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HOMOGENEITY AND SOME CURVATURE CONDITIONS

FOR HYPERSURFACES>
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Introduction. In this paper we investigate hypersurfaces of real space
forms which satisfy certain conditions. Specifically, our results center around
analogues for real space forms of non-zero curvature of the following theorems
for Euclidean space.

THEOREM 0.1 (Nagano-Takahashi [1]). A homogeneous hypersurface in
Euclidean space is iso?netric to the Riemannian product of a sphere with
a Euclidean space provided that the second fundamental form has rank
different from 2 at some point.

THEOREM 0.2 (Nomizu [2]). A complete hypersurface in Euclidean
space whose curvature operator when extended to act as a derivation on
the tensor algebra at each point, satisfies R(X, Y) R = 0 (for all tangent
vectors X and Y) is congruent to the Riemannian product of a sphere with
a Euclidean space (embedded as a cylinder over the sphere) provided that
the second fundamental form has rank ^ 3 at some point. (We allow the
case when the Euclidean space has dimension zero in which case our
hypersurface is a sphere.)

In §1 we introduce the basic facts about hypersurfaces in Riemannian
manifolds and in particular in spaces of constant curvature. The real space forms
are mentioned together with the model hypersurfaces for the later classification
theorems. Finally, rigidity of hypersurfaces in real space forms is discussed.

The main local decomposition theorems are proved in §2. The structure of
the hypersurface is studied by looking at the distributions of principal vectors.
Section 3 is devoted to a classification of complete Einstein hypersurfaces of
real space forms and provides a global version of the work of Fialkow [3].

*) This paper is a part of the author's doctoral dissertation written under the direction of
Professor K. Nomizu at Brown University. The research was done while the author held a
fellowship from the National Research Council of Canada.
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In section 4 we prove an analogue of Theorem 0.2 for hypersurfaces in
the sphere and also prove a local version for hypersurfaces in real hyperbolic
space. The homogeneous case is discussed in §5 and a new proof of Theorem
0.1 is obtained, together with results for the sphere and hyperbolic space.
Finally, in §6 we investigate the minimal hypersurfaces of real space forms
which satisfy one of the conditions previously studied.

All manifolds and differentiable functions will be of class C°°. Any notation
not explicitly defined will be found in [4].

1. Hypersurfaces. Let Mn+1 be a connected Riemannian manifold. A

connected Riemannian manifold Mn together with an isometric immersion f of

M into M is called a hypersurface of M. If M admits two immersions fx and

f2 as hypersurfaces in M, (M, fλ) and (M, f2) are said to be congruent when

there is an isometry τ of M such that f2 = τofx.

For any immersion / of a manifold Mn into a manifold Mn+k it is a familiar
notion that the tangent vectors to M may be considered as tangent vectors to
M and it is possible to talk about covariant differentiation in M of vector fields
along directions tangent to M. This idea is made precise by the following
formalism due to Dombrowski.

We say that Z is a vector field in M along f if
( i ) Z is a differentiable map of M into T(M), and
(ii) the following diagram is commutative

T(M)

M

where π is the natural projection.

Let X/M) denote the set of vector fields in M along f. ϊ/(M) is a module

over %(M) in a natural way. If Xe 3E(Λf), then/*X<E ϊ r ( M ) . Also if YeX(M),

then the restriction of Y, which we denote by f*Y9 lies in X/M).

Let V be a Riemannian connection on M. Then it can be proved that there
is a unique mapping V %(M) X Xr(M) —> s£f(M) such that the following
formulae hold:
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( l ) Vx 1 + Λ 2: =

( 2 ) V^r(Z1 + Z2) =

( 3 ) V\φof)χZ = φ\J XZ for

( 4 ) Vx(φZ) = X(φof)Z+φ\7xZ for φ <

( 5 ) S7Jf*W)p = f*(S7vW)fm for all p z M and W €

provided that f*(Xp) = F / ^ .

In the case where (Mn,f) is a hypersurface in Mn+1 we may define ξ €
subject to the following conditions :

ii) <7(f/*X) = 0 for all X<-S(M).

Such a I can always be defined locally and is referred to as a field of unit
normals. If M is simply connected and M is orientable, ξ may be defined
globally on M. Wherever ξ is denned, it is uniquely determined up to a sign

by i) and ii). For each pe M, Tf{p)(M) is the orthogonal direct sum of f*(Tp(M))
and the span of ξv. Since f* is one to one we can define, for X and Y in 26(M),
VxYe 3E(M) and Λ(X, Y)<= R by the formula

VX/»y) = MVxYHKX, Y)ξ.

It turns out that V is just the Riemannian connection of M and that h is a
tensor field on M of type (0,2). Furthermore if we define the operator A on
tangent vectors to M by the equation

we can show that h(X, Y) = g{AX, Y) for all X and Y € X(M). A is a symmetric
tensor field of type (1,1) defined wherever ξ is defined and is called the second
fundamental form. A2 is well defined on all of M since any two normal fields
agree up to a sign.

In the following we will consider TV(M) as a subspae of Tf{v)(M) for all
p whenever confusion is unlikely. We will replace \7/f#Y) by \/λY and identify
f^X with X. With these identifications in mind we write

= -AX.
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A direct computation applied to these equations yields the Gauss and
Codazzi equations :

R(X, Y)Z = R(X, Y)Z+g(AX, Z)AY-g(AY, Z)AX

R(X, Y)ξ = (

In any inner product space V, we may identify Vf\V with the space of
skew symmetric endomorphisms of V by setting

= <b, c>a-<a, c>b.

With this notation the Gauss equation may be written

R(X, Y) = R(X,Y)+AXf\AY.

A complete, simply connected, connected Riemannian manifold of constant
curvature is called a real space form. For each real number c and each integer
n > l there is (up to isometry) exactly one ^-dimensional real space form of
constant curvature c.

All real space forms are frame homogeneous, i.e., for any pair of points x
and y and any orthonormal frames u at x and v at y there is an isometry φ
such that φ(x) — y and φ* maps u onto v.

The real space forms are

( i ) Euclidean space En (R" with the usual inner product XΎ —
ΐ = l

c = 0.
(ii) Real hyperbolic space Hn(c) (the interior of the disk of radius 2a in

Rn with g{XyY) = X Y/(l-r2/4α2)2, c = -l/a2<0.
(iii) The sphere Sn(c) of radius a in Euclidean space with the metric

induced from En+ι, c = l/a2>0.
In a space of constant curvature c, the curvature tensor is expressed by

R(X, Y) — cX/\Y. Thus for hypersurfaces of spaces of constant curvature, the
equations of Gauss and Codazzi reduce to

R(X9 Y) = cXAY+AXΛAY

and

The following is a list of the hypersurfaces which will appear in our classification
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theorems. Unless specified otherwise each is of the form (M,f) where f is an

inclusion mapping. For M=En+1 we have

1) Hyperplanes : M = [x \ xn+ι = 0}, A = 0, M^En.

2) Spheres : M = [x\ \\x\\2 = 1/c], A = «ΠΓI, M^S%c).

3) Cylinders over spheres : M= [x\x\+ x\ = 1/c],

A = *J~T / P 0O, n> ρ> 1.

4) Cylinders over complete plane curves : Let K : R—+E2 be a complete

plane curve. K(R) is isometric either to iϊ1 or Sι depending on whether or not

it is simply connected. If i denotes the identity map in En~ι then (E1xEn~1,

Kxi] is a complete hypersurface in En+ι. A = XllQ)0 for some scalar function

λ on the curve.

We also consider the following hypersurfaces in Sn+1(c)

1) Great spheres : M = [x\ \\x\\2 = 1/c, xn+2 = 0} A = 0, M^S\c).

2) Small spheres : M— [x\ \\x\\'2 = 1/c, xn+2 — *Jΐ/c — ΐ/c,

A=^c=ε /, M^S\c).

3) Product of spheres : M= {(x,y)\ \\x\\2 - l/cl9 \\y\\2 = l/c2, x^E^\

y € En~p+ι

9 1/cy + l/co = 1/c, l<p<n-l}.

M^Sp(c 1)x Sw-"(c2) A = (1/Vc7+^,) (cjp®(-c^ln_p).

4) M = £ l x S ' ι " 1 ( 4 fψ,x) = ((l/^//Ύι)cost, (1/+/~cdsin t,x)zSn+\c)^En+2

where 1/^ = 1/^-1/^. A = (1/ΛΛΓ+^) (^/i © ( - c ^ - O -

For Hn+ι(c) we will need only one kind of hypersurface

1) Hyperplanes: M= {x\xn+l = 0} A = 0, M^Hn(c).

Later, when classifying hypersurfaces up to congruence, the statement "(M,f)

is a great sphere" (for instance) means that (M, /) is congruent to the

hypersurface described above as a great sphere.

Let (Mn, f) be a hypersurface in Mn+1. We recall that the rank of Ax is

called the type number at x and is written t(x). The type number depends on

f ΰut not on the choice of ξ. We will use Mn(c) to denote a Riemannian

manifold of constant curvature c.
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PROPOSITION 1.1. Let (Mw, / ) be a hyper surf ace in Mn+\c). Then if
t(x)^2, ker Ax = [X € TX(M)\R(X, Y) = cXAY for all Y e TX(M)}.

PROOF. Denote the latter space by T0(x). If AX = 0, then 0 = AXAAY
= R(X, Y)—cX/\Y by the Gauss equation. Thus, ker Ax^T0(x). If we now
choose X arbitrary in TQ(x\ there is a Y z TX(M) such that AY Φ 0 and
g(AX, AY) = 0 at x. Since AX A AY = 0 at x, g(AY, AX)AX = g(AX, AX)AY
at x. Thus g(AX9 AX) = 0, and hence AX = 0, namely, X € ker Ax.

PROPOSITION 1.2. Let f and f be isometric immersions of Mn as a
hyper surf ace in Mn+1(c). If t{x) for f is ̂ 3 for all x, then A = ±A, where
A is the second fundamental form corresponding to f.

PROOF. We first observe that t(x) = t{x). For if Ί(x)^l, then AX A AY
= 0 for all X and Y and hence dim T0(x) = n contrary to the fact that t(x)^3.
Thus t(x) §: 2 for all x. Hence ker Ax = T0(x) = ker Ax. Since A and A are
symmetric, Im Ax = Im Ax = T^x)1-. In particular t(x) = t{x).

Furthermore, for arbitrary X £ TX(M), AX A AX = 0. For if not, we may

choose Y so that AXAAXAAYΦO. But AXAAY = ΆXAAY since R(X,Y)
— cXAY is independent of the immersion. Thus AX A AX A AYφO which is
a contradiction.

Thus, for each X there is a scalar c, possibly depending on X such that
AX = c AX. Choose X1 and X2 linearly independent in T^x^. Then
AXι=cιAXl9 AX2 = c2AX2 and A(Xι+Xi) = cΛA(X1 + Xi). But A and A are
one to one on T^ix)1- and so c1 = c2 = c i. Thus AX = cAX for some c independent
of X. This equation also holds of course for X z ker A. Now

AXAAY = c2AXAAY so c = ±1.

We conclude that Ax = ±AX.

It is a standard result (see for example [5], p.207) that (M, /) and (M, f)
are congruent whenever they have the same second fundamental form. Under
the hypothesis of Proposition 1. 2, we can choose ξ in such a way that A and

A coincide on M. Thus we have proved

THEOREM 1. 3. Let f and f be immersions of Mn as a hyper surf ace in
a real space form Mn+ι. If t(x) is ̂ 3 at each x, then (Mn, f) and (M11, f)
are congruent.

We recall that a hypersurface is said to be umbilical if Ax is a multiple of the
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identity for every x. We will show in §2 that in this case A is in fact a constant
multiple of the identity. If A is identically zero, the hypersurface is totally
geodesic. This means that in Dombrowski's formulation \/x(f#Y) = f*(VχY)
for all X and Y £ 9£(M). This definition of a totally geodesic submanifold makes
sense for higher codimension as well.

We now investigate the possibility of realizing certain spaces of constant
curvature c as hypersurfaces in a space of constant curvature c.

PROPOSITION 1.4. Let Mn(c) be a hypersurface in Mn+ι(c) where cφc
and n>2. Then c>c, rank A — n and Mn is umbilical.

PROOF. Let x be an arbitrary point of M. Choose mutually orthogonal
unit eigenvectors {̂ }?=i for Ax and let {λ>i}i=ι be the corresponding eigenvalues.
Then by the Gauss equation

R(ei9e3) = (Xiλj + c)ei/\ej.

Since M has constant curvature c, Xiλj + c = c for distinct i and j . We
conclude that all the λ4 are equal and non-zero. In fact \\ = c — c. Thus c>c,
rank A = n and A2 = (c — c)L

COROLLARY 1. 5. Let f and f be immersions of Mn(c) as a hypersurface

in a real space form Mn+ι(c). Then if n>2 and cΦc, (Mn, f) and (Mn, f)
are congruent.

PROOF. Since t(x) = n^3 for all xzM we may apply Theorem 1.3 to
obtain the result.

The case c = c is more difficult and we use a theorem of O'Neill and Stiel
[6] which may be stated as follows.

THEOREM 1.6. A complete hypersurface M\c) of Mn+1(c) is totally
geodesic provided that c>0.

No such result is true in the case c = 0 since cylinders over complete plane
curves need not be totally geodesic in En+1.

Theorem 1. 6 provides us with a rigidity theorem in light of the following
proposition.

PROPOSITION 1. 7. Let f and f be totally geodesic immersions of Mn

as a hypersurface in a real space form Mn+1. Then (Mn,f) and (Mn,f) are
congruent.
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PROOF. Since the second fundamental forms A and A are both zero, the
standard result used in Theorem 1. 3 gives the desired conclusion.

PROPOSITION 1. 8. Let (Mnf) be a hypersurface of a real space form

Mn+1 such that either t(x)^3 for all x or t{x) — 0 for all x. Then for every

isometry φ of M, there is an isometry τ of Mn+ί such that f°φ = τof

PROOF. We apply Theorem 1. 3 or Proposition 1. 7 to the immersions f
and foφ.

For a given Riemannian manifold M, we denote by M its simply connected
Riemannian covering. The associated covering map π is a local isometry. If
(Mn, f) is a hypersurface of Mn+\ so is (M'\ f°7r). Let A denote the second
fundamental form for the latter hypersurface corresponding to some normal field
ξ. Then A and A are closely related. In fact, we have

PROPOSITION 1.9. At each point x of M, Ax = ±7ti1AK(X)π*.

PROOF. Let X be a vector field on M

here we are regarding ξ as a vector field in M along f°7t. On the other hand

every vector field on Mis locally of the form π#X for some X £ X(M). Regarding

ξ as a vector field in M along / we write V^rζ — —f*AπχX.

Since (foπ)* (TX(M)) =f*(π*Tx{M)) = MΊ\(r)(M)\ we see that γx=±ξmje).
Thus for each .r c; M

Since f* is one to one, this implies n^AX — ±Aπ#X for all X €
Since TΓ̂ . is one to one, the conclusion follows.

/\
We remark that Aπ{x) and Ax have the same rank and except perhaps for a

difference in sign, the same eigenvalues. Also, since n is a local isometry, any

local intrinsic property of M is also possessed by M. We shall make use of
these facts freely in subsequent work.

2. Decomposition of hypersurfaces. Let (M", / ) be a hypersurface in
Mn+ι. The eigenvalues of A$ are called principal curvatures at x and the
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corresponding eigenvectors are called principal vectors. The following lemma
assures us that the prncipal curvatures vary continuously on M.

LEMMA 2.1. Let A be a symmetric tensor field of type (1,1) on a
connected Riemannian manifold Mn. Then there exist n continuous functions
λ i ^ λ 2 ^ λ 3 i^λn such that for each x> {hi(x)}i=i are the eigenvalues of
Ax.

PROOF. Let f(t, x) = tn-\-aιt
n-1+a.2t

n-2+ +an be the characteristic
polynomial of Ax. Each at is a differentiable function of x. Suppose {|i}Li are
the distinct eigenvalues of AXo and let mt be their respective multiplicities.
Assume ξγ > ξ2 > >ξr. Let £0 > 0 be arbitrary and let £ = min{£0, 1/2,
( l ^ m a x l ^ - ^ l j . Let C t = {ze C\ \z-ξt\ =6-}. Clearly f(z,xo)Φθ on Q. Choose
δ0 > 0 so that if d(x, xo)<Cδo (where d is the distance function on Mn arising from

the Riemannian metric) then f(z, x)Φθ on Q. Then m* = -z—- I ^ ? °̂  dz.
Z π t Jet /V^^o)

However

I J. r ίfXz,x0) _ f(z,x) \dz\<€ su
 ]flz^) _ f'(z>x) \

I 2πi JCi \f(z,Xo) f(z, x) J \— zzci\f(z,x0) f(z, x)\'

But this expression converges uniformly to 0 on Q as x—->x0. Thus there is
δ < δ0 such that

d(jr9xi}) < δ implies sup ^ 7 ^ ~ζ^V < L

z*K f(z,xΌ) f(z,x)

Hence

Since the integral is integer-valued and is in fact the number of zeros of f(z,x)
inside Ci9 we see that f(z, x) has nti zeros inside Q.

In our case each λ* is real and so if d(x,xo)<δ then \Xi(x) — Xi(xo

PROPOSITION 2. 2. Let A be as in Lemma 2. 1 and suppose that exactly
two eigenvalues λ > μ are distinct at each point. Then λ and μ have constant
multiplicities and are differentiable.

PROOF. Let x0 e M. Then
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λiOε0)
 = ^2(^0) = = \(Xo) = λ0 > μ0 = λ p + i(x 0 )

By continuity of each λ*, x0 has a neighborhood where

Since only two eigenvalues are distinct, λ! = λ2 = λJ0=λ>μ=Xp+ι = = λ n

within this neighborhood. We have shown that for each integer p> Up

= {x I multiplicity \(x) = p] is open. But M i s a finite union of such sets and M

is connected, so λ has constant multiplicity.

Let p be the multiplicity of the larger eigenvalue λ. Define two functions

/ = pX + qμ (q = n-p) and g=p{p-l)X2 + 2pq\μ + q{q-l)μ2. Both /and g are

differentiable since they are coefficients of the characteristic polynomial of A.

Now f2 = p2X2 + 2pqXμ+q2μ2. Thus p\2 + qμ2 =f2-g and since (qμ)2 = (f-pX)2,

we have pnX2 - 2pfX + / 2 - q(f2 -g) = 0. Set h(t, x) = put2 - 2pft + (1 - q)f2 + qg.

Note Λ(λ, x) = 0. dh/dt = 2pnt-2pf= 2p{nt-pλ-qμ). Thus dh/dt(X0, x0) Φ 0.

By the quadratic formula, λ is the unique root of h(t> x) = 0 near x0 which

coincides with λ0 at x0. Since λ0 is not a repeated root, λ is different iable.

Since μ = (trace A—pX)/q, μ is also differentiate.

PROPOSITION 2. 3. Let (Mn,f) be a hypersurface in Mn+λ(c). If at each

point of M, exactly two principal curvatures λ Φ μ are distinct, then the

distribution Tx— [X \ AX = XX} is differentiate and involutive. If dim

Γ λ > l , then Xλ = 0 for Xe Tλ.

PROOF. Let us restrict ourselves to a neighborhood of a point x0 where

ξ is defined and λ>// . By 2. 2, λ and μ are different iable and have constant

multiplicities. Choose different iable vector fields Xu X2, , Xn near x0 in such

a way that {Xu , Xp] and {Xp+ί , , Xn) are bases at x0 for Tλ and Tμ

respectively. Let Yt = (A—μ)Xt, l^i^p and Yi = (A—\)Xi for p±l^=i^n.

Then the Y% are different iable and linearly independent near x0. Furthermore

{Yi, ,Yp} is a basis for Tλ and {Yp+i, 9Yn} for Tμ near x0. This follows from

the fact that (A - X)Yt = (A - λ)(A - μ)Xt = (A2 - (λ + μ)A 4- λ^X, = 0 for l ^ ί

^/> since ί2— (λ + /t)ί+λ/* is the minimal polynomial of A.

Finally if X and Y are vectors in Tλ9 A[X,Y] = A(V*Y)-A(VγX)= V

— Vr(AX) by the Codazzi equation. However, AY = XY and AX = λX so

, 7] -

(A-λ)[x, yj =
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The left side of this equation lies in Tμ and the right side is in T\. But

TλΠ Tμ = (0) so (A-λ)[X, Y] = 0 and [X, Y] £ Tλ.

Also ix\)Y-QΓK)X = 0. If dim Tλ>l we may choose X and Y to be

linearly independent. Thus Xλ = 0.

PROPOSITION 2. 4. Lέtf (Mn,f) be an umbilical hypersurface in Mn+ι(c).

Then Mn has constant curvature c^c. The equality holds if and only if

(Mn, f) is totally geodesic.

PROOF. AS above A = λ/ where λ is constant. The Gauss equation gives

for any pair of tangent vectors X and Y

so the sectional curvature of all planes is X2 + c. Thus Mn has constant curvature

c = λ2 + c and c = c if and only if λ = 0.

THEOREM 2.5. Let Mn be a hypersurface in Mn+ι(c) whose principal

curvatures are constant. If exactly two are distinct, then M is locally

isometric to the product of two spaces of constant curvature.

PROOF. Let λ > μ be the two distinct principal curvatures. By Proposition

2. 3, T\ and Tμ are differentiable and involutive distributions.

If XzTλ, YzΊ\, the Codazzi equation gives VΛ>YV Vr(λX) = A\JXY

— A\/YX. Since λ and μ are constant, we get (A—\)\/γX = (A— μ)S7χY- The

left side is in T λ while the right side is in Tμ. Hence both sides are zero,

V r X s T λ , \7χYzTμ. Now if ZeTλ

g(VzX,Y)+g(X,V*Y) = Vz(g(X,Y)) = 0.

On the other hand \/zY € Tμ so g{X, \/zY) = 0. Thus we have shown \JZX £ Tj~

for all Z and XzTλ. But Tλ = T±. We may write our results V r λ Γ μ c T μ

and VτλTλ^Tλ. This means that T λ (and similarly Tμ) is a parallel distribution.

It now follows from [4], p. 182, I, that M is locally isometric to the

Riemannian product of the maximal integral manifolds M λ and Mμ. Furthermore

each integral manifold is totally geodesic in the sense that the Riemannian

connection on Mλ (resp Mμ) is just the restriction of V to Mv(resp Mμ). The

curvature tensors of M λ and Mμ are therefore just the restrictions of R. If

X,YzTλ, then R(X,Y) = (Λ2 + c)XAY. Thus if dim M λ > l , Mκ is a space of

constant curvature X2 + c. Similarly, Mμ. If dim Mλ = 1 the product decomposition

still holds but the sectional curvature is not defined. Since all one dimensional
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Riemannian manifolds are locally isometric, there is nothing further to say.
In either case, however, we may now find the relationship between λ and

μ, Take XzTλyYz Tμ. Since each distribution is parallel, R(X,Y)Y e Tμ. Thus,
assuming X and Y are orthonormal,

0 = g(X, R(X, Y)Y) = g{X,(\μ + εχxΛ Y)Y) -

Thus

The assumption that exactly two principal curvatures are distinct is not as
restrictive as would appear at first glance. In fact, for hypersurfaces of Mn+1(c),
c^O, it offers no restriction in light of the following theorem of E. Cartan
[7]. For a proof and generalization of this theorem we refer to Gray [8],

THEOREM 2.6. Let Mn be a hypersurface in Mn+1(c), c gO, whose
principal curvatures are constant. Then at most two of them are distinct.

If c were allowed to be positive in Theorem 2. 6, the statement would be
false. In §6 we will give an example of a hypersurface in Sn+ι(c) with three
distinct constant principal curvatures.

3. Einstein hypersurfaces. We recall that a Riemannian manifold is
said to be Einstein if the Ricci tensor is a constant multiple of the metric
tensor, that is S — pg. We shall prove a local classification theorem, first proved
by Fialkow [3] for Einstein hypersurfaces in spaces of constant curvature.

THEOREM 3.1. Let Mn, n>2, be an Einstein hypersurface in Mn+ι(c).
If p>(n — Vc then M is umbilical with λ2 — p/{n — 1) — c and thus M is of
constant curvature p/(n — l). If p = (n — Vyc then t(x)^l for all x and M is
of constant curvature c. If p < (n—l)c then c > 0, p = (n — 2]c and M is locally

isometric to M? ( ^ T ^ I X M ? " P ( ™~ Λ c\ where Kp<n~l.\p-l I \n-p-l )

PROOF. The Ricci tensor for a hypersurface in a space of constant curvature
is given by the formula

, Y) = (n-l)cg(X, Y) + g{AX, Y)tr*ceA-g(AX, AY).

Let XQ^M and let {eι}ΐ=1 be the unit principal vectors at x0 corresponding to
the principal curvatures {X }̂. Since S = pg, we have for each i, S{βi,e^) = ρ
= (n — lV + λi(trace A) — X?. Thus at each point, the principal curvatures satisfy
the quadratic equation t'2 — st + ρ — (n — l)c = 0 where s = trace A. Thus at most
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two principal curvatures can be distinct at each point. Let us denote them by

Suppose p>(ft — l)c. If XΦ u> at some point, then λ and μ have the same
sign. Also pK + (n — p)μ•— trace A = λ + μ. where p is the multiplicity of λ.
Hence (p— l)λ + in — p— l)μ = 0. This is a contradiction since p— 1 and n — p— 1
imply n = 2. Hence M i s umbilic and λ2 — (ftλ)λ + p — (ft —1)5 = 0. This implies
(ft — l)λ2 = p — (ft — l)c and by the Gauss equation M has constant curvature
p/(ft-l).

If p<(ft —l)c and λ = μ. at some point, then the same formula (ft —l)λ2

= p — (ft — 1) " holds. This is a contradiction since p — (ft — l ) c < 0 . Hence M
has exactly two distinct principal curvatures at each point. As above,
(p—l)X + (n — p—ϊ)μ=0. Since neither λ nor μ can be zero (their product being
p — (ft — l)c), we must have l<Cp<Cn — 1. Thus

^ p ( p - ( » - l ) * ) a n d ^ = - ^ r j i P ( ) )

Applying 2. 5 we see that M is locally isometric to the product of spaces of
constant curvature λ2-fc and μ2 + c respectively. It also follows that Xμ + c = 0.
This implies p —(n — l)δ= —c, that is p — {n — 2)5 and c>0. Hence

, 2 , _ n-ρ-1 „ , . ft-2 .
X2 + c = ^ c+c = -—j- c.

/>— 1 ^ ? — 1

Similarly

ft —

This completes the proof when

If ρ — {n — l)c9 the product of two distinct eigenvalues (if such exist) is
zero. Thus if λ ^ O , trace A = pX so X2-p\2 = 0 implies />= 1. Thus ί ( x ) ^ l
for all x and M has constant curvature c by the Gauss equation.

COROLLARY 3. 2. Let Mn, ft > 2 fo Λft Einstein hypersurface in Mn+ \c).
If ct^O, then p^(n — l)c and M is a space of constant curvature p/(n — l).

For M=En+1 and Sn+ι (c) we now give the global versions of Theorem
3.1.
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THEOREM 3. 3. The complete Einstein hy per surf aces in En+1 are spheres,
cylinders over complete plane curves and hyper planes.

PROOF. From 3.1 we have two choices, p > 0 and p — 0. In the latter case,
t(x)^l for all x. Thus M is locally isometric to En and by a theorem of
Hartman-Nirenberg [9] is a cylinder over a complete plane curve. If t(x) = 0 for
all x, then M is totally geodesic and is just a hyperplane.

If p>0, M has constant curvature p/(n — l) and by 1.4 t{x) — n for all x

and M is umbilical. Let M be the simply connected Riemannian covering of M

and denote the covering map by π. Then (M,/°τr) is a complete simply connected
space of constant curvature pi in —1)>0 and hence is isometric to Sn(ρ/(n — 1)).

Thus M is orientable and ξ can be denned globally on M. By 1. 3 (M, f°π) is
congruent to the standard sphere in En+ι. In particular foπ is one to one,
π is one to one and M is simply connected. (M,/) is congruent to the standard
sphere of curvature ρ/(n — ί).

REMARK. A proof of the Hartman-Nirenberg theorem, more in the spirit
of this paper, may be found in the appendix of [2]. For the case p > 0 in 3.3,
a more elementary proof, based on the fact that an umbilical hypersurface in
En+1 is part of a hyperplane or a sphere, may be found in [4], Volume II, p. 36.

THEOREM 3.4. The complete Einstein hyper surf aces in Sn+ι(c) are the
small spheres, the great spheres and certain products of spheres.

PROOF. Let (Mn,f) be a complete Einstein hypersurface in Sn+ι(c). Then

(Mn,foπ) has the same properties. There are three possibilities : (i) ρ>(n — l)c

implies Mis a complete simply connected space of constant curvature ρ/(n — ί) and

is hence isometric to Sn(ρ/(n — ί)) (ii) ρ = (n — l)c implies Mis isometric to S\c)

(iϋ) ρ = {n—2)c. Since Mis simply connected, ξ and hence Tλ and Tμ can be defined

on all of M. By [4] p. 187, I, Mis isometric to S* ( x r f *j x Sn'v

By 1.3, 1.6 or 1.7 (M,f°τr) is respectively a small sphere, great sphere or
product of spheres. In each case foπ is one to one and thus rt is one to one.
It follows that M is simply connected and (Mn, f) is congruent to the appropriate
hypersurface.

We note that any space of constant curvature c is Einstein with p = (n — ί)c.
Also the product of two spaces of constant curvature Mp(cί)xMn~p(c2) is
Einstein if (p—ϊ)c1=(n—p—l)c2. Thus the above hypersurfaces are indeed
Einstein.
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4. Hypersurfaces for which R(X, Y) R = 0. For any pair X and Y
of vector fields on a Riemannian manifold, R(X, Y) is an endomorphism of the
tangent space at each point. The mapping of the algebra of tensor fields into
itself given by

T — \7χ\7γT- Vr V X T - VLΓ.Γ]T

is the unique derivation which extends R(X,Y). Thus it is natural to write
R(X, Y) T for the image of an arbitrary tensor field T under this mapping.

In particular, we consider the (1, 3) tensor field R(X, Y) R. It acts on a pair
of vector fields U and V as follows

(R(X9Y) RXU,V) = [R(X,Y)> R(Uy)]-R(R(X,Y)Uy)-R(U,R(X,Y)V).

We first observe that on a two dimensional Riemannian manifold R(X,Y) R
always vanishes. In order to verify this it is sufficient (because of the symmetry
properties of R) to look at (i?(X,Y) i?)(X,Y) for linearly independent X and Y.

We also note that if M is a locally symmetric Riemannian manifold (i. e.,
V*R = 0 for all X), then R(X,Y)-R = 0 for all X and Y. The problem of
finding an appropriate converse to this statement has been studied by Nomizu.
In [2] he conjectures that the converse is true for complete, irreducible
Riemannian manifolds of dimension at least three. The main theorem of his
paper verifies this conjecture for hypersurfaces in Euclidean space as follows.

THEOREM 0.2. The complete hypersurfaces of Euclidean space such
that R(X,Y) R = 0 and t(x) g; 3 for some x are (i) spheres and (ii) cylinders
over spheres of dimension at least three.

For a compact Riemannian manifold M, the condition R(X, Y)'R = 0
together with \/S = 0 (in particular the Einstein condition S = pg) implies that
M is locally symmetric. We refer the reader to Lichnerowicz [10] pp. 9-11 and
Yano [11] p. 222.

We now proceed to investigate the implications of the condition R(X9Y) R = 0
for hypersurfaces in spaces of constant curvature.

PROPOSITION 4.1. Let Mn be a hyper surf ace in Mn+\c). Then R(X,Y)-R
= 0 (for all tangent vectors X and Y) if and only if for distinct i.j,k the
principal curvatures satisfy (λ tλό + δ)(λ>ι — λ^λ^ = 0.

PROOF. Let {et} be an orthonormal basis of eigenvectors of AXo, corresponding
to eigenvalues λ*. If i,j,k are distinct we use the Gauss equation to get
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[R(eues\R(euek)\ = ( λ Λ ^ X λ Λ t + ̂ lA Λ ej,eί Λ ek]

= ( λ ^ + ̂ XλiλA + ̂ K Λ ĵ

= (λ tλ j + cXXjXic + c K Λ ^

Thus if R(X, Y) R = 0 for all X and Y, we must have

(λiλ^ + ^ X λ i - λ ^ = 0.

Conversely, suppose that this condition holds. It is sufficient to verify R(eί,ej)'R
= 0 f° r i^j- If hjyk and / are all distinct every term in the expression for
{R{ei,ej)'R)(e]cyeι) = 0. By the above condition (R(eι,ej) R)(euek) = 0. Finally, the
skew symmetry takes care of the rest.

COROLLARY 4. 2. Let Mn be a hyper surf ace in En+ί. Then

( 1 ) if t(x) g 2, we have R(X,Y) R = 0 for all XyY z TX(M)

( 2 ) if t(x) ^ 3 and R(X9Y)-R = 0 for all X, Y e TX(M)9

then the non-zero principal curvatures are equal.

PROOF. The formula above reduces to λiλjλ^λ^ — \3) = 0. Thus if t(x)^2
the formula is always satisfied. If t(x)^3 then if λ; and λ̂  are non-zero, we
can find λ^ Φ 0 and by the formula λ̂  = λ ; .

REMARK. Conclusion (2) is the starting point for Nomizu's proof of 0.2.
Conclusion (1) shows that the condition R(X,Y)'R — 0 offers no restriction on
the class of hypersurfaces with t(x)^2 everywhere. The existence of an
irreducible, complete hypersurface in En+1(n^ 3) with t(x)^2 everywhere which
is not locally symmetric is undecided. However, such a surface would have at
least one x with t(x) — 2 by the Hartman-Nirenberg theorem.

Henceforth we will deal with the case cΦO.

PROPOSITION 4.3. Let Mn be a hypersurface in Mn+ι(c), c^0, n>2

with R(X,Y)-R = 0. Then for any x^M either t(x) = n or t(x)^l.
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PROOF. Suppose t(x)φn and thus λ̂  = 0 for some i. Then for any jφ k
distinct from z, (λ λj + cXλ; — Xj)Xic = 0 so XjXlcc =0. Thus λ̂  is non-zero for at
most one j and t(x)^==l. Furthermore if t(x) — n, then for any j , XιXj + c)(Xι—Xύ)
= 0 so Xj — Xγ or Xό = — c/Xv. Thus at most two principal curvatures are
distinct at each point.

PROPOSITION 4.4. Assume the hypothesis of Proposition 4.3 and in
addition that at each point exactly tτvo principal curvatures are distinct
and they have multiplicities > 1. Then M is locally isometric to a product
of tτvo spaces of cojistant curvature.

PROOF. Propositions 2. 1 and 2. 2 imply Tλ and Tμ have constant dimension,
are differentiable and involutive. By 2.3 Xλ = 0 if X e Tλ. However μ = —c/X
so Xμ= -(c/λ 2 )Xλ = 0. Similarly Y\ = Yμ = 0 for Y s Tμ. This λ and μ
are constant. Theorem 2. 5 gives the result.

If the assumption that both λ and μ have multiplicity greater than 1 is
dropped (for instance if μ has multiplicity 1) then Xλ = 0 and Xμ = 0 for
X € Tχ. But we know nothing about YX or Yμ where Y £ Tμ. This leads us to
make the following definition.

DEFINITION. Let Mn be a hypersurface in Mn+\c). A point xzM is
called bad if (i) Ax is non-singular and (ii) Ax has a simple eigenvalue. All
other points are called good.

REMARK. Given a hypersurface Mn in Mn+ι(c), c^O with R(X,Y) R = 0
we have shown that it consists of points of the following types

II A = 0.

III A has 2 unequal non-zero eigenvalues of multiplicity > 1.

IV A has 2 unequal non-zero eigenvalues of multiplicity 1 and n — 1.

V A has 2 unequal eigenvalues, X of multiplicity 1, 0 of multiplicity
n-1.

PROPOSITION 4. 5. Assume the hypothesis of 4. 3. Then the set of bad
points is open.

PROOF. Let x0 be a bad point. Choose a neighborhood U of x0 where (i)
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Ax is non-singular and (ii) λ,(j;) > X ^ t ^ ^ > λsθ) ^ ^ O ) ^λ,(:c). By
Δ

the last statement in the proof of 4. 3, λ2θr) = λ3(.a;) = =λn(.r) in £/. Hence
all points in ί7 are bad.

REMARK. The same argument shows that the set of points of type III is
open and the multiplicities remain constant in sufficiently small neighborhoods
of points of this type.

PROPOSITION 4. 6. Under the hypothesis of 4.3 if c> 0 then the set of
bad points is closed.

PROOF. Suppose a sequence of bad points xt converges to x € M. Since
X(Xi)φ μ{xι\ X(Xi)μ(Xi) + c=0. By continuity, X(x)μ(x) + c=0. Since \*(x) + ε^0,
x must be of type III or IV. Since the points of type III form an open set, x
must be of type IV.

PROPOSITION 4.7. Assume the hypothesis of 4. 3 and all points are
good. Then either t{x) rg 1 for all x or t(x) = n for all x.

PROOF. Let F= {x\t(x)^l} = {x|det Ax = 0}. Clearly F is closed.
Since M is connected, it will be sufficient to show that F is also open. First
consider a sequence of points yt of type III converging to some point y0. Since
the principal curvatures are continuous and the equation λμ + £ = 0 holds for each
member of the sequence, it also holds at y0. It follows that y0 cannot lie in F.

Let xQ be an arbitrary member of F. The above argument shows that x0

has a connected neighborhood U which contains no points of type III. We will
now show that U has no points of type I. Suppose there is a point y of type
I in U. Let W= {x £ U \ det Ax = detAy}. Clearly W is closed in U. Choose
an arbitrary x in W. Since Ax is non-singular, x has a (connected) neighborhood
U' <^U where A is non-singular. U' consists entirely of umbilics. By Proposition
2.4, λ is constant on U and is equal to X(x). This shows that W is open and
hence W = U. This cannot happen since x0 belongs to F. We conclude that
there are no type I points in U. Thus U Q F and the proof is complete.

COROLLARY 4.8 Let Mn, n>2, be a hypersurface in Mn+I(c\ cφO. If
all points are good, R(X,Y) R — 0 and t{x) ^ 1 for some x, then M is a space
of constant curvature c.

PROPOSITION 4. 9. Let Mn be a hypersurface in Mn+1(c) (£>0, n>2).
Assume t(x)^2 for some x and that M has at least one good point. If
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R(X,Y) R = 0 the umbilics form an open and closed set.

PROOF. We first note that all umbilics are of type I. This follows from
Propositions 4.5, 4.6 and 4.7. Let xt-^x where the x% are non-umbilic points.
Then the xt are of type III and \{xi)μ{xι) + c = 0. By continuity of λ and μ,
we get X(x)μ(x) + c = 0. Since c>0, x cannot be an umbilic. Thus the set of
non-umbilics is closed. The other direction is trivial. {x\X(x) = μ(x)} is closed.

THEOREM 4.10. The complete hyper surf aces of Sn+\c) satisfying R(X,Y)-R
= 0 and having at least one good point are (i) all small spheres, (ii) all
great spheres, (iii) all products of spheres (of dimensions > 1).

PROOF. We first note that spheres and products of spheres satisfy S/R = 0
and hence satisfy R(X,Y) R = 0. They are also, of course, complete.

If t(x)^l for some x, Mn is a space of constant curvature by 4.8. In
particular it is Einstein. If t(x)^2 for some x and M is umbilic, again M is
Einstein. The arguments of Theorem 3.4 give us great spheres and small
spheres respectively. By 4. 9 the other possibility is that there are no umbilics
and every point is of type III.

(Mn, fon) has a globally defined normal, constant principal curvatures and
globally defined parallel distributions Tλ and Tμ of dimension > 1. Thus Mn is
isometric to SP(X2 + c)x Sn-p(μ2 + c). By 1.3, f°τt is one to one. Thus it is one
to one, M is simply connected and (M, f) is a product of spheres as required.

5. Homogeneous hypersurfaces. A Riemannian manifold is said to be
homogeneous if its group of isometries is transitive. A homogeneous Riemannian
manifold is always complete ([4] p. 176, I).

In this section we study those homogeneous Riemannian manifolds which
occur as hypersurfaces in real space forms.

THEOREM 5.1. Let (Mn, / ) be a homogeneous hyper surf ace in Mn+ι{c).
Then either t(x) fg 1 for all x or t(x) is constant on M.

PROOF. We recall (Proposition 1.1) that if t(x)^2 then ker Ax = T0(x)
= {X\R(X,Y) = cXf\Y for all Y}. Now if y is another point of M, there is an
isometry φ of M with φ(x)—y since M is homogeneous. φ# is a linear
isomorphism of TX(M) onto Ty{M) preserving inner products. Thus φ*(T0(x))
= {φ*X\R(X,Y)=cXAY for all Y} = [φ*X\R(φ*X,φ*Y) = cφ*X Aφ*Y for all Y]
= T0(y). Thus dim T0(.r)^diin T0(y). By symmetry, dim T0(y)^άimT0(x)
so t(x) = t(y).

If t(x) 5g 1 for some x, then dim T0(x) = n. Since by the above argument,
dim To is constant, t(x)f^l for all x. This completes the proof.
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THEOREM 5. 2. Let (Mn,f) be a homogeneous hyper stir face of a real
space form Mn+\c). Then if t(x)^3 for all xe M, the principal curvatures
of M are constant.

PROOF. Choose x,y e M and an isometry φ of M such that φ{x) —y. By
Proposition 1. 8, φ may be extended to an isometry τ of M (i.e., τof = foψ). If
ξ is a field of unit normals near x, then τ#ξ is a field of unit normals near y.
The following sequence of equalities implies that Av = άzφ*Axφ*~ι and so

On the other hand,

Thus AJ and AJ have the same eigenvalues. Thus the squares of the principal
curvature functions are constant. Since these functions are continuous (Lemma
2.1), they are themselves constant.

THEOREM 5. 3. Let Mn be a homogeneous hyper surf ace in a real space

form Mn+ι(c) xvhere c 5^0. Then if for some x, t(x)^2 either
( i ) Mn is a space of constant curvature c and t(x) ^ 1 for all x
(ii) Mn is a space of constant curvature c > c, t(x) — n for all x and

the immersion is umbilical
(iii) M is locally isometric to M\(K2 + c)xMr£~p(μ? + c) -where Xμ + c=0

and l<Cp<n — l.
(iv) M is locally isometric to M[xAl?~ι(μ 2 + c) for some μ.

PROOF. By 5.1, either t(x)^l for all x or t(x)^3 is constant on M.
If the former holds then M is a space of constant curvature c. If the latter
holds the principal curvatures are constant by 5. 2. If M is umbilic then by
2. 4 M has constant curvature c > c and t{x) — n. If M is not umbilic, then
there are exactly two distinct principal curvatures by 2.6. By 2.5, M is
locally isometric to the product of two spaces of constant curvature in the
manner described by (iii) and (iv).

We are now in a position to give a new proof of the theorem of Nagano
and Takahashi for Euclidean space.

THEOREM 0. 1. Let ( M " , / ) be a homogeneous hypersurface in En+i

such that t{x) Φ 2 for some x. Then Mn is isometric to one of the follozving
( i ) E"
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(ii) SιxEn~ι

(iii) Sk(c)xEn-\ c>0, 2<k^n-l

(iv) S\c\ c>0.

PROOF. If t(x)^l for all x, then we invoke, as in Theorem 3. 3, Hartman-

Nirenberg Theorem [9] to show that M is isometric to En or Sι xEn~ι depending

upon whether or not M is simply connected.

Otherwise t(x)^3 for all x and t(x) is constant. The simply connected

covering hypersurface (M,f°π) has the same properties by 1. 9. If t(x) = n, M

is a complete, simply connected space of constant curvature <;>0 so is isometric

to Sn(c). If t(x) = k<n, then ξ is defined globally on M and thus Tλ and To

are defined on all of M. By [4] p. 187 M is isometric to the Riemannian product

of the maximal integral manifolds. Each of these is complete, simply connected
/\

and of constant curvature λ2 and 0 respectively. Then M is isometric to
/\

Sk(X2)x En~k. Now 1. 3 implies that in each of these cases (M,foπ) is congruent

to the corresponding model spaces. Thus in particular f°π is one and hence so

is 7t. We conclude that M was already simply connected and n is an isometry.

We have also proved

COROLLARY 5.4. The homogeneous hyper surf aces in En+ι such that

t(x)Φ2 for some x are (i) all hyper planes; (ii) all cylinders over spheres of

dimension greater than 2, (iii) all spheres', (iv) all cylinders over complete

plane curves.

THEOREM 5.5. Let (Mn,f) be a homogeneous hypersurface in Hnλ'\c\

c<0 such that for some x, t{x)-/--2. Then one of the following is true :

( i ) M is a space of constant curvature c> c and is umbilical.

(ii) 'M is a space of constant curvature c.

(iii) M is locally isometric to M%X2 + c)xM^V 2 + 0 where Kρ<n-l

and Xμ + c = 0.

(iv) M is locally isometric to M\x Mξ-'Xμ2 + c^for some constant μ^O.

PROOF. By 5.1 and 5.2, either t(x)^l for all x or 3^t(x) = constant.

In the former case M is a space of constant curvature c. If t{x)^3 for all x, then

the principal curvatures are constant and at most two can be distinct (5.2 and

2.6) say λ§rμ . If λ = μ . M is a space of constant curvature λ'2 + c and the immersion

is umbilical. If λ > f , we apply 2.5 to get conclusions (iii) or (iv).
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THEOREM 5.6. Let (Mn,f) be a homogeneous hypersurface in Sn+\c)
such that t(x) Φ 2 for some x. Assume further that at some point at most
two principal curvatures are distinct. Then one of the folloτving conclusions
holds :

( i ) M is a space of constant curvature c^c and (M,f) is umbilical.

(ii) M is locally isometric to Mf(λ2 + c) X Mζ-p(μ2 + c) where Kp<n-1
and Xμ -\-c =0.

(iii) M is locally isometric to MixM%~\μ2 + c) for some constant μ.

PROOF. The argument is the same as 5.5 with the following two
exceptions. Proposition 2.6 does not apply when c > 0 so we assume at most
two principal curvatures are distinct. The fact that (M,/) is umbilic when
c = c follows from the fact that M is complete and from Theorem 1. 6.

REMARK. If t(x) = 2 but at most two principal curvatures are distinct at
each point, the conclusions of 5. 6 still hold. For if λ is the nonzero principal
curvature, Tλ has dimension 2. For arbitrary x, y £ M choose an isometry φ of
M w i t h φ(x)=y. Then φ*(T0(x)) = T0(y). Since Tλ(x) = T0(x)±, φ* preserves
T\ as well. Thus if X and Y are orthonormal vectors in TX{M), R(X,Y)
= (X2 + c)XAY. Applying φ* we get R(φ*X,φ*Y) = (X2 + c)φ*XΛΦ*Y Hence
\2(x) = \2(y). T h u s λ is c o n s t a n t . A p p l y i n g 2 . 5 , λ 0 + c = 0 a c o n t r a d i c t i o n .

THEOREM 5. 7. Let (Mn, f) be as in 5. 6. Then (Mn, f) is either (i) a
small sphere, (ii) a great sphere, (iii) a product of spheres or Mn is locally
isometric to M\xM"~\μ2 + c) for some constant μ. In the last case if M is
simply connected it is congruent to the immersion of EιxSn~1(c2) onto
SVO x Sn~ι(c2) where 1/c, + l/c2 = 1/c.

PROOF. (Λίn, f°τt) satisfies the same hypotheses and in addition is simply-
connected. The arguments of 3. 4. give the first three results. In the last case

M is isometric to Eι xSn~\c2) (c2 = μ2jrδ) and by 1. 3 (M, fort) is congruent to
the hypersurface described above.

6. Minimal hypersurfaces. A hypersurface (Mn, f) in Mn+1 is said to
be minimal if trace Ax = 0 for all x^M. The class of minimal hypersurfaces
in Mn+ι(c) is very large so we shall discuss only those which have one of the
additional properties we have studied earlier. However, the minimality
assumption will sometimes permit us to weaken the other hypotheses. For
example we shall discuss minimal homogeneous hypersurfaces with t(x) = 2.

PROPOSITION 6.1. Let (Mn, f) be a homogeneous hypersurface in Mn+\c)
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and assume t(x) = 2 on M. Then the non-zero principal curvatures λ and μ
satisfy Xμ + c = constant.

PROOF. Following the notation of 5.1 we consider the two dimensional
distribution To. Denote by K(x) the sectional curvature of this distribution at
x. Since φ# maps T0(x) onto T0(y), the sectional curvatures K(x) and K(y)
are equal. On the other hand, K(x) = X(x)μ(x) + c by the Gauss equation for
all x. Hence Xμ+c is constant.

COROLLARY 6.2. If c^O and n>2, then there are no minimal

homogeneous hypersurfaces of Mn+1(c) with t(x) = 2.

PROOF. By 6.1, Xμ+c = constant. By minimality μ=—X. Thus λ2 is
constant. By continuity of λ, λ is constant. But 2.6 implies that λ, —λ and 0
cannot be distinct, a contradiction.

THEOREM 6. 3. The minimal homogeneous hypersurfaces of En+ι and
Hn+1(c) are hyperplanes if n>2.

PROOF. 6.2 allows us to assume that t{x)Φ2. The only minimal
hypersurfaces in the classification of 5. 4 are hyperplanes. For Hn+ι(c) we look
at 5. 5. If Xμ+c = 0 and p\ + (n-p)μ = 0 then pX2 + (n-β)(-δ) = 0. But λ2 and
( —c) are positive. Thus the only minimal homogeneous hypersurfaces are totally
geodesic spaces of constant curvature, i,e., hyperplanes.

PROPOSITION 6.4. Let (Mn, / ) , n > 2, be a minimal homogeneous
hypersurfaces in Sn+ί(c) such that for some point, at most two principal
curvatures are distinct. Then (Mn, f) is a great sphere, a product of spheres

I nc\ I nc \
isometric to Sp\ 1 xSn p[-~^~.) for Kp<n — 1 or Mis locally isometric

n-1

PROOF. If t(x)Φ2, Theorem 5.7 together with the assumption of minimality
gives the appropriate restrictions on c, λ and μ. If t(x) = 2 for all x, then the
non-zero principal curvatures must be equal. Thus trace A = 2X^0 a contradiction
to minimality.

The necessity of the assumption on the number of distinct principal
curvatures is demonstrated by the following example due to Wu-Yi Hsiang [12].

Consider E9 as the space of 3 by 3 real matrices with inner product <A,B>
— trace ABι. Consider the subset {A\A is symmetric, trace A = 0, | |A||=1}.
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Clearly this subset is isometric to *S4(1) since it is the intersection of 58(1)
with the four independent hyperplanes α:12 = ̂ r2i, Xn=Xn> 2̂3 = -£32, Xu+x^

=:0. Let SO(5) act on E9 by conjugation. Then S\ϊ) is invariant under

is a certain submanifold
2 0 o>

0 -1/V2 0

0 0 0/

M of S\l). The isotropy subgroup at this point is easily seen to be the finite

1

0

0

0

1

0

1

0

J
Ί

0

. 0

0

- 1

0

0

0

_ι

this action. The orbit of the point

subgroup K of SO(3) consisting of the four matrices

- 1 0 O U - 1 0 Oλ

0 - 1 0 0 1 0 . Hence SO(3)/K is diffeomorphic to Mand the

. 0 0 l J l 0 0 - 1 /
Riemannian metric of M induced by S\ϊ) can be transferred to SO(3)/K. The

simply connected Riemannian covering M of M is diffeomorphic to Ss though

not isometric to a sphere. In any case we have (Λί, i°π) is a simply connected
homogeneous hypersurface in S\l). We can show that it is minimal as well
and that the principal curvatures are constant. However, the following proposition

shows that M cannot be any of the spaces of Proposition 6. 4.

PROPOSITION 6.5. Let (Mn,f) be a hypersurface in Mn+ι(c), cφO and
suppose that for some x, t(x) < n. Then M is locally irreducible.

PROOF. Let To= [X\R(X,Y) = cXAY for all Y}. Clearly dim T0

Suppose T is a parallel distribution near x. If Xz To, Y € T (X and Y non-zero),
then R(X Y)Ύ £ T since T is parallel and R(X, Y) is in the holonomy algebra.
Thus c(g(Y,Y)X-g(X,Y)Y)zT. But YzT and cg(YyY)Φθ so Xz T. Thus

r

TQCZT. If TX{M) = ®Tι is a decomposition into parallel distributions, TQQ

= (0). This is a contradiction if rΦ\. Thus M is locally irreducible.

PROPOSITION 6.6.

( i ) The complete minimal Einstein hypersurfaces of En+ι and Hn+λ(c)
are hyperplanes if n > 2.

(ii) The complete minimal Einstein hypersur faces of Sn+i(c) are great
spheres a?ιd products of spheres Sn/\2c)X Sn/2(2c). The latter case occurs only
if n is even.
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PROOF. Adding the assumption to minimality to 3.1, 3. 2 and 3.4, we see
that either (i) ρ = (n — l)c and we get hyperplanes or great spheres or (ii)
p — (n — 2)c>0. As in 3.1 we also have λ -f μ = trace A = 0 so X2 + δ

= T^f £=/** + £ = ^ ~ τ * Thus n = 2p and ^ = | ^ = 2^. By 3.4 we have
/ > — 1 n — p—1 p—1

the appropriate product of spheres.

PROPOSITION 6. 7. T&e complete minimal hyper surf aces of Hn+ι(c), n>2
satisfying R(X, Y) R = 0 are hyperplanes.

PROOF. By 4. 3 either t(x) —n or ί ( x ) ^ l in which case minimality implies
t(x)=Q. If t(x) = n and λ and μ are distinct principal curvatures at x, then
p\+(n-β)μ = 0->pX2 + (n-β)(-c) = 0 which is impossible since λ2 > 0 and
-c>0. Thus t(x) = 0 for all x.

PROPOSITION 6. 8. Let ( M \ f) be a complete minimal hypersurface in
Sn+\c\ n>2, such that R(X,Y) R = 0. Then the conclusion of 6.4 holds.

PROOF. AS above either t(x),= 0 or t(x) = n and p\2 = (n-βc, (n-β)μ2 = pc.
The set of bad points is open and closed by 4. 5 and 4. 6. Also by 4. 7, t(x) = 0
for all x or t(x) = n for all x. If all points are good, (Mn, f) is a great sphere
or product of spheres by 4.10. If all points are bad, λ and μ are still constant
and M is locally isometric to M\xMT\nc/{n-l)\
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