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1. Introduction. In this paper we shall work on the dyadic group 2¢
which consists of all sequences x = (x;, x5, +++), x; =0 or 1, where addition is
defined coordinatewise mod 2. The topology is the product topology which is
the same as that given by an invariant metric 8(x,y), where if x = (x,, x,,--*)
and y = (y,,y,,* ++) are in 2, then

After this we shall write |x—y| instead of &(z,y).

In particular, we first define the Rademacher function @«(z) by @y(z)=1
if 0=2<1/2, @(x2)=—-1 if 1/2=z2<1, and @y(Z) =@ (Z+1) for real Z.
Next, we define @,(Z)=@,(2"%) for every nonnegative integer n. Then the Walsh
function 4,(Z) is defined by setting Yro(Z) =1, VY o(Z) = @u,(Z)* * * @, (T) where
n=2%+ «.. 42" and the n; are uniquely determined by 7;,, <n;. As is well
known, {¥,},2 form a complete orthonormal system and every function A(z)
which is integrable on (0,1) may be expanded in a Walsh-Fourier series ;

f(z)~ i a¥r(Z), where a, = fl @)W (Z)dx, n=0,1,2,---.

@(x) is defined on 2 with x=(x,, x,,+ ) by setting @,(x)=1 if x,,,=0,
@u(x)=—=1 if x,.,=1. Y, (x) is defined on 2* by setting Yr(x) =1, ¥, (x)
= @n(X)* * * @n(x) where as before n=2"+ .-+ +2% and the n; are uniquely
determined. We note that {y,},2, gives us the full set of characters of 2¢,
N.J.Fine in his paper on the Walsh functions, [3], shows that the natural map
A 2°—[0,1] defined by

Mx) = i x,/2"

is continuous, one-to-one except for a countable set, preserves Haar measure and
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carries the characters of 2° onto the Walsh functions.

The main purposes of this paper depend on the note [1] by L. H. Harper.
As regard terminology and notations we shall follow it as a rule. In order to
facilitate progress we set up some results of L. H. Harper which are needed in

the sequel.
For xe 2% let {x}] =27", where n is the number of zeroes in x preceding

the first one ({0} =0). Then

1) 2] = Y227 = (2} =2)z].

n=1

Fix 0=a<1. Let
1.2) K(x)= {x}=* if 0<a<1 or logl/{x} if a=0.

(All logarithms shall be taken to the base two.)
Then K is continuous except at zero and nonnegative so that a potential theory
with respect to K is valid.

If E is a closed subset of 2%, then M(E) is the set of all nonnegative, Borel
measures of norm one on 2* supported on E. Fix 0==a <1, let ve M(E) and
form the energy integral '

(1.3) K@:ﬁ)»K@—@@@ﬂ%ﬁ

Then there are two cases : Either I(») = + oo for all » in M(E) or
1.4 V=inf Ir)<+oo, veME).

E is said to be of capacity zero if I(v)= + oo for all » in M(E), or if V< + oo,
the capacity of E is

(1.5) C=V~V if 0<a<lor C=2"7if a=0.
(1.6) U ; )= [ Ka=y)du(y)

is the potential function associated with ». The following two statements are
standard results in potential theory (See [8] and [9]).

(1.7) If E is of positive capacity, then there exists a unique g in MM(E) such
that I(p)=V,



CAPACITIES OF SETS AND HARMONIC ANALYSIS 421

(1.8) The potential function U(x ; p), of the equilibrium distribution has the
following properties ;

(i) Ulx ; )=V except for a set which is of measure zero with respect to
every measure of finite energy.

(ii) Ulx; )=V for all = in the support of u.
(iii) Ulx; p) is bounded on 2“.
The nth Dirichlet kernel for the Walsh functions is defined by

(1.9 Dx) =% ¥l

oo

If lx)~ >  a.¥.(x), then partial sums can be written as

n=0
n-1

(1.10) S ap(x) = f _fa+HD,)dr.

k=0
The size of D,(x) is given by

(1.11) | D(2)] g% (0< |z| <1).

Moreover, for some constants A and B independent of x and n,
|
(1.12) @1 > Sra-m Dy(x)= AK(x)+B.

Let [n] denote the greatest power of 2 in n ([0] =1 for convenience) then
we have

(1.13) ﬁ | D(x)| = 2K(x).

Henceforth, the letter A will be reserved to denote positive constant independent
of x and n, which is not always the same number.
Now we arrive at the main theorem of L. H. Harper :

THEOREM. Let flx)~> . a,¥.(x) be such that
n=0
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oo

S an) e <o, O0=a<l

n=0

n-1
Then if s,(x; ) =2 any(x) diverges on a closed set E, the a-capacity of

k=0
E is zero.

This is a variant of the results for the trigonometric series which are

summarized in Chapter 4 of Kahane-Salem [8].
Recently, in connection with the result of L. H. Harper, Professor Sh. Yano

proposed the following problem : Let)  a,¥r,(x) be the Walsh-Fourier series

n=0
n—1
of a function f{lx)e L?(2°), 1= p<oo, and letzaf;%éfﬁ
k=0 P
a closed set E. Then what can we say about the a-capacity of E?
In the present paper, we shall give some partial answers to the above

problem. Main results are as follows :

(0=a<1) diverge on

THEOREM L Suppose that 1= p=2, 0=a <1 and that 3 a, ., (x) is

n=0
the Walsh-Fourier series of a function f(x)e L*(2%). Then if > aFZ'{%)
k=0 K| P

diverges on a closed set E, the a-capacity of E is zero.

For the case p=2, this is reduced to Harper’s theorem mentioned above.

THEOREM IL.  Suppose that p>2, 0=a <1 and that ) a,y,(x) is the

n=0

n—1

Walsh-Fourier series of a function f(x)e L*(2°). Then if 3 %II]—'{E‘T‘T) diverges
k=0 »

on a closed set E, the a+&-capacity of E is zero, where & is any positive

number.

In both theorems, the trigonometric-Fourier series analogues have already
been established in [6].

The author gratefully acknowledges the help and guidance of Professor
Sh. Yano in the preparation of this paper.

2. In order to prove Theorem I and II, we need the following lemmas.
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LEMMA 1. Let ) a,y.(x) be the Walsh-Fourier series of a function

n=0

Sflx) e L*(2%), where 1= p<<oo. Then
[ loias p-fairdz—0 i)

i-1
where ou(es f)="TEEIIER = T ().

Jj=0

(For the case p=1, the result was proved in [2].)

PROOF. Let p(x) be a Walsh polynomial, that is, a linear combination

N-1

>~ () such that

[ V@ p)rdz<er.

For p(x), we can show that
lou(x; p)— plx)| = o(l)

in essentidlly the same way as Fine proved Theorem XVII in [3]. Then

[ [. 10 =@y e |7 =] [ 1ot p-ontes pivaz |

' [j;w e P)—P(x)ipdx]'; + [fzw flx)— p(x)lpdx]%

IA

[ [L1eses rpivaz] oy | [ 170-poiaz |
gs[ I If(x)—p(x)l”dx]% +ol1),

since for any A(x)e L?(2*), by Minkowski’s inequality,

[ imtes <[ [

f hOK . (x+)dt

» 1
dx] P
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“ac]= [ KoL [ 1Mo i

1

[ le hz+ DK, (b)dt
=2f | |h(x)|”dx]7,

where

K@= 2 Zvi)

<.

and it is known ([5]) that

f | Ko(2)|dz=2.
z(ﬂ
This proves the lemma.

LEMMA 2. If 3 a{u(x) satisfies
k=0
f |0(@)— ()| Pdz—0 (myn—> 00), where 1= p< oo,
20’

there exists a function f{x)e L?(2°) such that flx)~>_ a(x).
k=0

For the case p=1, the result was proved in [2] and we can easily extend
it for any p, 1= p<<oo, so we omit the proof.

LEMMA 3. Let Y ayi(x) be the Walsh-Fourier series of a function f(x)
k=0

e L*(2®), 1=p<<oco. Then there exist g(x)c L?(2°) and a function Q(n),
n=0,1,2,---, which is positive, nondecreasing and tending to infinity with

n, while Y a,Qk)\(x) is the Walsh-Fourier series of the function g(x).

k=0

For the case p=1, the result was proved by R.Salem in [4]. By the aids
of Lemma 1, 2 and Minkowski’s inequality, the assertion for g 1<p<<oo, is
proved in an entirely similar way.
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3. Proof of Theorem I. Suppose the a-capacity of E is not zero. Then
we have an equilibrium distribution p for E and constant M such that

(1) f K@ +)dput)=Ulz; m=M

on 2°
From Lemma 3 we can find a function g(x)e L?(2*) and Q(n), n=0,1,
2,+++, where Q(n) is positive, nondecreasing and tending to infinity with =,

such that D_ a,Q(k)Yri(x) is the Walsh-Fourier series of g(x). Then the partial
k=0

sums
akQ(k)‘I’k(x)
(2) Sn(@) = g H5
of the series Z "Q[%Nr"(x) are unbounded on E. For, if not,
ak‘l’k(x) akQ(k)\pk(x) 1
(3) sa(x 5 .f) kzo [kll—_" Z [k] Q(k)

& QU@ 1 1
P2 [Q(k) ot

' a, Q0,1
+ jzo D 50T (by Abed

and so s,(x; f) would converge. Define
(4) E*={zxe2; lim S,(x)= +o0}, E- = {xec2°;lim S(X) = —0}.

Either u(E*)>0 or u(E~)>0, so without loss of generality we assume the
former. Also for n=1,2,- - let n(x)=the least k=#n such that

(5) Si(k) = max Si(x).

Then S, (x) = max <;<,.5;(x) is a Borel measurable function, S, (€)= a,Q(0)
and goes to +oo for all £ in E*. The upshot of all this then is that
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(6) I= f S (@)dp(x)—> + 00 (n—> +0).
90

However, if p=1,

n(x) -1 n(x)-1
(1) Sn()= 3 UMD - [ gy 5= VeI ar
where
n{x)—1 n(x)—-2 k

Yo(x+t) 1 1

(8) kzo [k]l a - g’ ([k]l—u— [k+1]1—:x)j=20 ‘l’i(x+t>
n(x)~1
m Z Y, (x+t) (by partial summation)

logln(x)-1] 1 2k—1

=@7=D 2 grw 2 Wulett)

n(w)~1

1
[771(.1?) 1]1-— Z ‘PJ(x+t)

Then applying relations (1.12) and (1.13) to the first part and the second part
respectively we can find constants A and B such that

n(x)-1

> "’k(x“)( AK(z+1)+B.

(9) = [k]la

Therefore, it follows that

10 1= [ Sw@du@= [ [ 1001AKE+o)+ Bldtdua
B[ lowld+a[ 1001 [ Ke+oduo) | a

<(B+AM) f | g(t)|dt < +oo.

But this contradicts (6) so that the assumption that E is of positive a-capacity
must be false.
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Now we consider the case 1 < p<<2. We express I in the following way ;

where
n(z)~1 “
Gro(@+)= 3 _IE_%LJ) .

From Hélder’s inequality it follows that

42 zg[L sg(tn”dt]%- [f

1 1
—+—
? q

q 1
dt] ¢

where =1.

Since f | 9(8)|Pdt < oo, it is enough to estimate
2@ ‘

(13) I = f ; G+ H)dp(a)| dr.

Here we prove that

(14)  |G.(x)|=Alx| 5", where |z =i Zn

o if x=(x,x5, -+ )

For n éﬁ we have

) G ZE A=Y A = 0 ) =002l T ),
£=0 [k] P ko0 L?
For n>—l—,
B
(16) Gow) =3 YD 5 D g0, say,

k=0 [k]'p k=l+1 [k] P
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where [ is the integral part contained in Ti—i By the fact proved above, we

have |S,(x)| <O(|x|l_Ta"‘). By Abel’s transformation,

an S@)= 5 (e = o ) S
e @ g £ )

Since

(18) = vz by aw,

we have

19) 8@ =512l F = A2l 5

From (15), (16) and (19) the proof of (14) is completed. (We may prove (14)
also applying the relation which is used in the proof of Lemma 1 in [10].)
Returning to the estimation of I’, from (14), we have

th_S_Afw[fw |z+2| 1‘7"—1dp(x)]q dt

Remembering the condition for p, we have ¢>2 and so,

@ 1'=[ |[, Guola+ordut

(21) Uw | z+¢] I—Ta‘ld,u.(x):lq = Uz |z+2] T | 2+t %“dp(x)]q

g[ L. |x+t1-"du<x>]q [ [ 12+ }%‘dm)]’.

We know from (1.1) and (1.2) that

-2

22) |x+e| "= AK(x+1t)+1.

Hence we have
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q-2
23) [ | ix+t1-“dp<x>] =2
20

on 22, Consequently

(24) I'sA fz[f | z+t] I_Ta'ldp.(x)]’dt.

1

We define functions Gzp(x)(a:) and Gp@-1(x) as follows. Let 211, = x| <50 o1 5

then we write

(25) Gzp(z) (.1:) = 22_1 .‘P‘ 1_a s 2,,(1) 1(.13) 22-1"[1/:](3:)

We denote by x,=(0, 0,---0, 1, 0,---) an element of 2° consisted of zeroes
except the p-th number. Then

9P 1_1 oP_1
(26) /ézp(xu)(xp) = Z —17;— — z __1__u
k=0 kT k= Pt kT

2Pl

= Z_ (Ce—Criy)

PLAERS |

= > (k+1)AG,,

k=0

where Ck:kl—i and AC; = C,—Cpyy.

2

From the fact that

¥i(@) =¥z, if 55 = |zl <5 and 0=h <27,

2r-
we have
~ ~ il 1 1
(27) GZD(I)(.’E) =G2p(2n)(xp)g Z (k-}-l)AC,U if 7 = lx[ = op-1
k=0

We know (See [7, p.228]) that for any sufficiently large n, say, =N, there
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exists a constant A such that

l
(28) AT R+DACE |25, i 2] < grs

k=0

where [ is the integral part contained in T2 Therefore, combining this fact

with (27), we have
) s l1-a . § . 1
(29) AGpo(x)=|x| = ' if p—1=N, that is, |x| <o -

Consequently, we have

2 PLatES | ob-1_1 1

30 AG.A (@)- :A MQZA l—aZA =

o () ;o KT T EEE S
> Aazpm(x)g | x| I—Ta-l, if |z <§%v

Here Gy @-(x) is a Borel-measurable and nonnegative function. Now we set
" 1
(31) Eyt)=1xe€2°; |x+t] <“27
Then on the complement of Ey(¢), we have
- 1 | loa ya-%5%
|x+t|§§i and so|x+¢] 7 T=2 ),

Therefore, returning to (24), since

"2

&) [f Ei 'ldﬂ'(x)]‘é[f @+ 3 dp(a) +270 J
2(" Ex®

IA

) S
2[f | x+2] 1_T"“d,u(x)] 4 2=
En()

we have
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[~ 2
(33) I'=A f f |z +t] I_Ta“d/.b(x)] dt+A
2@ LJey®

=A f f G2p<x+t>-1(x+t)d;u(x)] dt+A
22 LJ ey

[ 2
<A f f Gzp(ut)—l(x—l—t)dp-(x):l dt+ A.
0| Jaw
Then

B4 I'=A f f G-z +1)-Gpw+o-1(y +t)dtdm(x)dp(y)+ A
9w Jgv Jow

a(x,y) -1

- : Yz +y) _
- A f ] f L P A+ A

(where g(x, y) = min(p(x+t), ply+1)))
<A f K(z+9)du(@)du(y) + A (from (1.12) and (1.13))

=AM+A.

Consequently, from (12), we have I < +oco. But this contradicts (6), so that
Theorem 1 is also established for the case 1 <<p<2.

4. Proof of Theorem II. Suppose a+&-capacity of E is not zero. Then
we have a positive constant M and an equilibrium distribution p for E such
that

f (wtt) = du(x)=M
on 2° and so by the relation (1.1), we have
(35) f |zt~ du(x) = AM
2@

on 2% Arguing in an entirely similar way as before, we arrive at (6):
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(36) I= [ Sun(@dp(z)—>+eo (1= +22),
2(')
On the other hand, since

37 f]x+t] St () = flx+t

§[£w1x+tl d/t(x)] [f |z+2]

=4[ [ 1z 3= aua |7,

“a d,,,(x>] i

we have

(®) 1= [ 00| [ Gunte+0rdut |
_S_Aj;w[]g(t)[j;w |z+2| “T"-ldp(x)] ds
éA,/;w 'g(t)"[fw |z+2| %e-ldu(x)]%dt

=a[ [1gorae] [ [ [ 1z ol $-rauar |

Remembering that f | g(¢)| °dt << oo, it is enough to estimate
2@

(39) f | o+2| T du()ds.
oW J 2w
We set
(40) Ek={t62“;—2,}—+l<|x+t|§—21k—, £k=0,1,2--

Then 20 = U E,
k=0
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and the measure of E; is E"IT‘ Therefore it follows that

oo

(41) f |z+2| %Hdt:Zf |x+2| Tt dt
3 Ex

k=0

q
< Z QU+~ R ey
k=0

1
2751 "

Consequently, we havef |x+t| %55 dt=A on 2* and so I is finite which

.l(l)

clearly contradicts (36). This completes the proof of Theorem IL
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