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PROJECTIONS IN HILBERT SPACE*

HORST BEHNCKE
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In [1] C. Davis showed that there exist three projections on a separable
Hubert space H> which generate the ring of all bounded operators B{H). By a
different method we show the following generalization.

THEOREM: On a separable Hilbert space H one can find a continuous
family of triples of projectons {Pλ,Qλ>Rλ},0<X<27r, such that each triple
generates B(H) in the sense of W*-algebras, such that PλQλ — 0 and such
that these triples are unitarily inequivalent for different λ.

PROOF. The method of group representations makes this problem almost
trivial. Let G be the free product of the cyclic group of order two and of the
cyclic group of order three. In terms of its generators a, b G is defined by

a

% = b2 = e. Let U be an infinite dimensional unitary irreducible representation
of G. Then Ul = Ul = l shows by the spectral theorem the existence of three
projections P,Q,R with P Q = 0 such that Ua= P+Qei:2π/3)^(l-P-Q)'eί{/ίx/3)

and Ub= 1—2i?. Since the representation is irreducible Ua and Ub generate B(H).
The same applies then obviously also for P9 Q and R.

Thus it remains to show the existence of a family Uχ,0<λ<2;r of
unitary, irreducible, infinite dimensional representations of G, which are pair-wise
inequivalent. It is easy to see that all nontrivial conjugacy classes in G are infinite.
Thus G is not a type I group [2], and the general theory of non-type I C*-algebras
would show the existence of an infinite family of such representations. However
we prefer to give a direct proof. This is done by the method of induced
representations. Let c—ab and denote by F the infinite cyclic subgroup of G
generated by c. Let G/F= {xF\x^G} be the collection of all left cosets of F
in G. By s(x) we shall denote a particular representative of xFy which is chosen
once and for all. We shall also identify G/Fand the set S= {s} of representatives
of the cosets. l\G/F) will stand for the infinite dimensional Hilbert space with
orthonormal basis {£5 |s£S}. Since F is an infinite cyclic group all its irreducible
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representations are determined by characters X1 with Xλ(cH) — eίin, 0:gλ<27r.
Then the representation Uλ of G on Γ\G/F) induced by Xλ is given by

Ui£s = X\x[sYl x s)θxW

Here ^[5] denotes the representative of x s F. A simple computation shows
that ί/* is indeed an infinite dimensional representation of G. If U\ 0 < λ < 2 7 Γ
were not irreducible we could find a nontrivial operator T £ B(P(G/F)) with
TUί=Ux

xT for all x^G. In particular we have

TUϊ«εSo = X\cn) T£s, = ί/έ.Γθf. <:» € F

Here 50 is the representative of F. An easy computation shows that the only
eigenvectors of Ui* are of the form constant £8ΰ. Therefore TεSo — k£H. Then
TS3 = TUi SSo - ί/ί TθSo - έft6 for all 5 finally gives T = klt and the irreducibility
of Uλ is shown.

Assume T intertwines Uλ and ί7 r, then TUi = C/i' T and in particular
TUλ

c»SB(ί = Xλ(cn)T£H = Uλc»T£*, Thus T£ββ is an eigenvector for U% for all n.
This shows by our above remarks

This however is only possible for Λ = λ .
In a similar fashion we can characterize the W*-algebra generated by two

arbitrary projections JP, Q on a separable Hubert space H [3]. In this case the
operators {7tt = l — 2P and Ub — 1 — 2Q determine a unitary representation of the
group D, with generators α and b and relations α2 = b2 — e. Since D is an
extension of F = {(αb)n= cn\n all integers) by a group of order two, D is a
group of Type I and all its irreducible representations are finite dimensional of
uniformly bounded dimension [2]. Let U be an arbitrary irreducible representation
of D. Then one sees easily that A — UJJbΛ-UbUα is a self adjoint operator
commuting witn Uα and Ub. By irreducibility A — kl with — 2 r g k ^ 2 . Then
UnUb=eiφl(-R) + eiφR, for 2cos<p = k € ( - 2 , 2) and R a projection. A simple
computation shows now that U is either two or one dimensional. Thus the
W*-algebra generated by two projeetionsis of type I<ς2 Since the oprator A is
a unitary invariant for representations U of D with no one dimensional parts,
it is also a unitary invariant for the projections on the part of type I2.



PROJECTIONS IN HILBERT SPACE 183

REFERENCES

[ 1 ] C.DAVIS, Generators of the Ring of bounded Operators, Proc. Amer. Math. Soc, 6(1955),
970-972.

[ 2 ] E.THOMA, Uber unitare Darstellungen abzahlbarer diskreter Gruppen, Math. Ann.,
153(1964), 111-138.

[ 3 ] J. DlXMIER, Position relative de deux varietes lineaires fermees dans un espace de Hubert,
Revue Sci., 86(1948), 387-399.

INSTITUT FUR ANGEWANDTE MATHEMATIK

UNIVΈRSITAT HEIDELBERG

HEIDELBERG, DEUTSCHLAND




