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We have studied equations of type Xn — aX + b = 0, and have obtained
some results on unramified extensions of quadratic number fields [3]. In this
paper we have further results which include almost all of [3]. We do not refer
to [3] in the following, though the techniques of proofs are almost equal to
those of [3]. Theorems proved here are the following.0 Notice that "unramified"
means in this paper that every finite prime is unramified.

THEOREM 1. Let k be an algebraic number field of finite degree.
Let a and b be integers of k. K denotes the minimal splitting field of a
polynomial

i.e., K — k(aίy , oίn) where au rm> oίn are the roots of f(X) = 0. Let

D— Π (#ι —tfj)2 be the discriminant of f{X). If (n — ϊ)a and nb are

relatively prime, K is unramified over k(+J D ).

THEOREM 2. Let n^Z be an integer, and An be an alternating group
of degree n. Then there exist infinitely many quadratic number fields
which have unramified Galois extensions with Galois groups An.

1. Proof of Theorem 1. Let $ be any finite prime of K, and let
p = <$θk. Let G be the Galois group of K over k. Then G is a permutation
group of (au , ccn). Let H be the subgroup of G consisting of the even
permuta4 ions. H corresponds to £(V D ). We shall prove Theorem 1 by showing
that H meets with the inertia group of 3̂ trivially. First we consider the
factorization of f{X) mod p. From f(X) = Xn-aX+b and f\X) =' nXn~ι - α,
it follows

Xf'(X) - nf(X) = (n - 1) aX - nb.

1) After I prepared the manuscript of this paper, I knew that Y. Yamamoto had already
obtained the same results which is to appear in Osaka Math. J. before long.
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As ((n — l)α, nb) = 1, this does not vanish mod p. So (n — l)aX— nb is the
g. c. d. of /(X) and /'(X) mod p, if /(X) and /'(X) have common factors
mod p. Therefore /(X) is factorized as

(mod p)

or

according as f(X) has only simple roots mod p or not. In the above each
/ι(X) is irreducible mod p and /\(X) 3=//X) for iφj. Each 7*(X), 2 ^ z ^ s ,
is irreducible mod p and gt(X) 3Ξ ff/X) for ίgfcy, and also gt(X)=i=(w — l ) α X
— w&. By HensePs lemma /(X) is factorized in the local field kp in the form

( i ) /(X)=Λ(X). /r(X)

or

( 2 )

where / , ( X ) = / t ( X ) (modp), <7,(X) == g/X) (modp), i ^ 2 and
= ((w — l)αX— wδ)2 (mod p). iCp is obtained from &}, by adjoining the roots of
/(X) = 0. The roots of / t (X) = 0 or ^ ( X ) = 0, i ^ 2 , generate unramified

extensions of k>. So K$ is unramified over kp in the case (1). If K% is ramified
over kp in the case (2), <7i(X) is irreducible of degree 2 and the inertia group
is generated by the transposition of the roots of <7i(X) = 0. So it meets with
H trivially, and $ is unramified over kί^/ΎΓ). As we took $ arbitrarily, K is
unramified over £(V D ).

2. Proof of Theorem 2. In this section the ground field is taken as the
field Q of the rational numbers. We find pairs of rational integers (α, b) such that
((n — l)α, nb) = l and the equations f(X) = Xn — aX +b = 0 which have symmetric
groups Sn as Galois groups. If we have infinitely many different Q(V D),
Theorem 2 follows from Theorem 1. If a polynomial f(X) is irreducible over
Q, the Galois group of K over Q is a transitive permutation group. To find
the Galois group, we apply the following

LEMMA [4, Theorem 13.3]. // a primitive permutation group contains
a transposition, it is a symmetric group.

As we have seen in the proof of Theorem 1, the inertia group of a prime
$ contains a transposition if $ is ramified. As the field Q has no unramified
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extension, there exist primes of K ramified over Q. Therefore the Galois group
of K over Q contains a transposition. If we show it is primitive, it is a
symmetric group by the above lemma. As any transitive group of a prime
degree is primitive [4, Theorem 8.3], we have

PROPOSITION. If n = l is a prime and if f(X) is irreducible over Q,
the Galois group of K over Q is a symmetric group St. Therefore K is
an unramified extension of Q(V D ) with Galois group A,.

Now we show that there exist pairs of integers (α, b) satisfying the
conditions in the first paragraph of this section. Let / be a prime number
such that

/ = 1 (mod n — 1).

If b is divisible by /, then

( 3 ) Xn - aX + b = X(X7'-1 - a) (mod I)

holds. As Z/IZ contains all the (n — l)-st roots of unity, Xn~ι - a is
irreducible mod I if a is a primitive root mod I. Then Xn — aX -f b has
irreducible factors of degree 1 and degree n — \, if it is reducible over Q. But
it has no factor of degree 1 if a is sufficiently large. Then Xn — aX -f b is
irreducible over Q, and its Galois group is primitive by the factorization (3).
We can choose a and b as ((n — l)α, nb) = 1. Then all the conditions are
satisfied.

Now let p be any prime number such that (p9 l?ι{n — 1)) = 1, where / is
fixed as above. We show that there exists a pair (α, b) such that D=D(a,b)
— p D0, (p, D0) — l and that satisfies the above conditions. Then we have
infinitely many different Q(V D ). D is calculated as

D = ( - 1) " ^ Π /'(O = ( - i r ^ Π (naΓx - a)

= ( - 1) J ^ J I {nnbn-χ -(n- l)n-ιa'1}.

Let b be a multiple of / such that b~n—l (mod p) and (&, n — 1) = 1. As (p, ή) — 1,
we have a sufficiently large integer ax such that αx = n(moά />), (α u wδ) = 1
and aι is a primitive root mod /. Then Dx = D(α,, έ) is divisible by />. If Dx

is divisible by /?2, we replace aγ by

α = α } 4- nblp.
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Then D = ΣKμ9 b) is divisible by p, bue not divisible by p2. This completes
the proof.

COROLLARY 1. Let G be a finite group. Then there exists an algebraic
number field k which has an unramified extension with Galois group G.
If G is of order n, k is taken as [k : Q]^2 (w— 1)!

PROOF. Let K be a Galois extension of Q with Galois group Sn, which

is unramified over Q(V D ). Let g be a prime number such that (q9 D) = 1.

Then iC(V q ) is unramified over Q(^/qD) and its Galois group is a symmetric

group Sn. G can be considered as a subgroup of Sn. If k denotes the subfield

of X(V q ) corresponding to G, k satisfies the conditions of Corollary.

REMARK. This corollary was proved by Frδhlich [1], though [k : Q]
ίg (n — 1) ! x (n!) ! in his case.

COROLLARY 2. Let F be any field of characteristic zero. Let a and
b be ίndeterminates. Then the equation

(4) Xn~-aX + b^O

has the Galois group Sn over ί\a% b).

PROOF. First we show this in the case F i s an algebraic number field of
finite degree. We may assume that F is normal over Q. Let (α0, b0) be a pair
of rational integers such that the Galois group of

( 5 ) X w - α 0 X + &0=G

is a symmetric group Sn. Let Do = D(α0, bo) be its discriminant. By the proof
of Theorem 2, (α0, b0) can be taken as Q(V Do) is not included in F. Then
the Galois group of ( 5 ) over F is also Sn. So the Galois group of ( 4) over
F(a,b) is also Sv. Now let Λif , ccn be the roots of the equation ( 4 ) . We
put K = Q(a, b, alt ,#„). Above argument shows that an algebraic closure
of Q and K are linearly disjoint over Q. Hence K is a regular extension of Q.
Let F be arbitrary. F and K are free over Q. As K is regular over Q, they
are linearly disjont over Q [2. Chap. III. Theorem 3]. Therefore the Galois
group of ( 4 ) over F(a, b) is isomorphic to one over Q(a, b\ and the proof is
completed.

REMARK. If F is not of characteristic zero this corollary does not hold
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in general. In fact, if F is of characteristic p, the Galois group of the equation

Xpm-aX+b = 0

is solvable. It is easily shown froni the fact that (cc—β)pm~1 = a, where cί and
β are two roots of above equation.

EXAMPLES. We give examples for small α, b and n. In all examples
f(X) are irreducible over Q and the Galois groups over QCV D) are alternating
groups.

n

5

5

6

6

7

7

8

9

9

10

10

a

1

— 2

1

1

1

-1

1

1

-1

1

1

b

1

1

1

-1

1. .

1

-1

1

1

1

-1

D
2869 = 19 x 151

11317 (prime)

-43531= -101 x 431

49781 = 67 x 743

-776887 (prime)

-870199 = -11 x 239 x 331

-17600759 = -11 x 1600069

370643273 = 7 x 11 x 13 x 43 x 79 x 109

404197705 = 5 x 197 x 410353

-9612579511 = -29 x 4127 x 80317

10387420489 = 173 x 60042893
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