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1. Introduction. In the present paper we shall deal with the cluster sets
of algebroid functions deίned in the disk U: \z\ < 1 and propo:e two main
theorems for these functions; one is Plessner's theorem ([9], Satz I, cf. [5], p.
147, Theorem 8.2) and the other is Meier's theorem, i.e., the so-called topological
analogue of Plessner's theorem ([7], Satz 5, cf. [5], p. 154, Theorem 8.8). Here,
an algebroid function f(z) defined in U is a multiple-valued function vυ = f(z)
fro in U inLo the extended zt -plane ί l : \zv\ ^ °o, or the Riemann sphere,
deϊnel by an irreducible (with respect to meromorphic coefficients) algebraic
equation:

(1.1) /*(*) + aίz)f*-χz) 4- + an(z) = 0 ,

where a^z), , an(
z) are single-valued meromorphic functions in U (cf. [12],

[11], p. 15).
It should be no'ed that in the vicinity of a compact set of logarithmic

capacity zero Noshiro ([8], §4) treated these functions and enunciated some
results on cluster sets but there was no discussion in U.

We now refer to Plessner's theorem for algebroids in U. Although we
shall assume the theorem for the single-valued case, it see us that our extension
of the theorem is not an immediate consequence of the single-valued case.
Indeed, there seem to be some obstacles in treating the point at infinity.

In studying the cluster sets of multiple-valued functions one is naturally
led to the notion of "set-mappings" (cf. [14]). It must be emphasized that
some theorens as Collingwood's maximality theorems ([3], [4], cf. [5], p. 75 ff.)
and BagemihFs ambiguous point theorem ([1], Theorem 2, cf. [5], p. 85, Theorem
4.12) are true of algebroid functions, or more generally, of set-mappings ([14]).
We shall use Collingwood's maximality theorem in proving Meier's theorem
(cf. Lemma 1).

We explain the contents of the present paper. First in §2 we shall give
terminologies, notation and definitions of some cluster sets of algebroid functions
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following the standard lines as in the single-valued cases (cf. [5]). In §§3 and
4 we shall give the proof of Plessner's theorem (Theorem 1). In §5 we shall
prove two lemmas for proving Meier's theorem (Theorem 2). The so-called
Meier's topological analogue of Fatou's theorem ([7], Satz 6, cf. [5], p. 154,
Theorem 8.9) will be expressed in the form of a theorem (§6, Theorem 3),
while Theorems 1 and 2 are stated in §2. As is well-known, the proof of
Meier's theorem depends mainly upon the Fatou-type theorem, i.e., Theorem 3
in our paper, so that we shall omit the detailed proof which contains only
topological arguments. However, there are some non-trivialities which do not
appear in the single-valued case and which we shall note in the last part of §6.

2. Terminologies, notation and Theorems. We denote n branches of
f(z) defined by (1.1) at zzU by / , ( * ) , ,fn(z). For any subset Tφ 0
(non-empty) of U we shall denote by f(T) the subset of Ώ defined by the
following: wzfiT) if and only if w = fk(z) for some z^T and some k,
l^k^n. In particular, if T={z], a one-point set, then we use f\z) instead
of/({*}). Evidently,

AT) = \Jf\z) .

We now let GΦ 0 be a subset of U and t £ G, the closure with respect to the
disk: \z\ :g 1. Then the cluster set CG(f,t) of / at t relative to G is defined
by

C*(f, t) =
δ

where the intersection is taken over all open disks δ containing t and the
closure is taken in Ω. We can easily show that w € Ca(f, t) if and only if
there exists a point-sequence {z,} <zG with z,—>t and fM(zu)—>zv, for some

fMef*(*.Xv=*l,2,> )
Let eiθ be a point of the circle K: \z\ — 1. We define some cluster sets

as follows :
(Full) cluster set C(f, eίθ) = Cv(f, eiθ). This is the cluster set of / at eiθ

relative to U.
Angular cluster set CA(f, eiθ). By an angle Δ at eiθ we shall mean the
interior of a triangle lying in U except for one vertex eiθ. In this paper Δ
will always stand for an angle at some point of K. The angular cluster set
is the cluster set of / at eiθ relative to Δ.
Curvilinear cluster set Cy(f, eiθ) and chordal cluster set Cp{φ)(f, eiθ). Let
γ be a simple open arc in U with the initial point in U and the terminal
point eiθ. Then the cluster set of / at eίθ. relative to.7 will be called the
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curvilinear cluster set of / at ei9. Particularly if 7 is a chord ρ(φ) of K
passing through eίθ and making a directed angle φ, \<p\ < π/2, with the
radius to ex\ then the corresponding cluster set Cp{φ)(f, eiβ) is called chordal.

We now classify the points of K.
Plessner point eiθ of f This is the point where CΔ(/, eί0) is total, i.e.,
CΔ(/, eiβ) = ί l for any Δ at eiθ.
Fatou point eίθ of f. This is the point at which

\J CA(f, O
i

consists of at most n points in ίl, where the summation is taken over all Δ at
eiθ. This is equivalent to say that C±(f, eiθ) contains at most n points for
any Δ at ei9.
Meier point eiθ of f. This is the point such that (a) C(/, eiθ) Φ ί l and that
(b) CPUL eiθ) = C(f e») for all <p9 \ ψ \ < π/2.

We shall denote the totality of Plessner (Fatou, Meier, resp.) points of /
by /(/) (F(/), M(f), resp.)

In the case where n = l9 the function f(z) is single-valued and meromorphic
in U and all definitions and notation in the above are the same as the usual
ones (cf. [5]). We shall be, of course, interested in the case n^2.

For two measurable sets A and B on K we denote A = B if and only if
A\B and B\A both are of linear measure zero on K. As to the definition of
the category in the sense of Baire we refer to [5], p. 75. . .,

THEOREM 1. Let f(z) be an algebroid function in | ^ 1 < 1 defined by
(1.1). Then the sets F(f) and /(/) both are measurable on the unit
circle K and τve have

(i) K^F(f) U

(ii) F(f)^F(adn ... n F(a
n
)

and

^ / ( α O U .-• Ul(a
n
).

THEOREM 2. Let f(z) be an algebroid function in \z\ < 1. Then all
points of the circle \z\—\ except perhaps for a set of first Baire category
belong to M(f)uKf).

3. Proof of Theorem 1. We shall prove Theorem 1 in two steps; first
in the present section we shall prove (ii) and next in §4 we shall show (i)
using (ii). Then combining (i) with (ii) we obtain (iii) by the classical
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Plessner's theorem which we shall assume in what follows.
Let g(z) be a single-valued mero.Tioφhic function in U. Then Plessner's

theorem asserts the following decomposition of K:

(3.1) = F(g)uKg)uE(g),

where E(g) is a set of linear measure zero. Next, for a fixed zv <Ξ ί2, we let
F(g : zv) be the set of points ei0 £ F(g) at which g{z) has the angular limit w.
Then the set F(g:w) is measurable (cf. [10], p. 219, foot-note) and of lin:ar
measure zero by Lusin-Privalov's theorem (cf. [10], p. 212), unless g(z) ΈΞ W in
U. The set F{g : oo) is always of linear measure zero.

Let X20 = {̂ i> 2̂> *} be a countable set of points dense in ί l such that
I xvj I < oo (1 fg 7 < oo). We set, for every w} € β 0 ,

ΞΞ [wj + ax(z) Wj"1 + 4- an(z)}"x

in Uy where we use the well-known relation:

- α 1 ( « ) = / 1 ( 2 ) + •••+/•(«)

(3.3)

(-1)" Λ.(«) =/,(

Then .A^z) ( l ^ j < oo) are single-valued meromorphic functions ^ 0 in C/, so
that F(A^: 0) are of linear measure zero.

We first prove".

(3.4) F(f)\ F(a?) \ is of linear measure zero.

For the proof we consider two possible cases, i.e.,

Case ( I ) : eu € F(f) and / ° \ CΛ(f, eιβ) 2? oo ,

Case (II): eiβ6 F{f) and / ^ C ^ . e " ) 3 » .

Case (I). We may find a Δ, at e*' bisected by the radius drawn to eu such
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that C^/f,ei9)^oo9 εo that we obtain a Δ c Δ j at ei0 such that

/(Δ) 5 oo .

This means that we may find a constant M > 0 with |/A(^)I < Λf for any z € Δ

and any £, 1 rg k r=g n. Therefore, by (3. 3), aλ{z), , αn(z) are all bounded

in Δ, so that ei9 £ /(<Zj) for any j, l ^ j ^ n , or

(3.5) e» z \
3=1

Case (II). We can find a Δ at ei$ such that /(Δ) ^ ίl, so that we may

find a point

The function Ajo(2) corresponding to wjo is, therefore, bounded in Δ; this means

that ei0 & I(Ajn). Assume that eίΘ z F(Ajt). Since CXf,ei9) => oo, there exists

a sequence of points { z J c Δ such that zv-+eiβ and f(v)(zv) —> oo as z/->oo,

where fiV)(zv) e/*(2y). We may a3sume that /i(zy)—>°° as v—> oo, by re-suffixing

fi(z»)> * * > fn(z») of f*(zv). We can choose then a subsequence [zyj C {£„}

such that

/1OO-+ 0 0 and fjc(zVJ)->a^C^(f9e
iθ)

as 7 —> oo for 2 ^ ^ ^ w. Therefore we have

A ? . 0 O ~~> 0 a s i —> °° >

since cίkφwu for 2 ^ £ ^ r c , which proves β*#€ί(AA:0). We have thus obtained

(3.6)

the right-hand-side set being a set of linear measure zero which we denote by

Q
Combining (3.5) with (3. 6) we have

so that we have (3. 4).
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To prove that

(3. 7) f~\ F(aj)\ \ F(f) is of linear measure zero,

we need a preparation.

The multiple-valued function f can be realized as a single-valued mero-

moφhic function £F from a Riemann surface Φ into ίl, Φ being a covering

Riemann surface over U with the projection map z — 7t(p), having n sheets and

containing at most a countable number of branch points (f\z) — £FΌ τt~\z) with

a slight ambiguity). Then the cluster set CA(f,eiθ) has the following

equivalent definition :

where 3)r = π'1^^ δr being the intersection of Δ with the open disk with

the centre eiθ and the radius r > 0.

We can prove easily that CA(f,eiθ) does not consist of just k {n + 1 ^ k

< oo) components since S)r consists of at most n components (cf., e.g., [13],

especially Chap. II for the details).

We are now ready to prove (3.7); in fact, we can prove much more, i.e.,

(3. 7)' \f\ F(a,)\ \ F{f) c \J

Let eί$ be a point of the left-hand-side set in the inclusion relation (3.7)'
n

and assume that eιθ & \^J F(cij : oo). Then we can find some Δ at eiθ such
. . . . . . . . , . . . . . , ; Ji , . . . . . . -;. -.

that CA(f,eiθ) contains' n'+ΐ distinct points aγ , , an+ι in ίl. We may assume

that all a{ , 9ccn+ί are distinct from oo, since CΔ(/, eiθ) contains n + 2 distinct

points as was stated. We can find, therefore, n + 1 sequences of points:

W v ) ); iCΔ (l^v^n + i) such that

a s

for v, l ^ v ^ n + ly where f(v)(zγy) e f*{z{p). Let βό be the angular limit of

aj9 which is finite by our assumption ( 1 ^ 7 ^ n). Then from (1.1) of §1 we

have
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and lett ing j —• ooy we have

an

v + βycC"1 + ••• + βn = 0 (i/ = l , 2 , ,

T h i s is a contradiction since the m a t r i x

279

aΐ 1 ϊ

aS
7? /^»n —1

is invertible. Since F(aό : oo) (1 -<Lj ίg /?) are of linear measure zero we have
(3. 7) as a consequence of (3. 7)'.

Now that (3. 4) and (3. 7) have been proved we have (ii) of Theorem 1.

4. Proof of Theorem 1 (continued). There exist a countable number of
angles Δt(0), Δ2(0), at 2 = 1 such that for any angle Δ(0) at 2 = 1 we may
find a Δ/0) with Δ/0)cΔ(0). We denote by Δ3(θ) the angle at eiθ obtained
by rotation of Δ/0) (1 =g j < oo). We denote by kί9 k.2y the totality of
closed spherical disks with the centres in ίlo> Ωo being defined in §3, and the
spherical radii of rational numbers.

We denote by Gj<v the set of points ei9 € K such that

= 0 ,

where kv is the interior of kv (1 ^ j < oo, 1 ^ v < oo). Then the set Gjv is
a closed subset of K for 1 ^j < oo and 1 5̂  ι> < oo.

Set E = K\{ P(f)uI(f)} and let eiΦ zE.- Then we can find an angle Δ(θ)
at eiθ such that CMΘ)(f,eίθ) Φ ί l since eiθ & / (/ ) . Therefore, there exists a kv

such that CΛ{θ)(f,eίθ)nkv = 0, so that we can find a Δ/0)cΔ(0) such that

This shows that E C \^J GjtV, or

(4.1) E = \jEj.,, where £,., = £ n G Λ V .
j , v •• ••

The measurability of £j> is obtained as an easy consequence of
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and

Gj,v\Eλv = Gλv n F(f),

since GjtV is closed and F(f) is measurable by (ii) of Theorem 1, proved already

in §3. Since measurability of EJtV (1 rg < oo, 1 ^ v < oo) is p:o/ed, the rest

we have to prove is, by (4.1), that the existence of a set EjfV of positive linear

measure for some j , v leads us to a contradiction, which proves that E is of

linear measure zero.

Let P be a perfect set of positive linear measure contained in EJtV. Let

r5 be the maximum of the distances from two vertices of the angle Δ^fl),

other than ei9, to the origin z = 0. We note that r} is, in fact, independent of

the value θ. Let a be the centre of the disk kv. We say that a po'nt zzU

is an tf-point of / if there is a point p £ Φ with π(p) = z and EBj>) = a. T h e

appoints of f cannot accumulate at any point in U since the surface Φ is

^-sheeted. We choose />, rj < p < 1 such that the circle \z\ — p con a'ns no

tf-polnt. Let zι% ,zm be the totality of tf-po'nts of / in the disk Rp: \z\ < p .

By deleting suitable m closed disks in Rp with centres zγ, , zm respectively,

from Rp, we obtain a domain Rp such that

(4.2) / Ϊ R Γ ) n τ = 0 ,

where r is an open disk with the centre a contained in kv.

We now set

Then the boundary Γ of D consists of a finite number of rectifiable

Jordan curves and Γ D ? . We have, by the construction of D,

/(D) n T = 0 .

Let βι, , /Sn+i be w+1 distinct finite points in r and consider the similar

functions as in §3:

B,(z) = Π ( & -
w=l

an(z)}-\ (l^j^n
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Then all B/Kz) are single-valusd, bounded and analytic in D, so that they all
have finite angular limits at a.e. point of Γ by the gsneralized Fatou's theorem
([10], p. 129). We note that B/Kz) ΐ 0 for l^kj^n + 1. By solving the
following equation :

βi + ^(aO/βT1 + + an{z) = {Biz))'1

βi + a^βi'1 + - + an(z) = (ftC*))"1

with respect to 1, aγ(z), , αn(z), we know that a^z), , αn(z) are linear
combinations of (B^z))'1, , (JBΛ+I^))"1 in D. Thsrefora^ all aL(z), , an(z)
have angular limits with respect to D at a.e. point of P. We may say that
these angular limits are also angular limits with respect to U since the boundary
of D has a tang2nt at a.e. point of P and this tangent must coincide with the
tangent to K. We know, therefore, that

is of positive linear measure. Combining this with (ii) of Theorem 1 we have

PnF(f)Φ 0 ,

which contradicts our hypothesis on P.

5. Collingwood's maximality theorem and Schwarz's lemma. We may
consider f\z) as a set-mapping from U into ί l (cf. [14]). Then by Theorem 3
in [14], being an extension of Collingwood's maximality theorem (cf. [5], p. 79,
Theorem 4.9) to set-mappings, and by the standard technique (cf. [4], §7,
Theorem 4) we have the following

LEMMA 1. For an algehroid function f(z) in U we have a set J(f) on
K such that K\J(f) is of first category and that for every ei9 € J(f) we
have

for any angle Δ at eu'.
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PROOF. TO make our paper complete we shall give the proof. As was
stated above, we have only to prove the following: Let f(z) be algebroid in

U. Let Δ(0) be the angle at eίβ obtained by rotation of a fixed angle Δ(0)
at z = l. Then we have

except perltaps for a set of first Baire category on K.

We show that the assumption of the set

E={el9*K; CMΘ)(f eie) Φ C(f eίθj\

being of second category on K leads us to a contradiction. For this end we
shall show in four steps the following :

(5.1) There exist a subset EocE of category II on K, a non-empty closed set

To C Ω , a positive constant ci and a natural number q such that for any eiθ € Eo,

(5.1.1) T^C{f,eι')Φ 0

and

(5.1.2) dis*{To, Jp;πΔ(«9))} > a,

where

Rq = . { l - 2 - β < \z\ <1}

and dis* means the spherical chordal distance on Ώ.
This is absurd. Indeed, let βc.K be an open arc where Eo is dense.

C h o o s e eίθ^E0Γ\β a n d l e t Aίfi) b e a n o p e n a r c (eiθ\eίβ>) of K9 θι<θ<θ2,
such that A(θ)cβ. Then for any

z € Rq, θ, <argz<θ2,

we may find eiψ € Eo such that z£ RQΓ\Δ(<p) since Eo is dense in β. Therefore

we have by (5.1. 2),

dis* (To,f%z)) ^ dis* {ToJCR^nA^T)} > a.

This contradicts (5.1.1) for eiθ e E{).

We shall take

Eo = ENMqv To = sM\ ci = 1/v q — g,
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where all notation on the right-hand-sides will be defined in the sequel.
In the first step we set

and then we set

En = [e" e E C(/ ; e») \ CM,if,e")n Φ 0}

for n = 1, 2, . Then we have

E=\jEn.

Since E is, by assumption, of category II, there exists an EN of category II
on K. In the second step we first remark that Ω can be covered by a finite
number of non-empty closed spherical disks sk9 l^k^m whose diameters
are equal or less than 1/N. We set

ENk = {e* e EN sk Π [C(/, ei9) \ CΔ(9)(/, e4')^] Φ 0 } ,

= 1, 2, , m so that we have

We can find ENM of second category. In the third step we prove that

does not intersect sM for any eiθ £ ENM. In fact, we assume that we have a
point w € 5jκr Π CΔ(ff)(jf, e

iθ) for some eiθ € ENM. By definition we can take

a € 5*Π [C(/, **') \ CΔ(#)(/, ei9)N].

This is a contradiction. Now that for some Q we have

βJRφ Π Δ(0)) Π 5M = 0 ,

we obtain a decomposition:
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Q

where

= 0}

for Q = l, 2, . We therefore have a set 2 2 ^ of category II. Finally, in the
fourth step we set

ENMςη ={ei9z ENMQ dis* {5* ,f(RQ

for 37 = 1,2, . From the decomposition :

we can find ENMqv of second category, q.e.d.

o

For any set SΦ 0 in the plane O: \z\ < 00 and p ^ O we shall denote
N(S,ρ)= {w; dis(w,S)t== p}. We shall denote by δ(z0, q) the open disk:
|z—zo\ < q in ί2.

LEMMA 2. Lei /(^) 6e an algebroid function in a disk δ(z0, q) defined
by

(1. iγ* f\z) + aiz)fn-\z) + "• + an{z) = 0.

Assume that we have a constant M > 0 with

for any z € S(z0, q). Then we have

f*(z) C N(f*(zo),

for any z £ B(zOi q\ where H is a positive constant depending only upon n
and M.

PROOF. We explain, first in the present paragraph, Henri Cartan's theorem
([2], p. 273, Theoreme III) in a convenient form for our later use. Let wl9 ,
wn be not necessarily distinct n complex numbers and let hx be an arbitrary
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positive constant. Then there exist at most n open disks 8 l t , 8μ in ίl such
that

(5. 2) Σ ( t h e r a d i u s o f S)) < Zehi'

e being the base of natural logarithms, and that

(5.3) Π Iw-w l̂ >h?

for any w z ίl \ yj Oj.
j=l

We fix z ^ S(zo9 q) once and for all and we set

n

P(w) = Π (w -fj(z0)) ΞΞ wn + Λ l(«0) K;"" 1 + . +

and

Q(te ) = ww + αi(«) z^71"1 + + an(z).

Furthermore we set

R(w) = Q(w)-P(w).

Then by the Schwarz inequality we have

so that we obtain

(5.4) \Bίw)\

for any ze; € 8(0,2M), where

ί \ 1/2

We set
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(5. 5) h = MV« j Σ I Hz) - α/s0) I 4 ' '

If h=Q, we have nothing to prove; while if h>0, by Cartan's theorem, there

are disks δ1? ,δμ satisfying (5. 2) with hγ — h such that

(5.6) \P(w)\ = Π I«>-//*.)I >'*"

μ

for any z^ not in \_J δj. Combining (5.6) with (5.4) and (5.5) zve have

(5.7) \P(w)\ > \R(;w)\

μ / μ \

on the boundary of δ(0,M)\\^>/δ j. Since Λ=δ(0,M)Π ί\^/δJ c o n t a i n s / ^ ) ,

• * * >fn(zo), the roots of P(w) = 0, we may find the roots fλ(z), ,fn(z) of
Q(̂ χ ) = 0 in A by Rouchέ's theorem applied to every component of A. Hence
by (5.2) with hγ — h we have

On the other hand, \aό(z)\ <M2 in 8(2:0,9), 1 ̂ j ^ n, where M2 is a constant

depending only on n and M by the relation (3. 3) of §3. We therefore have

by the Schwarz lemma and by (5. 5) the following inequality :

h < M\/n rc1/2n(2M2)
1/n q-ι/n\z-z«\ι/n .

Combined with (5. 8) this gives our lemma.

REMARK. Our proof of the Schwarz lemma is suggested by the argument

of Dufresnoy ([6], pp. 27-29). I am indebted to my colleague Professor N. Toda

for the reference of this paper.

6. Topological analogue of Fatou's theorem. In this section we prove

an extension of topological analogue of Fatou's theorem.

THEOREM 3. Let f(z) be an algebroid function defined in U such that

f is bounded, i.e., there exists a constant M> 0 with

/*(*)cδ(0,M)
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for any z^U. Then all points of K except perhaps for a set of first
Baire category belong to M(f).

PROOF. Let ei9$K\M(f). Then there exists a chord ρ(φ) at ei9 such
that

We may suppose 0 ̂  φ < 7r/2. Let

and consider the closure δ(P, 2/9) of the disk δ(JP,2/S), where

0<4β<dis{Cp{φ)(feiff\P}

Then we may find a segment px{φ) C p(φ), one end-point of which is ei9, such
that

(6.1) f(pZφ))n~8(P92β)= 0 .

We next set

R(ξ) =\ξ-e«\ and V(ξ) = R(ξ) sm(,τr/4-φ/2)

for ξ e Pi(φ) We take again a segment p^φ^czpxiφ) with one end-point e*' such
that S(ξ,y(ξ))cU for ξ z plφ). We let

where H is a constant depending only on n and M as in Lemma 2. Then for
any z e As=B(ξ, -/«//(£)) cδ(£, 7(£)), f € Pi(φ), we have, by Lemma 2 with ? = 7 ( B
the following.

(6.2) f*(z)<zN(f*(ξ),β).

Combined with (6.1) this implies

(6.3) /(A7)nδ(P,/9/2)= 0

for any ξ £ p2{φ\ On the other hand, as p2(φ) $ ξ -» eiθ, the disks Aξ sweep an
angle Δ at eiθ bisected by the chord ρ{φ\ so that by (6. 3) we have
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7(Δ)nΓ(P,£/2)= 0

and hence

The theorem now follows from Lemma 1. q.e.d.

Let 7 be an arbitrary simple arc in U terminating at ei9 and tangent at et#

to a chord p(φ) at ei9. Then we have

if / is a bounded algebroid function in U. For the proof we use the same
method as in the proof of Theorem 3, that is, we use similarly contracted
disks as Aξ to obtain a swept Δ containing the parts of 7 and ρ(φ) near ei§.

Let f(z) be algebroid in U. Then the multiple-valued function h(z)
— l/{fκZ)—b}> b being a complex constant, is again algebroid in U. This is
an easy consequence of algebraic calculation applied to (1.1) of §1. Next we
remark that

M(f) = M(h).

This is an immediate consequence of the definition of cluster sets.
Now that our tools are ready we can prove Theorem 2 following the

familiar lines ([7], Abschnitt D, cf. [5], p. 155).
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