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1. Introduction. The regular series to sequence (5*, μ) transform of

a series ]Γ] at is defined as follows :

(l. l) s*(β)= ΐ > Σ (ktn) Γ (i-tγr"dm, n^o,

where β(t) satisfies

(1. 2) β(t) is of bounded variation in [0,1], /9(l)-/S(0 + ) = 1 and 0(1) = 0(1-).

The series to sequence (5*, μ) transformation is the series to sequence analogues
of the sequence to sequence (5*, μ) transformation defined by Ramanujan [7] §4.
We shall be interested in finding Tauberian estimates of the following form.

oo n

For a series ]P at denote sn = Σ a^ t n e n what is the best possible constant A

satisfying

lim sup I Si{χ)(0) — sma) \ ̂ A lim sup | nan \
λ->oo n—»oo

where n(λ), m(λ) are given functions assuming integral values only, and all
oo

series ^ a, satisfying the Tauberian condition

(1. 3) lim sup I τzαn I <oo.

What is the best constant B satisfying

lim s u p f e (β)S*iλ) (y)\^B l imsup|*αn |

where 7(ί) is another function satisfying (1.2), n(\), m(λ) are as before and
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oo

Σ a,i satisfies (1. 3). What is the best constant C satisfying

lim sup I S*{λ) (β) - 5m ( λ ) I ^ C Hmsup | bn \

where w(λ),m(λ) are as before, bn = (ax+2a2-\ \-nan)/(n + ί) ή^l and our series

satisfies the Tauberian condition weaker than (1. 3),

(1.4) lim sup| bn | < oo.

In order to simplify the notation we write instead of (1.2),

(1. 5) β(t) is of bounded variation in [0,1], β(0 + ) = 0 and β(l) = β(l-) = 1.

We shall restrict ourselves to function 8{f) satisfying

(1.6) £(0) = 0, C χ-ι\β(x)\dx<oo9 C (l-x)-ι\l-β(
J» Jo

By inspecting the Tauberian estimates obtained in the following sections one sees
that the condition (1. 6) is necessary in order to obtain finite constants A, JB, or
C and thus not much of a restriction. Recently the first problem was discussed
by S. Sherif [8] under an additional assumption that β(t) is non-decreasing in
[0,1].

2. Main results.

oo

THEOREM 1. For a series ]P at satisfying (1. 3) and a function β(t)

satisfying (1.5) and (1.6) we have for each q, 0<q<oo and any two
functions n(X) —» oo m(λ) —> oo assuming integral values only and satisfying
m(\)/n(\)—>q as λ—>oo,

(2.1) lim sup I S*(λ) (β)-sm{λ) | ̂ AQ lim sup| nan |

where

(2 2) A - Γ+1) lβ(x)l dx + Γ {1~β(x){dj:

The constant Aq is the best possible in the following sense. There exists a
oo

series ]Γ] at satisfying (1. 3) and the members of inequality (2.1) are equal.
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Theorem 1 for a non-decreasing β{t) was proved by S.Sherif [8]. For the

function β(t) = O for 0^t<l-a and β(t) = l for 1-ct^t^l ( 0 < Λ < 1 ) the

series to sequence (S*9 μ) transform of a series ]Γ α* 1S t n e sequence to
i = 0

)ί )
sequence Sa transform of the sequence sn = \ Σ at \{n gr 0) defined by Meyer-

U=o J
Konig [5]. Theorem 1 for the Sa transformation was proved by Biegert [2].

THEOREM 2. For a series Σ aι satisfying (1. 3) and functions β(t) and

y(t) satisfying (1. 5) and (1. 6) we have for each q, 0 < q < oo and any two

functions n(%)—>°o m(λ)—>oo assuming integral values only and satisfying

ra(λ)/n(λ) —> q as λ —> oo 9

(2. 3) lim sup I S ( λ ) (β) - 5* ( λ ) (Ύ) | ^ 5 , lim sup | nan \
λ—>oo 71—>oo

constant is the best possible in the following sense. There exists a series

at satisfing (1. 3) and the members of inequality (2. 3) are equal.

REMARK. We note that the constant Bq is better than estimates we could

obtain by Theorem 1, by introducing a function />(λ) assuming integral values

only and such that p(X)/m(X)-+a, 0 < α < o o and estimating |Sl(β) — 5^(7)|by

\S*nφ)-S*(y)\^\S*(β)-sp\ + \sp-S*(y)\.

The computations are left to the reader.

oo

THEOREM 3. Fora series Σai satisfying (1. 4) and a continuous function
i=0

β(t) satisfying (1. 5) and (1. 6), we have for each q, 0<q<oo a?ιd any two

functions n(λ)—>oo, m(λ)-*oo assuming integral values only and satisfying

q as λ—>oo,

(2. 5) lim sup | S*{λ) (β) - sm{λ) \ g Cq lim sup | bn
λo ϊ|*oo
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where

(where I = lim / and I = lim I I.
\ Λ+ pι° JP J vn J J

The constant Cq is the best possible in the following sense. There exists a
oo

series J^ a% satisfying (1. 4) and the members of inequality (2. 5) are equal.

The following is an immediate consequence of Theorem 3.

COROLLARY. If, in addition to the assumption of Theorem 3, the

functions ir~.β(t) and r-— (1 — β(t)) are non-decreasing for 0 < £ < l , then
JL t JL ΐ

+ ί ) β(x)
xil-x)

Inasmuch as 0 ̂  β(i) ̂  1 /or 0 ̂  ί ^ 1 ze;£

THEOREM 4. For α series Σaί satisfying (1.4) α ^ α function β(t)

satisfying (1. 5), (1. 6) α zd /S(ί) = - ^ [ £ ( * + )+£(*-)]/or 0 < ί < 1, we have

for each q, 0<q<oo,

(2.7) l i m s u p l ^ ^ - ^ . I ^ Q limsupl*.!
n—»oo n—>oo

where Cq is defined by (2. 6) and is the best constant possible in the following
i OO

sense. There exists a series ^ at satisfying (1.6) and the members of inequality
ί=0

(2. 7) are equal.
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3. Proofs of Theorem 1 and 2.

PROOF OF THEOREM 1. First we prove that whenever the series JZ α*

satisfies (1. 3) and β(t) satisfies (1. 5) and (1. 6), then S*(β) exists for every n^O.
It follows immediately that for O ^ ί ^ l and z > 0

whence

(3-D

By Beppo-Levi's theorem for every i' ̂  0

έ = Γ

<oo,

hence by (3.1) and integration by parts we obtain

(3 2) = ̂  ± (* +

= * Γ Γ «-1(l-«)-1(*+n)(l-«)t«-+IΛ«ίβ(ί)

Denote Δni =Y,(*tn\t {\-i)H^dβ{t\ then by (3.2)
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By (1. 3) and Beppo-Levi's theorem

and by (1. 6)

a0 u{i-uy
-w»+i) du<oo.

Therefore we have proved the existence of S%β) for every n^O.
Now

(3. 3) S*(β)-sm =
V-* A

i=0

By Agnew's theorem [1] we have to show that when n = n(X) and ra =

(3.4)

and

* ΐ Λ ) Γ (l-t)*t»+ιdβ(t) = 0 for i =1,2,

(3.5) lim sup
λ—>oo

1-Δ.

Now (3.4) follows by (1.5) in the same manner in which the regularity of
(S*, μ) is proved (see [7] §4). In a way similar to the proof of (3. 2) we obtain

f£(*;*)jΓα-^ +

and thus by (3. 2) and (3. 6) it follows that

F o r U?==Ξ
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and for 1 > u Ξϊ n+1
n+m + 1

du ΣΛ n

andSince m(\)/n(X) —> q as λ —• oo, for λ Ξ^ λ 0 we have — — — § : rrr- . Λ i«α

l Γ l 1 m /'-+- \
— ~τr| Γ T — H I > consequently for λ ^ λ0 the functions w"*1 ^ ( z n ) (1—u) ιun+1

Δ L i + ^ J i=1\
 n /

i-decreasing in 0 < w ̂  ^TT—-r and the functions (1—u)~ι Σ \ )are non-

are non-increasing

Applying the approximation properties of the Bernstein power series of
Meyer-Kδnig and Zeller [6] we obtain

0 if

and the convergence is dominated by the integrable function K 1 _ for some

constant K. Similarly

lim-^Γ £ (i+

n

>"><»<

0 if

and the convergence is dominated by the integrable function H —— for some

constant H.
A proof similar to that of Theorem 2.1 of [3] enables us to conclude that

*<
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and

This proves (3.5) and completes the proof of our theorem.

REMARK. If β(t) is of bounded variation in [0,1] and satisfies

(3.7) f χ-*Γ Idβ(u)\dx<oo,

oo

and the series Σ ai satisfies (1. 3), then {S*(β)} is the sequence to sequence

(S*,μ) transform defined by Ramanujan [7] §4. This is exactly the case if β(t)
is non-decreasing in [0,1] and satisfies (1. 5) and (1. 6).

PROOF. By (1.3) and (3.2) for the function Ί(u) = f \dβ(t)\ we obtain

(3.8) Σ\ai\Σ

<oo.

LΣ f u-Kl-u)-1 f\dβ(t)\ (i +

i=i Jo Jo \ n

and applying Beppo-Levi's theorem and (3. 7) we get

= \ao\ +L f u-χi-uyχi-un+1) Γ \dβ{t)\du
Jo Jo

Hence

Σ««Σ f (ktn)θ--tyt^dβ(jt) = Σ,(k+n) f (i-φ^
ί=o k=ί Jo ^ Λ-o v n ' Jo

where the change of order of summation is justified by (3. 8)

This concludes our proof.
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For the proof of Theorem 2 we need the following lemma.

397

LEMMA. Let 0 < f ? < l be fixed and suppose that β(t) satisfies (1.5) and

(1. 6). For 0 < δ < η define

(3.9)

β{t)

\ 0 elsewhere.

Then for every 8 > 0 there exists 0 < δo(θ) < η such that for any δ, 0 < δ ̂  δ0

there exists no(S,$) such that

<ε

provided n7>n0.

PROOF. Given £ > 0 choose δo(£) such that for any δ, 0 < δ ^ δ 0 we have

(3.10) r8 \β(t)\ _&_

This is possible since β(t) satisfies (1. 6). Let δ, 0 < δ ^ δ 0 be fixed, then by (3.10)

dt(3.11) 0 ^ I ^

— fV n + 1

say.

The Bernstein power series of Meyer-Konig and Zeller [6] admit the following

approximation property. If f(s) is bounded in [0,1], then at each point of

continuity, 0 < s < 1, of f(s) we have

(3.12)

Our ($1 (i) is bounded in [0,1] since sup
ί g l

<(ί) = su = M < oo. So by
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(3.12) we obtain

(3.13) limf l

D. LEVIATAN

= 0 for and

Moreover the convergence in (3.13) is dominated by M whence

(3.14) lim I, = 0.

For a fixed tf S^t^v the function f(s)= is bounded for O gs

^ 1 , hence at each point of continuity S^s^η of f(s) we have by (3.12)

(3.15) lii
β(t) j3(s)

ί(l-ί) 5(1-5)

For $<s<η, f(s) is continuous if and only if β(s) is continuous, that is almost
everywhere in [δ, η] whence by (3.15)

(3 = 0

almost everywhere in [δ, η]. Once again the convergence in (3. 16) is dominated
by 2M and so we obtain

(3.17) lim h = 0.
7l-+oo

Combining (3.11), (3.14) and (3.17), our lemma is proved.

P R O O F OF T H E O R E M 2. By (3.2) we obtain

u(l-u)\ m

By Agnew's theorem we have to show that

- ) ^ " ] * -
for * = 1,2,
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and

(3.19, limsup£|£

= β.

Now (3.18) is proved like (3. 4) and we have to prove only (3.19). Let

be chosen such that if θ = η/[q—(q—ϊ)η], then

jβ x(l-x)

This is possible by (1.6) and the fact that θ —> 1 as η—*\. By Agnew's theorem

limβupfl Γ -^L(i+n)a-uγu^du- f -Ά(i

λ— f^ljβ «(1—«)V n / J «(1—«)\

= limsup|5*(λ)(/S)-5*α)(γ)|

A—»oo

where

(β(t) if ^ ^ ί ^ l
0 if O^

and

v(t) if η^t^:

o if

Let />(λ) = -—r- m(λ) (where [x] denotes the largest integer not greater than

x\ then as λ-> oo and p(X)/?ι(Λ) as λ-+<χ>. Now

\sp-S*(y)\

and it follows by Theorem 1 and (3.20) that

(3. 21) lim sup\S*(β)-S*(y)\ rglim sup\Si(β)-s
λ λλ-»oo λ-*
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Let δ > 0 be chosen such that if p = δ/[g-(tf-l)δ], then

(3. 22)

The existence of δ is guaranteed by our lemma, (1.6) and the fact that ρ—>0

as δ->0. Denote

β(t) if p^t^θ

0 if elsewhere,

and let 0<t^l be a fixed point of continuity of βpj(t). For ξ>0 let τ(ξ)>0

be such that |£Pi*(f)-&./*!)I < ? provided | £ - * i | <2τand

For

m
qiΛ-m

0 we have

< τ . Now

2τ , m ^ g i . i . i i
and >—5— which imply —

i+n i+n

{ Σ< + Σ 4 }

Iι+I2, say.

m W
_/V/«+i

It follows by (3. 12) that
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(3.23) O ^ / ^ n->~,

where M = sup | β(t) \, and

(3.24)

It follows by (3.23) and (3.24) that 0 ^ lim sup I ^-~-^ for every f > 0 ,

consequently lim 7 = 0 for every point of continuity 0 < ί ^ l of βP,θ(t)9 this is
λ-»oo

almost everywhere in [0, 1], and since the convergence is dominated by
— σ)

we obtain

(3.25)
71

_ ,im r [ £

J \ 71 /

I _f\ifn + l

ί'+W

SinceinceJΓ C

(3.26) li

we obtain similarly

qι

Now / S p e i - ^ — I = /βp

JΓ (•'+»)(i-ί)
ΎΠ I

iΛ-n i+n iΛ-m t + m

= 0.

m

L so if we denote

t h e n i ι f o l l o w s t h a t
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J -.
and therefore <*£>(*) = -lg-W

ί(l—t)
< Combining (3. 25) and (3. 26) we obtain

(3. 27)

jr

Γ dt,

since by (3.12)

elsewhere

almost everywhere in [0,1] and the convergence is dominated. By (3. 20), (3.21),
(3. 22) and (3. 27) it follows that

< 3 . 2 8 ,

Since (3. 28) holds for every £ > 0? our theorem is proved.
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4. Proofs of Theorems 3 and 4.

PROOF OF THEOREM 3. By (3.3) and the straightforward identities

an = ί 1 + --••• J bn-bn^(n > 0), (b0 = 0) it follows that

(4.1) s;φ)-sm = - έ[(i+-7-)6*-&*-i](i-Δni)+ Σ

Now

Σ Γfl+-^Ui-&i-llΔ»i= Σ &l
ί=7/ι+l L\ l I J i=m + \

and by (1.4), lim bNΔn<N+1 = 0, hence
JV-*oo

Z / J i=m+l

Thus by (4.1)

Si(β)sm =-Σ, bill + 4-) (l-Δnt)-(l-ΔB.4+1)J

= Σ,fnmA, say.
ί = l

By Λgnew's theorem [1] we have to show that

(4. 2) lim Ύnmi - 0 for i = 1, 2,
λ—>oo

and

(4.3) limX; Ύnm£ = cπ.

Now (4. 2) follows exactly as (3. 4) and we have to prove (4. 3). By (3. 6) it
follows that for 1 ̂  zfg m

(4.4)
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- J Γ (••;

Similarly by (3. 2) we obtain for i ^ m + 1

(4. 5) ίl + - U ΔBi-Δn, ί+1 = -j-Anl + (

Applying the technique we have used in the proof of Theorem 1, it follows
by (4. 4) that for λ ^ λ0

l ln(Q+ε)]

Σ^f Σ (nnμ-Φ*+1\dβ(t)\
Jo *.[n(βs)] V '

" "

and as β(t) is continuous we obtain

Γ1/(1+(7~ε)|l—/9ι

*

d t a s

Having this for every £ > 0 it follows by the continuity of β(t) that

(4.6) 0.

Again the technique we have used in the proof of Theorem 1 and a proof
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similar to that of Theorem 2. 2 of [3] enable us to conclude that

m - l

(4.7) lim Σ | Ύ n m ί | =

and

=£"*" ̂
Our theorem follows now by (4. 6), (4. 7) and (4. 8).

PROOF OF THEOREM 4. The proof is similar to that of Theorem 3,
applying Remark 2.1 of [3] instead of Theorem 2.2 of [3]. It remains to
prove that for each function fit) bounded in [0,1], we have at each point t=x,

where f(x±) exist,

The proof is similar to the proof of the same property for the Bernstein
polynomials (see [4] Theorem 1. 9.1).
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