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1. Introduction. The regular series to sequence (S*, u) transform of
®

o

a series ) a; is defined as follows :

=0

1.1 Sx(B)= i a; z (k:;n) fl A—t)t"+'dB(t), n=0,
where B(t) satisfies

(1.2) B(¢) is of bounded variation in [0, 1], 8(1)—B8(0+) =1 and BQ)=8B1-).

The series to sequence (S*, ) transformation is the series to sequence analogues
of the sequence to sequence (S*, u) transformation defined by Ramanujan [7] §4.
We shall be interested in finding Tauberian estimates of the following form.

oo n
For a series ) a, denote s, =) a;, then what is the best possible constant A

i=0 i=0

satisfying
lir}'x sup| SFy(B)—snay | =A lim sup|na, |

where n(\), m(\) are given functions assuming integral values only, and all

oo

series Y a; satisfying the Tauberian condition
i=0

(1.3) lim sup|na, | <co.
What is the best constant B satisfying
]ign sup|S¥a (B)—Sxa (V)| =B lim sup|na,|

where 7(¢) is another function satisfying (1.2), n(\), m(\) are as before and
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>~ a, satisfies (1.3). What is the best constant C satisfying
i=0

lim sup| St (8)—snay| =C lim sup|0,|

where n(A),m(\) are as before, b, = (a, +2a,+--++na,)/(n+1) n=1 and our series
satisfies the Tauberian condition weaker than (1. 3),

1.4) lim sup| b, | < co.
In order to simplify the notation we write instead of (1.2),

(1.5) B(t) is of bounded variation in [0,1], 8(0+)=0 and B(1)=B1—-)=1.
We shall restrict ourselves to function 8(¢) satisfying

(1.6) B0)=0, [x“[ﬁ(x)ldx<oo,fl(1—x)“|1—ﬂ(x)]dx<oo.

By inspecting the Tauberian estimates obtained in the following sections one sees
that the condition (1.6) is necessary in order to obtain finite constants A, B, or
C and thus not much of a restriction. Recently the first problem was discussed
by S.Sherif [8] under an additional assumption that B(¢) is non-decreasing in
[0, 1].

2. Main results.

THEOREM 1. For a series)_ a, satisfying (1.3) and a function B(t)

=0
satisfying (1.5) and (1.6) we have for each q, 0<g<<co and any two
Sunctions n(N)— oo m(N)— oo assuming integral values only and satisfying

m(N)/n(N)—q as N— oo,

2.1 lim sup|Sia) (B)—sna| =4, lim sup|na,|
where

Van 1 8(x)| v [1-8)
2.2 A, = — == dr + =
2.2) ! j; x(l—x) * _/:/(qﬂ) x(1—x) *

The constant A, is the best possible in the following sense. There exists a

series ), a; satisfying (1.3) and the members of inequality (2.1) are equal.

i=0
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Theorem 1 for a non-decreasing 8(t) was proved by S.Sherif [8]. For the
function B(t) =0 for 0=t<l—a and B#)=1 for 1—a=¢t=1 (0<a<1) the

series to sequence (S¥, pu) transform of a series )  a; is the sequence to
i=0

sequence S, transform of the sequence s, = { > at}(nzO) defined by Meyer-
=0

Konig [5]. Theorem 1 for the S. transformation was proved by Biegert [2].

THEOREM 2. For a series ) a; satisfying (1.3) and functions B(t) and
i=0
Y(t) satisfying (1.5) and (1.6) we have for each q, 0<q< oo and any two
Sunctions n(N)— oo m(N)— oo assuming integral values only and satisfying
m(N)/n(N)—q as A— oo,

(2.3) lim sup| Sia) (8)—=Sna (V)| = B, lim sup|na,|

where

@.4) L ) )
f HT=D dt

The constant is the best possible in the following sense. There exists a series

>~ a, satisfing (1.3) and the members of inequality (2.3) are equal.

i=0

REMARK. We note that the constant B, is better than estimates we could
obtain by Theorem 1, by introducing a function p(A) assuming integral values
only and such that p(A)/m(A\)—a, 0<a< oo and estimating |Si(8)—SX(Y)|by

| SHB)—Sa(M | = Sx(B) =5, + |5, —Sa(M)].

The computations are left to the reader.

THEOREM 3. For a series D_ a; satisfying (1. 4) and a continuous function

i=0
B(t) satisfying (1.5) and (1.6), we have for each g, 0<q<co and any two
Sunctions n(N)— oo, m(N)— co assuming integral values only and satisfying
m(\)/n(N)—q as A— oo,

2.5) hm sup] Sxay B)—smay| =C, 11m sup] b,|
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where

@6 C=1+ [t o) [ e a-a0)]

1/(1+a)

(where f = lim | and f = lim )
0+ PO Jp ntt
The constant C, is the best possible in the following sense. There exists a

series 3_ a, satisfying (1.4) and the members of inequality (2.5) are equal.

i=0
The following is an immediate consequence of Theorem 3.

COROLLARY. If, in addition to the assumption of Theorem 3, the

functions i{—tlg(t) and 1—3 (1—-B®)) are non-decreasing for 0<<t <1, then

_ [ 8@ ' 1-Bx)
Co= 0 z(1—-x) et fl/(ua) x(1-z) e +2B(1 +q>

Inasmuch as 0=B#)=1 for 0=t=1 we have

C,=A +2,3(1+q)

THEOREM 4. For a series )_a, satisfying (1.4) and a function B(t)
i=0

satisfying (1.5), (L.6) and B(f) = —%——[ﬁ(t+)+ﬁ(t—)] for 0<t<1, we have

for each g, 0 <g<oo,
2.7 lim sup|S;(B)—5Sing| =C, lim sup|b,|

where C, is defined by (2. 6) and is the best constant possible in the following
sense. There exists a series Z a; satisfying (1.6) and the members of inequality

(2.7) are equal.
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3. Proofs of Theorem 1 and 2.
PROOF OF THEOREM 1. First we prove that whenever the series > a,
i=0

satisfies (1.3) and B(¢) satisfies (1.5) and (1. 6), then S}(8) exists for every n=0.
It follows immediately that for 0=¢=1 and { >0

d (k+n w_ A [ S (k+n nt
Tz{,fé( n )(1"t)kt = [1 ,{E( n )(l—t)kt I:I
=—it"(1—t)-l(i:" A—t)",

whence
N (k+n kgt s -1y -1 i+n it
3.1 :L;( M (1—1t)*t —zj: w'(l—u) ( " )(1 wiu'du.

By Beppo-Levi’s theorem for every =0

oo

Z(k:;n) j;l (L—t)gn+?

k=1

oo

0| = [ £(47) a-oper

0 k=1t

de(t)}

gf:idﬁ(t)]oo,

hence by (3.1) and integration by parts we obtain
oo 1 oo
a2 (" f " (L)1 dB(E) = f > (5™ -y asce)
k=1 0 0 k=i
1 1 .
-4 “1(1 —g)"! i1+n 11— dudB(t
i [ wa-0n () Qe duds

=1 J; u—————g(_zf)u) (lj;" Q—u)u"*'du.

Denote A, =3 (*17) f ' (1—£)""d8(#), then by (3.2)
k=i 0

o

2 ‘“t

i=0

fo JBOL (A —wyurid

A

é’ao

+2.
i=1

iail
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By (1.3) and Beppo-Levi’s theorem

=|as|+L [ zlg(“)i)z(’*”)a Wurdu

and by (1.6)

=|Qo

+Lf IB(“)I)(l w*t) du < oo,

Therefore we have proved the existence of Si(8) for every n=0.
Now

(3.3) Sx(B)—sn = galAM - gai =— gai(l_AMH_ .ila,A,ﬂ-.

By Agnew’s theorem [1] we have to show that when n=n(\) and m =m(\)
3.4 lim—— (’€+ ") f (-2 ¢"*1dB(t) = 0 for i =1,2, -

and

(3.5) 1imup{ u +1§":+1 ]} - A,

Now (3. 4) follows by (1.5) in the same manner in which the regularity of
(S*, w) is proved (see [7] 84). In a way similar to the proof of (3.2) we obtain

(3.6) #g(k;") fol (A=t dA(E) = fnl ul———(‘l’i(:; ) 1 —wuridu,

Z
and thus by (3.2) and (3. 6) it follows that

~ 5| [ LB ) 1]

=, u(1-u)

51 J‘1—13,,,(+ > 8.
! i=m+1 !

i=1 t
o

+ 2

i=m+1

f: ﬁ(f—)u)(i:")(l-uyunﬂdu!.

n
For u=——
—n+m
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s (I a-wre= > (TP Ao (a-(tiy = o,

i=1

>___Zl~i_._1___
and for 1>u=n+m+1
d < (i+n Z (i+n - .
L Q—w) -ttt = A—w)2u"n+1—(n+)u] =0.
du i= 1( ) i§+1( n ) ( )

. - n__ 1 n+1
Since m(N)/n(N)— g as A — oo, for A=\, we have m =21+g) and e

= %[ f-li-ﬁq + 1] , consequently for A=, the functions »™* Z (i +") A —u)u™!

are non-decreasing in 0 <u=

2(11+ )and the functions (1—u)™! Z (z+n)

i=m+1

(1——u) ‘4™ are non-increasing in —%— [ﬁ + 1] =u<l.

Applying the approximation properties of the Bernstein power series of
Meyer-Koénig and Zeller [6] we obtain

1-8(w)

if —<u<1
e u l—-u
! ( ) 0 if 0<u<1—i§

and the convergence is dominated by the integrable function K 1——’31(?) for some

1__
constant K. Similarly

u(l—u
llTug-(u)u)i m+1(l+u (=)™’ = .
0 if i

if o<u<i%1

+q<u<1

and the convergence is dominated by the integrable function H g—g‘) for some

constant H.
A proof similar to that of Theorem 2.1 of [3] enables us to conclude that

[ 1=B@) (i g |- [f 11=B@)|
llmeo u(l—Z) z_;n>(1—u)u du]—‘/;/mq) w(i—2) du

Ao i-1
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and

oo [ [P _B@) (i4n g i, ne [_f/m‘” |8(w)|
111_{2151]‘}; u(l——u)( u )(1 nyurtidu| = A u(l— u)d
This proves (3.5) and completes the proof of our theorem.
REMARK. If B(¢) is of bounded variation in [0, 1] and satisfies

3.7) folx-lf: | dB(w)| dz < oo,

and the series ) a; satisfies (1.3), then {S¥(8)} is the sequence to sequence
i=0

(S*,u) transform defined by Ramanujan [7] §4. This is exactly the case if B(¢)

is non-decreasing in [0, 1] and satisfies (1.5) and (1.6).

PROOF. By (1.3) and (3.2) for the function Y(«) =fu |dB(t)| we obtain
0
3.9 > la) T(457) [ a-ereriane)
i=0
= [ =101 — )\~ u i+n ) iy ml
§1a0|+Li=zlj; w'(1—2) ﬁ ldB(t)|( ' )(1 ) ‘U du,
and applying Beppo-Levi’s theorem and (3.7) we get
1 U
- |a0|+Lf u“(l—u)“‘(l—u"“)f |dB(E)| du < .
0 0
Hence
o [V (Rt = (k+n\ [ :
a 1-2)k "1 dB(t) = 1—-2)k**'dB(t) ) _a
Tax [ () a-orenasn = £ (*7) || a-prease e,
where the change of order of summation is justified by (3.8)

i xm) f (1— 22" dB(E)st.

This concludes our proof.
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For the proof of Theorem 2 we need the following lemma.

LEMMA. Let 0<n <1 be fixed and suppose that B(t) satisfies (1.5) and
(1.6). For 0<8<n define

B(t)
(3.9 () = { i—p O=t=n
v 0 elsewhere.

Then for every €>0 there exists 0 <<3(€)<n such that for any s, 0 <=3,
there exists ny&,d) such that

> " B(t) i+n Pan+1 (,e) n Y(i+n  A\ign+1
I= zfot(l s )(1 t)it"dt —af i+n>_/;(n A—p)itide | <&
provided n=mn,.
PROOF. Given &>0 choose 8,(€) such that for any 8, 0 <<8=38, we have

(3.10) 2 | 8(t)| e
jo i1-p %<7

This is possible since B(£) satisfies (1.6). Let 3, 0 <8 =23, be fixed, then by (3.10)

(3.11) o0=I é—i— Ub f}Z(””)(l £y a‘ﬁ’(z+n)l
+‘Lng;(i-;n) (1— )+ tg(i)t) m(z-ﬁn)[dt

—‘81—+Il+12, say.

The Bernstein power series of Meyer-Konig and Zeller [6] admit the following
approximation property. If f(s) is bounded in [0,1], then at each point of
continuity, 0 <<s <1, of f(s) we have

(3.12) ’]lil;l;l Z(z—;n (1 —s)is™*! f(ﬁ;l) = f(s).
Our af?) (¢) is bounded in [0, 1] since Sup a®)(t) = sup tg(j)t). = M < oo. So by
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(3.12) we obtain

L i+n — )ign+1 (8 n_\_
(3.13) llmg( "a-eye 'aff (1) =0 for 0<£<8 and n<z<1.

Moreover the convergence in (3.13) is dominated by M whence

(3.14) lim I, = 0.

—00

For a fixed ¢, §=¢=7 the function f{(s)= Jit)— —aff)(s)| is bounded for 0=s

t(1-12)
=1, hence at each point of continuity 8 =s=179 of f{s) we have by (3.12)

(3.15)  lim Z (z -;n) (L—s)'sm / t(?(t)t) e (z—lr—l n) I - [ tg(i)t) - sg(i)s) )

n—oo

For 8 <s<#, f(s) is continuous if and only if B(s) is continuous, that is almost
everywhere in [§, 7] whence by (3.15)

(3.16) hmz(z—;n) (1—t)igm+ ft(f(f)t) —af® z+n)f

n—soo .

almost everywhere in [8, 7]. Once again the convergence in (3. 16) is dominated
by 2M and so we obtain

(3.17) lim I, = 0.

Combining (3.11), (3.14) and (3.17), our lemma is proved.

PROOF OF THEOREM 2. By (3.2) we obtain

S*HB)— Sx(v) = ;i iatfl [u(f(ui) (l+n)(1 —w)umtt

u(Z(u)u) z+m)(1 w)u m+1:| du.

By Agnew’s theorem we have to show that

u(l—u) u(1—u)
for i=1,2,---,

A—soco

(3.18)  lim [ Bu) (FEM)a—wur - ) ’+’”)(1 w)u m“]du 0
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and
(3.19) lirﬂfngU: [z—‘-g(f—)u)(i;”)(l-u)iunﬂ

Now (3. 18) is proved like (3.4) and we have to prove only (3.19). Let 0<<n<C1
be chosen such that if 8 =n/[¢—(g—1)9], then

(3. 20) ﬁl—i('i—‘?_(%dx<e, li—}?(_lz(—ig'dx<a

This is possible by (1.6) and the fact that §—1 as 3—1. By Agnew’s theorem

oo

lim supZ]fl _Bgi i+n (l_u)iun+ldu__ fl _'y_(i‘_)__ i':nm)(l—u)iu"‘“du

o u(l—u)\ 7 , #d—u)

i=1

= li[?..iuP | Sxy(B)— Sa(¥)]

_ 8¢t if =t=1
B(t)={

0 if 0=t<6
_ ) if n=t=1
y() =
0 if 0=t<n.
Let p(A) = [l;"m(x)] (where [x] denotes the largest integer not greater than
x), then p(x)/m(h)él‘;—" as M — oo and p(\)/ n()\.)—»l;—” g as Ao, Now

| S3(B)— S = | S¥(B)—5,| + | 5,— Sx@)|
and it follows by Theorem 1 and (3.20) that
(3.21) lirP sup| S*(B)— Sx®)| éli{n sup| S¥(B)—s,| + lix;n sup|s,—Sx®)|

' 1-8(x)] ' 1-7(x)] p
= j J——x—('lf:;—)“dx-i-f; -E(T_(%%jdx<28.
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Let 8>0 be chosen such that if p=38/[g—(qg—1)8], then

(3.22)
([ 16 > @)
a2 _)tl)dt<8, f 2k dr<e,

n—oo

J lim SupZU:(i:n)(l—t)itnﬂtg—(ﬁ)lfjdt_“'(’%(i%)j:(i:n)(l_t)it”+ldt’<s’

T(i+m igm+1 ry(t) 4
m )(1-—t)t dt—ayf’ >(

s ) f (tma- t)ftm+ldt]<e.

m-—soo

The existence of & is guaranteed by our lemma, (1.6) and the fact that p—0
as 8—0. Denote

B@) if p=t=0
Bp,d(t): {

0 if elsewhere,

and let 0 <t=1 be a fixed point of continuity of 8, ¢). For §>0 let T(§)>0

be such that |8, «t)—8, 2] <L‘ provided |[t—¢#,] <2t and T<—— 2 , -r<170

For A=\, we have ]—@* ’<———— and >—g—— which imply +n

qz+m'<T Now

I Z {Bﬂﬂ 1+n> BP:qz—l-M)l (z+n)(1 —g)ign
z+n i+n

BP"( ) Bpf? I .
_ i+n qz+m (z+n)  pyign+1
—{Z-+Z,~} " i o JA=2)it
'117;—‘|=7 i‘}n-tlﬁ' i+n z+n
=Il+12, say.

It follows by (3.12) that
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(8.23) OéIl—i"(l O)r* p» (z+n ) (Z-;n)(l_t)itnﬂ_)o as n e,

where M = ‘]Sl}plls(tﬂ , and
<t=1

=I,=¢ t+n n+l _ 4&
(3. 24) 0=L=¢ 7= 9)2( )(1 0 = g
It follows by (3.23) and (3.24) that Oélin}lL sup I gﬁ(f—f(;) for every ¢>0,
consequently }irn I=0 for every point of continuity 0 <=1 of B,¢), this is

almost everywhere in [0, 1], and since the convergence is dominated by __(1131_\_46)

we obtain
- |8d By |
(3.25) lim Y Z+”> q’+m> f ““")(1 £)it™1dt
Ao i1 _n z
itn i+n
PP YER Y
1 i+n qi+m i+n  Nign+l _
= lim ) L_; n i ( n )(1 t)t+]dt—0'
t+n 1+n
z—l—n - n+1 .
Slrcef( A—=p)™'dt = Grntli+nt2) we obtain similarly

) fo 1 (“EHa—peroar fo 1 (Ea-oyemae

(3.26) llm Z/S’p o(

- =0.
Asee i1 gi+m n L m 1
i+n i+n i+m i+m
m
Now 8,4 =B, __H-_m__ , so if we denote
ot ¢—(g—1)
z+m

) t
ot) =B (q—_T;—_—W> , then it follows that @s,,t) =B, (m)
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402
By __t__,)
and therefore af’)(t) = \qt’“]_.(qt—) e/ Combining (3.25) and (3. 26) we obtain
1—
‘ n ! i+’l __f\ignti
(3. 27) lﬂ;) ®) (l+n)f0 ( " )(1 £t de

oy [\ [P (EmYq _ pyigmer gy
a"<i+m)j; ( m )(1 t)'t ‘dt}

angJ a2 [ (Y-

- — ol _7.71’_ i+m — )igm+1
() s ) (T amereea

n B — t_ _'y(t)l

-] l-gq—(t%l_li’i)yﬂl a,

since by (3.12)

[0} ( m_ ) g(i'*_”l)(l_t)itmﬂ

m
()
aoq)q ( +m) aﬁ,rl

| -
111332 im) Um
{ ai()—ai(t) if d=t=n
0 elsewhere

almost everywhere in [0, 1] and the convergence is dominated. By (3. 20), (3.21)

(3.22) and (3.27) it follows that

(3.28)  lim sup ’é f‘ [;g@;) P @y

u(')i(u)u) 1+m)(1 wiu m+1:|du, Bq‘)SSS

Since (3.28) holds for every >0, our theorem is proved.
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4. Proofs of Theorems 3 and 4.

PrOOF OF THEOREM 3. By (3.3) and the straightforward identities

@ = (1+ = )bn—bn_l(n>0), (by = 0) it follows that

(4.1) SHB)—sn=— i[(l +fll.-)bi—bi_l](l—Ani) + il[(1 +%-)bi—bi_l]A,,i.

i=1 i=m+
Now

N 1 N 1 1

Z [(1 + _'i<> bi_bi—l]Ani = Z bi[(l + _;:A)Ani_ An,i+1]_bmAn,m+l+bNAn‘N+1
t=m+1 t=m+1

and by (1.4), lim byA, y+; =0, hence
N—o0

Z [(1 + _Zl—) bi—bi—l]Ani = Z bi[(l + _:ZL—> Ani— An,i+1]_bmAn, m+1e
i=m+1 i=m+1

Thus by (4.1)

Si®—sa= - % b{(l ) a-an-0-a00)|
- b,n[(l + L) (1—A,.)+A, 1] Ly bi[(l + L) An—A, 1]
m = i
= ivnmibiv say.
i1
By Agnew’s theorem [1] we have to show that
4.2) %LT Yumi =0 for 7=1,2,++
and
(4.3) lim i{vmi -C,

Now (4. 2) follows exactly as (3.4) and we have to prove (4.3). By (3.6) it
follows that for 1=i=m

@ (1t )a-so-a-an = a-a0- (757) [ a-oreaso



404 D. LEVIATAN

- [ (yasorafigo- G

- _f‘“(";")a—t)ftwd{f:1;—”d[1—f—u<1—6<u))]}-

0+

Similarly by (3.2) we obtain for i=m +1

2

- foi_(i:”)a—tytnﬂd{ fo 1%”61[1%‘3(@]}.

Applying the technique we have used in the proof of Theorem 1, it follows
by (4.4) that for A=A\,

(4.5) (1 + —Zl~) Ayi—A, i = i A+ ( ’:”) f 1 A=)t dB(¢t)
0

1
{(1 - —m—> CEVNMEICEV .

é/ﬂl (m;n>(1‘—t)mtn+lldﬁ(t)l +j: (m:n>(1—t)’"t"+1 %))—'dt

1 [n(g+e)]

= > (*1"a-oeas0)

0 k=[n(g-9)]

1 [n(g+9)] 1_ /t
+ S (k:”)(l—t)"t"”»—It(lf‘t))| dt

0 k=[n(g-¢)]

and as B(¢) is continuous we obtain

. 1/(1+q—~¢) 1/(1+q—¢€) _
_af |dB()| +f B=BOl g ag AN o

/
/(1+g+8) 1/(1+q+¢) tkl_ t)

Having this for every €>0 it follows by the continuity of 8(¢) that
. 1

Again the technique we have used in the proof of Theorem 1 and a proof
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similar to that of Theorem 2.2 of [3] enable us to conclude that

@n lim 3 Vo] = [/(;q)%‘{d[ﬁﬂ—ﬁ(@)]]
and

had 1/(1+9) 1 _
4.9 tim 3 mand = [ 154 100

Our theorem follows now by (4.6), (4.7) and (4.8).

PROOF OF THEOREM 4. The proof is similar to that of Theorem 3,
applying Remark 2.1 of [3] instead of Theorem 2.2 of [3]. It remains to
prove that for each function fi¢) bounded in [0, 1], we have at each point t=x,
0<x <1 where flxrt) exist,

im 3™ (") -y () = U+

The proof is similar to the proof of the same property for the Bernstein
polynomials (see [4] Theorem 1.9.1).
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