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1. Let {sn} denote the n-th partial sum of a given infinite series

Let {pn} be a sequence of constants, real or complex and let

The sequence [tn], given by

(1.1) tn = -£-£; Λ-Λ = -έ- Σ Λ«»-*

defines the Norlund means of the sequence [sn] generated by the sequence {/>n}

Then, the series Σ an is said to be summable | N, pn \, if the sequence {tn}

is of bounded variation, that is, the series

(1.2) Σl*»-*n-i l

n

is convergent.

When the special cases in which pn

 = fZ^\Jχn + ιy Λ > ° > a n c l Pn = n + 1 >

summability | Λ̂ ,̂ >n | are the same as the summability | C, cί\ and the absolute
harmonic summability, respectively.

2. Let f(i) be a periodic function with period 2π and Lebesgue integrable
over ( — 7Γ, 7τ). We assume, without any loss of generality, that the constant
term in the Fourier series of f(t) is zero and that the Fourier series of f(t)
is given by

(2.1) Σ (tfncos nt + &nsin nt) = Σ ^n(0
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We write

φli) = ψ{t) = \ [f(

λ(n) = λ n and Δλ n = λ n - λ n + 1 .

Dealing with the \N,pn\ summability of Fourier series, T.Singh [ 6 ] proved
the following theorem.

THEOREM A. If φ(t) is a function of bounded variation in (0, π) then
the series

is summable \N, pn\, at t = x, -where {pn} is a non-negative nonincreasing
sequence such that {(n + l)pn/Pn] is of bounded variation and the sequence
{Δpn} is non-increasing.

In this paper, we prove the following theorem.

THEOREM. Let {pn} and [Δpn] are both non-negative and ?ιon-increasing
sequences. Let λ(ί), t > 0, be a positive, non-decreasing .function satisfying
the condition {\n/Pn} is non-increasing^.

If the conditions

(2.3)

and

(2.4)

for some constant «>0 hold, then the series

^(n + l)pn

*) We may replace the condition <({\n/Pn} is non-decreasing" by the conditions "\(2n) =O(λ(»))
and \n = o(_Pn), as w—• 00". The proof runs almost similar.
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is summable \N, pn\ at t = x.
If λ(ί) is a constant function the condition (2. 3) is satisfied automatically,

because

Therefore, our theorem includes Theorem A. Applying this theorem, we can

deduce several known and unknown theorems about Fourier series.

3. Proof of Theorem. We need some lemmas for the proof of our

theorem.

LEMMA 1 [3]. If {pn} is non-negative, non-increasing, then, for O ĝ
fgέ ίgoo, O^t^τr and any n, we have

where r = [1/t] and Pn = po + pι+ +/>

LEMMA 2 [ 6 ]. If {pn} and {Δpn} are both non-negative and non-

increasing then the sequence {(pk — pn)/(n — k)} is also non-increasing for

k<n.

LEMMA 3 [6] . If {pn} is non-negative and non-increasing, then {(Pn — Pk)

/(n — k)} is a non-increasing sequence for k<n.

LEMMA 4 [ 6 ]. Under the same assumptions as those of Lemma 1 the

sequeuce [(p^ — pn)/'Pn-k\ is non-increasing.

P R O O F O F T H E O R E M . Using (1.1) we have

1 n

where tn - - p -

vn =
1 ) A and An(x) = — Γ ψ(t)cos?ιtdt.

Therefore,
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n~1 I Pk Pk-\

437

π Jo
Σ,(Pn

1 n^n-i k = Q

dt

2 Γπ 1 n λ sin(/z-
= I dφ(t) p p Σ(PnPk~~PkPa)vn-kλ>n-k

^ Jo -Ln-Ln-l k = Q

 n~τ~

Thus, by (1. 2), to prove our theorem, it is enough to show that

2 C"
dφ(t)

s'm(n + l — k)

Considering the condition (2. 4), it suffices for our purpose to prove that

(3-D ~ ^ PnPn-x

= O[ λ ( ~ r ) ) , uniformly for 0 < * < n.

\ \ι II
Let us write τ=[κ/2t] and m = [n/2], where [x] denote the integral

part of x.
Now, we observe that

(3.2)

^ P P Λ
w-2r+l w n ~ ι

7 1 - 1

Σ ^(A-ί
jfc=m+l

n - 1

Σ (

say.
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Since Pn = P0 + P1 + + pn>(n + ΐ)pn, \s'm(?ι-k)t\^(n-k)t and λn

is non-decreasing, we get

to o\(3.3)

where A denote an absolute constant. For the inside summation of V] , by
2

Abel's transformation, we get

^fA #=* λn_,Λ sin(« + l-k)t

n ~ 7τA ^ P n - m Σ Asin(τi-i;
Pm I * n-m υ = 0

= 1^1%, say .

By virtue of Lemma 1 and the hypotheses of our theorem, we have

I <C P V^ ΛΊι—mPn-m

w=2r+i ^ n ^ n - m

Since

pΓΓV -~pΓ)1' -'iΛ\ϊC
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we obtain

^ P P i
n=2τ+l n n~ι

P
* n-k-l

l\ \ m~ιl P /> \ΛΔ(te)i+.?.(/>---;f j)feί
(3.5)

First we consider

oo

>τ^r~py
p p
_k+χ _ _£jfc_

n-m k=Q\Pk+l Pk

because [λn/Pn] is non-increasing and {Pn/pn} i s non-decreasing.

Obviously,

(3.7) Λ p PnPn-m-l SΓ^ I ^n-fc-1

It is easy to see that

(3-8) Σ
n=2τ+l
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Observing that

Δ-, = Σ

K. KANNO

^ Σ -zri
«=2τ+l

we have, by (3.4), (3.5), (3. 6), .(3. 7) and (3.8),

(3.9)

We now treat ^ . Since

where

and

= Σ (pk-Pn)~npkP^ks

it is enough to estimate 2Z3 1 and ^ 3 2 respectively.

Using Abel's transformation we have

\J\ ̂
k=m+l

) ^n-Jc-1 J

_AprK{ ,

by Lemma 4 and the hypotheses of the theorem.
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Applying this to Σ 3 1 > w e obtain

V* — APΓ V* -Pnh-O. 1 Aτpτ\τ ^ / . _ . N , A 5r-̂  Pn2J^n_
2L./3 l — + ' ' T> 2 ~" + T> 2 x . \Pn-r r » - τ + l j τ » / . r> 2

n=τ

(3.10) =

because

τ + 1

A - * ~~Pn-k+l) ^ τ(/>n_τ — pn-τ+l).
k = l

Next,

^ ΣΣ / - Σ f»-

_. 7 1 - 1 x w 00 W _ l

JL_ V^ VPA: PnJ^n-k Λ^ SΓ* Pn-r+l Pn ^»

(3.11)

by Lemma 2 and ^ n = O(l).

We devide Σ m t o t w o P a r t s

(3.12) Σ 4 ^ Σ i P ^

where

and
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By the reason that {λn} is non-decreasing and {(Pn — Pk)/(n — k)} is non-

increasing,

Σ Λ V^ Pn S~^ * n ~~ * k Λ Δ V ^τPny-Ln ~~ -^n-r+i) \-* -.

4,2 = Λ λ* -p^> 2_ , λ n _ f c -A ^ ~^p i 2^ X

n2+l n n-1knτ+l K n2τ+l n~1 k=nτ+l

,Σί;-=o(^n.(3.13) = AKr

Before the estimation of ]Γ) we must calculate L.

By Abel's lemma we have

k=m+l

k=m+l

j ^

k=m+l

, say.

Therefore,

ίλL— An-—/IT

Γ - l . ^

-* . Pn-k-l^n-k-l

L p p Σ ,
n=2τ+l A n ± w ~ ! fc=τ

p p

And
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Σ Pn |L2|=Aτ £ -g*-t Σ (»-

(3.15)

By the similar way, we have

oo τi_τ_l

n=2τ n n~1 k=m+l

(3.16)

n=lc x »

: ^ = O\ λ -—•

At last,

Σ
Γ

Pn
τΛ,τ 2 ^ pΓy -Γ /IT

(3.17)

From the results of (3.14), (3.15), (3.16) and (3.17), we get

(3.18)
4>1

Summing up (3. 2), (3. 3), (3. 9), (3.10), (3.11), (3.13) and (3.18), we obtain

This terminates the proof of our theorem.

4. Corollaries. Very recently, G. Dass and V. P. Srivastava [ 2 ] proved the
next theorem.
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THEOREM B. Let {μn} be a positive non-decreasing sequence and let

{Pn}z3ί : ^ ^ 1 ^ ^ 1 (τi = 0,l,2, ).
Pn Pn+l

(4.1)
τ ι = l

oo

ίΛen ]P£ n a n is summable \N9 pn\, where
71 = 1

(4. 2) *./». = 0(1)

oo

(4.3)

Applying this theorem and our main theorem, we are able to obtain several

known and unknown results.
We observe that [pn] € JM, then {Δpn} is non-decreasing because

And, if μn = constant for n = 1, 2, , then the condition (4.1) is reduced to
oo oo

Σ Un~~^w-i| = O(l), that is to say, the series^α w is summable \N9 pn\.
71=1 71 = 1

Considering the above mentions, we get the following corollaries.

COROLLARY l [ 4 ]. / /

Γ t-"\dφ(t)\ <oo,
Jo

then the series Y^naAn(t) is summable \C,β\ at t — x, where 0^
71 = 1

PROOF. In our theorem, we put

Tjn+ff) _
Pn~Γψ)Γ(n + l)' Xn~n'
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then (A) g M and £ fr+ffi 4.(0 * summable ΪC/31. Put,

αn and Sn = then it is easy to see that ^ A 2 ζ = O(l) and 2Z6nαn

w=l π = l
00

Σn* Άn(0 is summable |C,/5J, by Theorem B. By the similar way, we get

COROLLARY 2. / / 0 < a < l, / 3 ^

Πlog-^-. 1 I(î >(ί)I < oo, where κ>τt,

then the series^ (log n)βAn(t) is summable \C,a\ at t — x.

This corollary coincides to L. S. Bosanquet [ 1 ] for β = 0 and R. Mohanty
[ 5 ] for β=l, respectively.

COROLLARY 3. //, l > α ^ 0 , β^O, a+β<l and

series

L is summable N>7^ [log(n + 2)}1-/3

For a = β = 0 this corollary is proved by O. P. Vershney [ 7 ]

P R O O F . Putting

we have

I-CL
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and λ n / P n is non-increasing.
Moreover, it is easy to see that {pn} £ 3i and

, tor 1 — cc—

Thus all assumptions of our theorem hold. Hence we have 2Z p - 2 1 - 1 An(ί)

is summable \N, pn\.
By some calculation, we see that

is positive bounded and decreasing sequence such that

1

Setting

_ ( + 2)/ r e n
a n — n •rt-n

we get €n = Oil) and Δ2£n = O ( ( ^ ^ j ^ - , ^ ) ) i - . ) T h u s (4 2) a n d (4 3) h o l d

Therefore, by Theorem B, the proof is finished.

Following theorem holds, analogously.

COROLLARY 4. If

Γ flog log -jA \dφ(t)\ <oo for Q^β<l

An(t)
then the series Y^ Λ—-, ^TT Γ/ i^=rr~β is summable

^ J log(n + 2)(loglog(τz + 2)}1-/3
N,

n + 2)log(n

at t = x.
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