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1. Introduction. In the present paper we shall deal with the cluster sets
of algebroid functions de‘ned in the disk U: |z| <1 and propoce two main
theorems for these functions; one is Plessner’s theorem ([9], Satz I, cf. [5], p.
147, Theorem 8.2) and the other is Meier’s theorem, i.e., the so-called topological
analogue of Plessner’s theorem ([7], Satz 5, cf. [5], p. 154, Theorem 8.8). Here,
an algebrod function f(2) defined in U is a multiple-valued function w = f(2)
fron U in‘o the extendel w-plane Q: |w| = o, or the Riemann sphere,
deinel by an irrelu:ible (with respect to meromnorphic coeficients) algebraic
equation:

(1.1) f1(2) + a2 "7 (2) + -+ - + aq(2) =0,

where a,(z),+++,a(2) are single-valued meromorphic functions in U (cf. [12],
[11], p. 15).

It should be no‘eld that in the vicinity of a compact set of logarithmic
capacity zero Noshiro ([8], §4) treatel these functions and enunciated come
results on cluster sets; but there was no discussion in U.

We now refer to Plessner’s theorem for algebroids in U. Althouagh we
shall assume the theorem for the single-valued case, it seens that our extension
of the theorem is not an immediate consejuenze of the single-valued case.
Indeed, there seem to be some obstacles in treating the point at infinity.

In studying the cluster sets of multiple-valuel fun:tions onz is naturally
led to the notion of “set-mappings” (cf. [14]). It must be emphasized that
some theoremns as Collingwood’s maximality theorems ([3], [4], cf. [5], p. 75 ff.)
and Bagemihl’s ambiguous point theorem ([1], Theorem 2, cf. [5], p. 85, Theoren
4.12) are true of algebroid functions, or more generally, of set-mappings ({14]).
We shall use Collingwood’s maximality theorem in proving Meler’s theorem
(cf. Lemma 1).

We explain the contents of the present paper. First in §2 we shall give
terminologies, notation and definitions of some cluster sets of algebroid functions
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following the standard lines as in the single-valued cases (cf. [5]). In 8§83 and
4 we shall give the proof of Plessner’s theorem (Theorem 1). In 86 we shall
prove two lemmas for proving Meier's theorem (Theorem 2). The so-called
Meier’s topological analogue of Fatou’s theorem ([7], Satz 6, cf. [5], p. 154,
Theorem 8.9) will be expressed in the form of a theorem (§6, Theorem 3),
while Theorems 1 and 2 are stated in 8§2. As is well-known, the proof of
Meier’s theorem depends mainly upon the Fatou-type theorem, i.e., Theorem 3
in our paper, so that we shall omit the detailed proof which contains only
topological arguments. However, there are some non-trivialities which do not
appear in the single-valued case and which we shall note in the last part of §6.

2. Terminologies. notation and Theorems. We denote 7 branches of
f(z) defined by (1.1) at zeU by fi(z),---,fu(2). For any subset 7 # @
(non-empty) of U we shall denote by f(T) the subset of Q defined by the
following: we f(T) if and only if w = fi(z) for some z<7 and some %,
1=%,=n. In particular, if T'={z}, a one-point set, then we use f*(z) instead

of f({z}). Evidently,

AT =\ .

zel

We now let G# @ be a subset of U and ¢ <G, the closure with respect to the
disk: {2| =1. Then the cluster set C;(f,¢) of f at ¢ relative to G is defined
by

Cofit) = [ FBNG),
)

where the intersection is taken over all open disks & containing ¢ and the
closure is taken in . We can easily show that we Cy(f,#) if and only if
there exists a point-sequence {z,} C G with 2,—¢ and f(,,(2,) > w, for some
foz) € fFE)v=1,2,---).

Let € be a point of the circle K: |z| = 1. We define some cluster sets
as follows:
(Full) cluster set C(f,e") = Cy(f,e”). This is the cluster set of f at e
relative to U. ;
Angular cluster set Cy(f,e”). By an angle A at ¢’ we shall mean the
interior of a triangle lying in U except for one vertex e¢*. In this paper A
will always stand for an angle at some point of K. The angular cluster set
is the cluster set of f at €' relative to A.
Curvilinear cluster set C/\f,¢e’) and chordal cluster set C,u(f,e"). Let
v be a simple open arc in U with the initial point in U and the terminal
point €. Then the cluster set of f at e relative to.7 will be called the
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curvilinear cluster set of f at e¢”. Particularly if ¥ is a chord p(p) of K

passing through e” and making a directed angle @, |@| < z/2, with the

radius to €, then the corresponding cluster set C,,(f, ¢’) is called chordal.
We now classify the points of K.

Plessner point €“ of f. This is the point where C,(f,e") is total, i.e,

C.(f, €) = Q for any A at €.

Fatou point ¢ of f. This is the point at which

\UJ Ca(f: )

consists of at most # points in ), where the summation is taken over all A at
€“. This is equivalent to say that C,(f,e") contains at most 7 points for
any A at e'.

Meier point € of f. This is the point such that (a) C(f, ) + Q and that
(b) C,i»y(f; €) = C(f, €) for all @, [@| < /2.

We shall denote the totality of Plessner (Fatou, Meier, resp.) points of f
by I(f) (F(f), M(f), resp.).

In the case where n =1, the function f(z) is single-valued and meromorphic
in U and all definitions and notation in the above are the same as the usual
ones (cf. [5]). We shall be, of course, interested in the case n = 2.

For two measurable sets A and B on K we denote A = B if and only if
A\B and B\A both are of linear measure zero on K. As to the definition of
the category in the sense of Baire we refer to [5], p. 75.

THEOREM 1. Let f(z) be an algebroid function in |z|<1 defined by
(1.1). Then the sets F(f) and I(f) both are measurable on the unit
circle K and we have

(1) K=FK/f)uI(f),

(ii) F(f)=F(a) 0 -+ N F(a,)
and A
(1i1) I(fy=Ia)v---Ula,.

THEOREM 2. Let f(2) b}zl an azaeln oiai function in |zl <1. Then all
points of the circle |z| =1 except perhaps for a set of first Baire category
belong to M(f)UlI(f). ‘

3. Proof of Theorem 1. We shall prove Theorem 1 in two steps; first
in the present section we shall prove (i) and next in §4 we shall show (i)
using- (ii). Then combining (i) with (i) we obtain (iii) by the classical
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Plessner’s theorem which we shall assume in what follows.
Let g(2) be a single-valuzd merono-phic function in U. Then Plzassner’s
theoram asserts the {ollowing decomposition of K :

(B.1) K = F(g) u I(9) U E(g),

where E(g) is a set of linzar measure zzro. Next, for a fixed w < Q, we let
F(g : w) be the set of ponts ¢’ € F(g) at which ¢g(z) has the angular limit w.
Then the set F(g:w) is measurable (cf. [10], p. 219, foot-note) anl of lin-ar
measure zero by Lusin-Privalov’s th=orem (cf. [10], p. 212), unless g(2) = w in
U. The set F(g:oo) is always of lin=ar measure zero.

Let Q, = {w;, wy, +++} b2 a countable set of points dense in Q suczh that
lw;|<oo 1 =j <) We set, for every w;eQ,,

n -1
3.2) Afe) = [ 1T G, —ﬁ(z»]
v=1
= {wl + a,(R Wi+ -+ + ay(2)}?
in U, where we use the well-known relation :

—a,(2) = fi(2) + +++ + fa(2)
ay(2) = f1(2) fo(2) + « + « + fa-i(2) fa(2)

(—D)"an(2) = £i(Dfu2) « - - f[u(2) -

3.3

Then Aj2) (1 =j < o) are single-valued meromorphic functions =0 in U, so
that F(A,:0) are of linear measure zero.
We first prove:

B.4) F()N\ {n F(a,)} is of linear measure zero.

For the proof we consider two possible cases, i.e.,

Case (I): e”<F(f) and [\ Ci(fe') ® oo,

Case (II): e?e F(f) and [\ Caf,e®) > oo.

Case (I). We may find a A, at e” bisected by the radius drawn to e such
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that C,/f, €)® oo, 0 that we obtain a ACA, at e¢” such that
m » oo,
This means that we may find a constant M > 0 with | f.(2)| <M for any z€ A

and any bk, 1 =<k =n. Therefore, by (3.3), a,(z),-++,a,(2) are all bounded
in A, so that e & I(a;) for any j, 1=j=mn, or

3.5 eY e i\ {F(a;)UE(a,)} .

Case (II). We can find a A at e such that f(A) # , so that we may
find a point

wy, € O N {Q\ D)} .
The function A, (2) correspoadng to w;, is, therefors, bounded in A; this means
that e*’ & I(A,). Assume that e’ € F(4,). Since C . (f,e")> oo, there exists
a sequencz of po'nts {z,} CA such that z,—e” and f,(z,)— o as v— oo,
where f,)(z,) € f*(z,). We may assume that f,(2,)—>cc as v — oo, by re-suffixing

fi(2),« -+, fulz) of f*(z). We can choose then a subsequence {z,}C {2.}
such that

fi(z,) = oo and fi(z,) — a. < Ci(f, e")
as j— oo for 2=k =n. Therefore we have
A;(z,)—>0 as j— oo,

since a,#*w;, for 2=k =mn, which proves e" ¢ F(4,,:0). We have thus obtained
(3.6) e¥ ¢ U {F(A4,:0) U E(A)},
J=1

the right-hand-side set being a set of linear measure zero which we denote by
Q.
Combining (3.5) with (3.6) we have

Ff) c [f\ {F(a»uE(a,)}] o)

j=1

so that we have (3. 4).
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To prove that
3.7 ﬂ F(cz(,-)} \ F(f) 1is of linear measure zero,
PELE

we need a preparation.

The multiple-valued function f can be realized as a single-valued mero-
morphic function & {from a Riemann surface ® into Q, ® being a covering
Riemann surface over U with the projection map 2==(p), having 7 sheets and
containing at most a countable number of branch points (f(z) = Fo #7%(2) with
a slight ambiguity). Then the cluster set C,(f,e”) has the following
equivalent definition : '

S e) = (\FD),

r>0

where @, = n7'(8,), 8, being the intersection of A with the open disk with
the centre e’ and the radius r > 0.

We can prove easily that C,(f,e”) does not consist of just £k (n + 1 =k
< o) components since J), consists of at most n components (cf., e.g., [13],
especially Chap. II for the details).

We are now ready to prove (3.7); in fact, we can prove much more,.i.e.,

6.7y | {f\ F(a,-)} VFO) €\ Flay ).

Let € be a point of the left-hand-side set in the inclusion relation (3.7)

and assume that e”’ & UF(a] : 00) Then we can find some A at e such
- o
that CA(f et ) contains n+1 dnstmct pomts Q- anH in Q We may assume
that all a,,+++,a,s; are distinct from oo, since C.(f, e") contains n+2 distinct
points as was stated. We can find, therefore, n+1 sequences of points:

{z"}2.,cA (1 =v=n+1) such that

2V —et and fi, () —>a, as j-> oo
for v, 1I=v=n+1, where f,(2f")e f¥(z). Let B; be the angular limit of
a;, which is finite by our assumption (1 =j=n). Then from (1.1) of §1 we

have

U@ + a@) U@+ e 4 aan(z) =0
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and letting j — oo, we have
a+part+ e +8,=0 w=12---,n+1).
This is a contradiction since the matrix

ay a1
ay agtes-1

" n--1
Ay apite--1

is invertible. Since Fla;: =) (1 =j=n) are of linear measure zero we have
(3.7) as a consequence of (3.7).
Now that (3. 4) and (3.7) have been proved we have (ii) of Theorem 1.

4. Proof of Theorem 1 (continued). There exist a countable number of
angles A,(0), 4,(0), - - - at 2=1 such that for any angle A(0) at 2=1 we may
find a A,(0) with A,(0)C A(0). We denote by A,(f) the angle at e’ obtained
by rotation of A;(0) (1 =j < ). We denote by %,, ks, - - - the totality of
closed spherical disks with the centres in Q,, , being defined in §3, and the
spherical radii of rational numbers.

We denote by G, the set of points ' € K such that

FB&@) Nk =0,
where kc’v is the interior of 4, (1 =7 << o0, L =wv < o0). Then the set G,, is
a closed subset of K for 1 = j < o and 1 = v < oo.

Set E = K\{F(f)UI(f)} and let ¢” € E.- Then we can find an angle A(6)
at e* such that Cyu(f,e") # Q since e’ & I(f). Therefore, there exists a &,
such that C.,o)(f,e'YNk, = @, so that we can find a A;(f)c A(f) such that

ANk =6 .

This shows that E C U G;.,, or

4.1) E=\_E,, whereE,=EnG,..

The measurability of E;, is obtained as an easy consequence of



280 S. YAMASHITA
Ej. v Gj. v\(GJ'. v\EJ. v)
and

G,.\E,;, =G,, n F(f),

since Gj,, is closed and F(f) is measurable by (ii) of Theorem 1, proved already
in 83. Since measurability of E;, (1 =j < o, 1 =v < o) is prosed, the rest
we have to prove is, by (4.1), that the existence of a set E;, of positive linear
measure for some j, v leads us to a contradiction, which proves that E is of
linear measure zero.

Let P be a perfect set of positive linear measure contained in E;,. Let
r; be the maximum of the distances from two verticess of the angle A,(9),
other than e¥, to the origin 2 =0. We note that r, is, in fact, independent of
the value 8. Let a be the centre of the disk k2. We say that a ront 2 U
is an a-point of f if there is a pont p € ® with 7z(p) = 2z and F(p) =a. The
a-points of f cannot accumulate at any point in U since the surface ® is
n-sheeted. We choose p, r; < p <1 such that the circle |2| = p con‘a'ns no
a-pont. Let 2,,++-,2, be the totality of a-points of f in the disk R, : |z| <p.
By deleting suitable 7 closed disks in R, with centres z,,+« -, 2, respectively,
from R,, we obtain a domain R, such that

(4.2) fRYNT=9,

where 7 is an opzn disk with the centre a contained in k..
We now set

D=R, U {UA,(&)} )

ellep

Then the toundary I' of D consists of a finite number of rectifable
Jordan curves and I'DP. We have, by the construction of D,

fDynrt=¢.

Let 8,,+-+,Bn+1 be n+1 distinct finite points in 7 and consider the similar
functions as in §3:

n

B,(2) ={ 1 (8, —fy(z))}—l

v=1

={8 +a()B 7+ + a2}, A=j=n+l).
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Then all B,(2) are single-valued, bounded and analytic in D, so that they all
have finite angular limits at a.e. point of I' by the gznsralized Fatou’s theorem
([10], p.129). We note that By2)%£0 for 1=j=n+1. By solving the
following equation :

B+ a(z) B+ «+ - + aq(z) = (B(2)*
BE + a\(R) B + -+ o+ + aq(z) = (By(2)?

Bri + al(z) Baii+ e+ an(z) = (BrH‘l(z))_1 ’

with respect to 1, a,(2),+++,a.(z), we know that a,(z),---,a,(z) are linear
combinations of (B(z))™",+++,(B.u(z))? in D. Tharafore, all a,(z),+-+,an(z)
have angular limits with respact to D at a.=. pont of P. We may say that
these angu'ar limits are also angular limits with resp:ct to U since the boundary
of D has a tang>nt at a.e. pont of P and this tangznt must coincide with the
tangent to K. We know, therefore, that

Pal F(a,)}
=1
is of positive linear measure. Combining this with (ii) of Theorem 1 we have

PNF(f)+ @,

which contradicts our hypothesis on P.

5. Collingwood’s maximality theorem and Schwarz’s lemma. We may
consider f%(z) as a set-mapping from U into Q (cf. [14]). Then by Theorem 3
in [14], being an extensioa of Collingwool’s maximality thcorem (cf. [5], p. 79,
Theorem 4.9) to set-mappings, and by the standard technique (cf. [4], §7,
Theorem 4) we have the following

LEMMA 1. For an algebroid function f(z) in U we have a set J(f) on
K such that K\J(f) is of first category and that for every e < J(f) we
have

Calf, e”) = (£, e")

for any angle A at e".
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PROOF. To make our paper complete we shall give the proof. As was
stated above, we have only to prove the following : Let f(z) be algebroid in
U. Let A(f) be the angle at €' obtained by rotation of a fixed angle A(0)
at z=1. Then we have

Cao(f, e’) = s e’)

except perhaps for a set of first Baire category on K.
We show that the assumption of the set

E = {e"<K; Csoffie”) # Uf,e")}

being of second category on K leads us to a contradiction. For this end we
shall show in four steps the following :

(5.1) There exist a subset E,C E of category Il .on K, a non-empty closed set
T,C Q, a positive constant & and a natural number g such that for any e* € Eg,

(5.1.1) TynC(f,e") # 8

and

(5.1.2) dis*{T, fF(R,NA(6))} > e,
whefe |

R, = {1-21< |z <1}

and dis* means the spherical chordal distance on Q.

This is absurd. Indeed, let BC K be an open arc where E, is dense.
Choose e?€ E,NG and let A(f) be an open arc (e, e") of K, 6, <6 < 4,,
such that A(f)cB. Then for any '

ze R, 0, <argz <4¥b,,

we may find e*® € E, such that z € R,NA(p) since E, is dense in 8. Therefore
we have by (5.1.2),

dis* (T, f*(z)) = dis* {T', AR, N Al@))} > .

This contradicts (5.1.1) for e € E,.
We shall take '

Ey=Eyyg; To=sy; a=1/v; qg=4q,
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where all notation on the right-hand-sides will be defined in the sequel.
In the first step we set

Caw(fs € = {w e Q; dis*{w, Cap(f, )} =1/n}

and then we set

E, = {e"cE; (f,e")\ Cso(fre")n + 0}

for n =1,2,---. Then we have

E=\JE,.

Since E is, by assumption, of category II, there exists an FEjy of category II
on K. In the second step we first remark that Q can be covered by a finite
number of non-empty closed spherical disks s;, 1 =% =m whose diameters
are equal or less than 1/N. We set

Eye= {e’ < Ey; 5N [C(f, e*)\ CA(o)(f, el 0},

k=1,2,-++,m; so that we have

ENZUENk~
k

We can find Eyy of second category. In the third step we prove that
Caoffre") = [\ RN AW))
0

does not intersect sy for any e¥ < Eyy. In fact, we assume that we have a
point w € 5N Cye(f, e") for some e” € Eyy. By definition we can take

aesuN[C(f,e")\ Cauyf, " )x] -

This is a contradiction. Now that for some Q  we have

ARy NAO)N sk = @,

we obtain-a decomposition : -



284 S. YAMASHITA

ENM = U ENMQ»
Q

where
Enuo = {£* € Eyy; f(RNA@)Nsy = @}

for Q=1,2,---. We therefore have a set Eyy, of category II. Finally, in the
fourth step we set

Enuey = (€ € Eyug; dis* {sy, f(R,NA(0))} > 1/7}

for n=1,2,-+.. From the decomposition:

ENMQ = U ENMrm
]

we can find Eyy, of second category. q.ed.

For any set S# @ in the plane Q: |z] < oo and p=0 we shall dexo‘e
N(S,p) = {w; dis(w,S)=p}. We shall denote by &z, ¢q) the open disk:

|z_zo| <q in \(02.

LEMMA 2. Let f(z) be an algebroid function in a disk &z,, q) defined
by

(1. 1)bis fU=2)+a(Df" () + -+ +a(z)=0.
Assume that we have a constant M >0 with
(=) € &0, M)
Sor any z<€ &z, q). Then we have
S =) € N(f ¥(zo), Hg™ " [z—20| ")

Jor any z<8(zo, q), where H is a positive constant depending only upon n
and M.

PROOF. We explain, first in the present paragraph, Henri Cartan’s theorem
([2], p. 273, Théoréme III) in a conveaient form for our later use. Let w,,«--,
w, be not necessarily distinct # complex numbers and let 2, be an arbitrary
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positive constant. Then there exist at most 7 open disks &,,+++,8, in  such
that

m
(5.2) > (the radius of ;) < 2eh,,

Jj=1

¢ being the base of natural logarithms, and that

(5.3)

=

|lw—w;| > h?

Jj=1

[

° I
for any we(l\US,.
i=1

We fix z € &(2o,¢) once and for all and we set

Fiw) = TT (0~ fz) = " + aed w™™ + -+ + au(z)

and

Qw) = w™ + a(2) W™ + «+« + a,(2).

Furthermore we set

R(w) = Q(w) — Kw).

Then by the Schwarz inequality we have

R@)I* = 5 e )= aa)]* S lwl™

so that we obtain

(5.4) |R(w)| < M, ‘nz Iaj(z)—a,(zo)l”}
for any w < &0, 2M), where
n-1 1/2
M, = {Z(ZM)”} .
i=0

We set
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1/2n

5.5) ho= My J{z la=) —af=)?)

J=1

If =0, we have nothing to prove; while if A > 0, by Cartan’s theorem, there
are disks 9, --,9, satisfying (5.2) with h,=h such that

(5.6) [P(w)l = I lw=fiz)] > A"
for any w not in UB;. Combining (5.6) with (5.4) and (5.5) we have

J=1

(5.7) | A(w)| > [R(w)|

n u
on the boundary of E(T),WZW}\USJ. Since A=8(0, M) N (US,-) contains f(z,),

J=1 j=1
<o+, fulzo), the roots of A(w) =0, we may find the roots fi(z),+--,fa(z) of
Q(w) =0 in A by Rouché’s theorem applied to every component of A. Hence
by (5.2) with h;=h we have

(5.8) S¥(=z) € N(f*(zo), 2eh).

On the other hand, |a,(2)| <M, in &z, q), 1 =j =n, where M, is a constant
depending only on 7 and M by the relation (3.3) of §83. We therefore have
by the Schwarz lemma and by (5.5) the following inequality :

h < M}/n 721/2"(2M2)‘/" q—l/n !z"‘Zo‘ 1/n .
Combined with (5. 8) this gives our lemma.
REMARK. Our proof of the Schwarz lemma is suggested by the argument

of Dufresnoy ([6], pp. 27-29). I am indebted to my colleague Professor N. Toda
for the reference of this paper.

6. Topological analogue of Fatou’s theorem. In this section we prove
an extension of topological analogue of Fatou’s theorem.

THEOREM 3. Let f(z) be an algebroid function defined in U such that
f is bounded, i.e., there exists a constant M >0 with

f¥(z) c &0, M)
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for any z€U. Then all points of K except perhaps for a set of first
Baire category belong to M(f).

PROOF. Let e¥e K\AM(f). Then there exists a chord p(@) at e* such
that

Coolfse”) #= C(f>e").
We may suppose 0 = @ < z/2. Let
Pe(f,e")\ Cuo(f> ")
and consider the closure 8(P,28) of the disk 8(P,28), where
0 <4B < dis {Cyp)(fr€*), P} .

Then we may find a segment p,(@) C p(@), one end-point of which is e*, such
that

(6.1) App) N &(P,28)= ¢ .
We next set
R(§) = [E—e¥| and (&) = R(§)sin(z/4—p/2)

for £ < p)(p). We take again a segment py(@)C p,(@) with one end-point e* such
that 8(&, v(€))cU for £ pp). We let

Yo = min {(8/H)", 1} ,
where H is a constant depending only on # and M as in Lemma 2. Then for

any z <€ A=8¢,YY(E))CSE,NE)), &< pp), we have, by Lemma 2 with g=""(§),
the following.

(6.2) SH=z) € N(f*€)8).
Combined with (6.1) this implies
(6.3) SA) N &P,B/2)= ¢

for any £ < py(@). On the other hand, as py(@) > & — e*, the disks A; sweep an
angle A at e* bisected by the chord p(@), so that by (6.3) we have
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ANYP,B/2)= 0,

and hence

C (f,e") = (f,e").

The theorem now follows from Lemma 1. q.e.d.

Let ¥ be an arbitrary simple arc in U terminating at e and tangent at e
to a chord p(@) at . Then we have

C/f,e”) = Cuofr ")

if fis a bounded algebroid function in U. For the proof we use the same
method as in the proof of Theorem 3, that is, we use similarly contrected
disks as A; to obtain a swept A containing the parts of ¥ and p(@) near e.

Let f{z) be algebroid in U. Then the multiple-valued function A(z)
=1/{fz)—b}, b being a complex constant, is again algebroid in U. This is
an easy consequence of algebraic calculation applied to (1.1) of §1. Next we
remark that

M(f) = M(h) .

This is an immediate consequence of the definition of cluster sets.
Now that our tools are ready we can prove Theorem 2 following the
familiar lines ([7], Abschnitt D, cf. (5], p. 155).
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