{(n-m) p_{m} \lambda_{n-m}}{P_{n-m}}\right\} \\
= & L_{1}+L_{2}+L_{3}+L_{4}, \text { say. }
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \sum_{n=2 \tau+1}^{\infty} \frac{p_{n}\left|L_{1}\right|}{P_{n} P_{n-1}}=A \tau \sum_{n=2 \tau+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{k=m+1}^{n-\tau-1} p_{k+1} \frac{p_{n-k-1} \lambda_{n-k-1}}{P_{n-k-1}} \\
& \text { 4) } \begin{aligned}
& A \tau \sum_{n=2 \tau+1}^{\infty} \frac{p_{n} p_{m+2} \lambda_{n-m-2}}{P_{n} P_{n-1}^{n-m}} \sum_{k=\tau} \frac{p_{k}}{P_{k}}=A \tau \sum_{k=\tau}^{\infty} \frac{p_{k}}{P_{k}} \sum_{n=2 k}^{\infty} \frac{p_{n} p_{m} \lambda_{n-m-1}}{P_{n}} P_{n-1} \\
& =A \tau \sum_{k=\tau}^{\infty} \frac{\lambda_{k} p_{k}{ }^{2}}{P_{k}^{2}}=O\left(\lambda\left(\frac{\kappa}{t}\right)\right) .
\end{aligned} . l \text {. }
\end{aligned}
$$

And

$$
\begin{align*}
\sum_{n=2 \tau+1}^{\infty} \bar{P}_{n} p_{n} P_{n-1}\left|L_{2}\right| & =A \tau \sum_{n=2 \tau+1}^{\infty} \frac{p_{n}}{P_{n-1}^{2}} \sum_{k=m+1}^{n-\tau-1}(n-k) p_{k} p_{n-k}\left|\Delta\left(\frac{\lambda_{n-k}}{P_{n-k}}\right)\right| \\
& =A \tau \sum_{k=\tau}^{\infty} k p_{k} \Delta\left(\frac{\lambda_{k}}{P_{k}}\right) \sum_{n=k}^{\infty} \frac{p_{n}{ }^{2}}{P_{n}{ }^{2}}=A \tau \sum_{k=\tau}^{\infty} p_{k} \Delta\left(\frac{\lambda_{k}}{P_{k}}\right) \\
& =A \tau p_{\tau} \sum_{k=\tau}^{\infty}\left(\frac{\lambda_{k}}{P_{k}}-\frac{\lambda_{k+1}}{P_{k+1}}\right)=\frac{A \tau p_{\tau} \lambda_{\tau}}{P_{\tau}}=O\left(\lambda\left(\frac{\kappa}{t}\right)\right) . \tag{3.15}
\end{align*}
$$

By the similar way, we have

$$
\begin{aligned}
\sum_{n=2 \tau+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left|L_{3}\right| & =A \tau \sum_{n=2 \tau}^{\infty} \frac{p_{n} p_{m}}{P_{n} P_{n-1}} \sum_{k=m+1}^{n-\tau-1}(n-k) \frac{\lambda_{n-k-1}}{P_{n-k-1}}\left|\Delta p_{n-k}\right| \\
& =A \tau \sum_{k=\tau}^{\infty} \frac{\lambda_{k}}{P_{k}} \Delta p_{k} \sum_{n=k}^{\infty} \frac{p_{n}{ }^{2}}{P_{n}{ }^{2}}=A \tau \sum_{k=\tau}^{\infty} \frac{{ }^{k} \lambda_{k}}{P_{k}}\left(p_{k}-p_{k+1}\right) \\
& =A \frac{\tau \lambda_{\tau}}{P_{\tau}} \sum_{k=\tau}^{\infty}\left(p_{k}-p_{k+1}\right)=\frac{A \tau p_{i} \lambda_{\tau}}{P_{\tau}}=O\left(\lambda\left(\frac{\kappa}{t}\right)\right) .
\end{aligned}
$$

At last,

$$
\begin{align*}
\sum_{n=2 \tau+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left|L_{4}\right| & =A \tau v_{\tau} \lambda_{\tau} \sum_{n=\tau}^{\infty}-\frac{p_{n}{ }^{2}}{P_{n}^{2}}+A \tau \sum_{n=2 \tau+1}^{\infty} \frac{p_{n}{ }^{2} \lambda_{n} v_{n}}{P_{n}{ }^{2}} \\
& =O\left(\lambda_{\tau}\right)+O\left(\frac{\tau p_{\tau} \lambda_{\tau}}{P_{\tau}}\right)=O\left(\lambda\left(\frac{\kappa}{t}\right)\right) . \tag{3.17}
\end{align*}
$$

From the results of (3.14), (3.15), (3.16) and (3.17), we get

$$
\begin{equation*}
\sum_{4,1}=\sum_{n=2 \tau+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}|L|=O\left(\lambda\left(\frac{\kappa}{t}\right)\right) . \tag{3.18}
\end{equation*}
$$

Summing up (3.2), (3.3), (3.9), (3.10), (3.11), (3.13) and (3.18), we obtain

$$
\sum=O\left(\lambda\left(\frac{\kappa}{t}\right)\right)
$$

This terminates the proof of our theorem.
4. Corollaries. Very recently, G. Dass and V. P. Srivastava [2] proved the next theorem.

ThEOREM B. Let $\left\{\mu_{n}\right\}$ be a positive non-decreasing sequence and let

$$
\left\{p_{n}\right\} \in \mathscr{M}: \frac{p_{n+1}}{p_{n}} \leqq \frac{p_{n+2}}{p_{n+1}} \leqq 1 \quad(n=0,1,2, \cdots) .
$$

If

$$
\begin{equation*}
\sum_{n=1}^{m}\left|t_{n}-t_{n-1}\right|=O\left(\mu_{n}\right) \tag{4.1}
\end{equation*}
$$

then $\sum_{n=1}^{\infty} \varepsilon_{n} a_{n}$ is summable $\left|N, p_{n}\right|$, where

$$
\begin{gather*}
\varepsilon_{n} \mu_{n}=O(1) \tag{4.2}\\
\sum_{n=1}^{\infty}(n+1) \mu_{n}\left|\Delta^{2} \varepsilon_{n}\right|<\infty
\end{gather*}
$$

Applying this theorem and our main theorem, we are able to obtain several known and unknown results.

We observe that $\left\{p_{n}\right\} \in \mathscr{M}$, then $\left\{\Delta p_{n}\right\}$ is non-decreasing because

$$
\begin{aligned}
\Delta p_{n}-\Delta p_{n+1} & =p_{n}-2 p_{n+1}+p_{n+2} \geqq p_{n}+p_{n+2}-2 \sqrt{p_{n} p_{n+2}} \\
& =\left(\sqrt{p_{n}}-\sqrt{p_{n+2}}\right)^{2} \geqq 0 .
\end{aligned}
$$

And, if $\mu_{n}=$ constant for $n=1,2, \cdots$, then the condition (4.1) is reduced to $\sum_{n=1}^{\infty}\left|t_{n}-t_{n-1}\right|=O(1)$, that is to say, the series $\sum_{n=1}^{\infty} a_{n}$ is summable $\left|N, p_{n}\right|$.

Considering the above mentions, we get the following corollaries.
Corollary 1 [4]. If

$$
\int_{0}^{\pi} t^{-\alpha}|d \varphi(t)|<\infty,
$$

then the series $\sum_{n=1}^{\infty} n^{\alpha} A_{n}(t)$ is summable $|C, \beta|$ at $t=x$, where $0 \leqq \alpha<\beta<1$.
Proof. In our theorem, we put

$$
p_{n}=\frac{\Gamma(n+\beta)}{\Gamma(\beta) \Gamma(n+1)}, \quad \lambda_{n}=n^{\alpha}
$$

then $\left\{p_{n}\right\} \in \mathscr{M}$ and $\sum \frac{(n+1) n^{\alpha}}{(n+\beta)} A_{n}(t)$ is summable $|C, \beta|$. Put, $\frac{(n+1) n^{\alpha}}{n+\beta} A_{n}(t)$ $=a_{n}$ and $\varepsilon_{n}=\frac{n+\beta}{n+1}$ then it is easy to see that $\sum_{n=1}^{\infty} \Delta^{2} \varepsilon_{n}=O(1)$ and $\sum_{n=1}^{\infty} \varepsilon_{n} a_{n}$ $=\sum_{n=1}^{\infty} n^{\alpha} A_{n}(t)$ is summable $|C, \beta\rangle$, by Theorem B. By the similar way, we get

Corollary 2. If $0<\alpha<1, \beta \geqq 0$ and

$$
\int_{0}^{\pi}\left(\log \frac{\kappa}{t}\right)^{\beta}|d \Phi(t)|<\infty, \text { where } \kappa>\pi
$$

then the serıes $\sum_{n=2}^{\infty}(\log n)^{\beta} A_{n}(t)$ is summable $|C, \alpha|$ at $t=x$.
This corollary coincides to L.S. Bosanquet [1] for $\beta=0$ and R. Mohanty [5] for $\beta=1$, respectively.

Corollary 3. If, $1>\alpha \geqq 0, \beta \geqq 0, \alpha+\beta<1$ and

$$
\int_{0}^{\pi}\left(\log \frac{\kappa}{t}\right)^{\beta}|d \varphi(t)|<\infty
$$

then the series

$$
\sum_{n=0}^{\infty} \frac{A_{n}(t)}{\{\log (n+2)\}^{1-\beta}} \text { is summable }\left|N, \frac{1}{(n+2)\{\log (n+2)\}^{\alpha}}\right| \text {. }
$$

For $\alpha=\beta=0$ this corollary is proved by O. P. Vershney [7].
Proof. Putting

$$
p_{n}=\frac{1}{(n+2)\{\log (n+2)\}^{\alpha}}, \quad \lambda_{n}=\{\log (n+2)\}^{\beta}
$$

we have

$$
P_{n}=\frac{1}{2(\log 2)^{\alpha}}+\cdots \cdots+\frac{1}{(n+2)\{\log (n+2)\}^{\alpha}} \sim \frac{\{\log (n+2)\}^{1-\alpha}}{1-\alpha}
$$

and λ_{n} / P_{n} is non-increasing.
Moreover, it is easy to see that $\left\{p_{n}\right\} \in \mathscr{M}$ and

$$
\begin{aligned}
\sum_{n=k}^{\infty} \frac{p_{n} \lambda_{n}}{P_{n}^{2}} & =O(1) \sum_{n=k}^{\infty} \frac{1}{(n+2)\{\log (n+2)\}^{2-\alpha-\beta}}=O\left(\frac{1}{(\log (k+2))^{1-\alpha-\beta}}\right) \\
& =O\left(\frac{\lambda_{k}}{P_{k}}\right), \text { for } 1-\alpha-\beta>0 .
\end{aligned}
$$

Thus all assumptions of our theorem hold. Hence we have $\sum_{n=0}^{\infty} \frac{(n+2) p_{n} \lambda_{n}}{P_{n}} A_{n}(t)$ is summable $\left|N, p_{n}\right|$.

By some calculation, we see that

$$
\gamma_{n}=P_{n}-\frac{(\log (n+2))^{1-\alpha}}{1-\alpha}+\frac{(\log 2)^{1-\alpha}}{1-\alpha}
$$

is positive bounded and decreasing sequence such that

$$
\Delta \gamma_{n}=O\left(\frac{1}{(n+2)^{2} \log (n+1)}\right) \text { and } \Delta^{2} \gamma_{n}=O\left(\frac{1}{(n+2)^{2} \log (n+2)}\right)
$$

Setting

$$
a_{n}=\frac{(n+2) p_{n} \lambda_{n}}{P_{n}} A_{n}(t), \quad \varepsilon_{n}=\frac{P_{n}}{(n+2) p_{n} \log (n+2)},
$$

we get $\varepsilon_{n}=O(1)$ and $\Delta^{2} \varepsilon_{n}=O\left(\frac{1}{(n+2)^{2}(\log (n+2))^{2-\alpha}}\right)$. Thus (4.2) and (4.3) hold. Therefore, by Theorem B, the proof is finished.

Following theorem holds, analogously.
Corollary 4. If

$$
\int_{0}^{\pi}\left(\log \log \frac{\kappa}{t}\right)^{\beta}|d \varphi(t)|<\infty \text { for } 0 \leqq \beta<1
$$

then the series $\sum_{n=0}^{\infty} \frac{A_{n}(t)}{\log (n+2)\{\log \log (n+2)\}^{1-\beta}}$ is summable $\left|N, \frac{1}{(n+2) \log (n+2)}\right|$ at $t=x$.

References

[1] L.S. BosanQuet, The absolute Cesàro summability of a Fourier series, Proc. London Mat. Soc., 41(1936), 517-528.
[2] G. Das and V.P.Srivastava, On a theorem of Sunouchi, to appear.
[3] L. Mcfadden, Absolute Nörlund summability, Duke Math. Journ., 9(1942), 168-207.
[4] R. Mohanty, The absolute Cesàro summability of some series associated with a Fourier series and its allied series, Journ. London Math. Soc., 25(1950), 63-67.
[5] R. Mohanty, Absolute Cesàro summability of a series associated with a Fourier series, Bull. Calcutta Math. Soc., 44(1952), 152-154.
[6] T. Singh, Absolute Nörlund summability of a factored Fourier series, Indian Journ. Math., 9(1967), 227-236.
[7] O. P. Vershney, On the absolute harmonic summability of a series related to a Fourier series, Proc. Amer. Math. Soc., 10(1959), 784-789.

Mathematical Institute
Yamagata University
Yamagata, Japan

[^0]: *) We may replace the condition " $\left\{\lambda_{n} / P_{n}\right\}$ is non-decreasing" by the conditions " $\lambda(2 n)=O(\lambda(n))$ and $\lambda_{n}=o\left(P_{n}\right)$, as $n \rightarrow \infty$ ". The proof runs almost similar.

