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1. Introduction. Let (M, g) be a Riemannian manifold. Then K-contact
Riemannian structures and Sasakian structures (=normal contact Riemannian
structures) on M are defined by Killing vectors £ of unit length satisfying some
conditions (cf.§2). Hence we denote by (M, §, g) a K-contact Riemannian manifold
or a Sasakian manifold.

Every (M, &, g) is odd dimensional,

In this paper, after preliminaries in §2 and §3, we first try to give conditions
for Killing vectors to be infinitesimal automorphisms of (M, €, g) in terms of
curvature of (M, &, g) in §4~ §8.

THEOREM A. Let (M,& g) be a 3-dimensional K-contact Riemannian
manifold which is not of constant curvature. Then every Killing vector is an
infinitesimal automorphism of (M, &, g).

By ¢=—V§&, we have a (1,1)-tensor field on M. ¢ satisfies pp X = — X+ g(&, X)€
for each vector field X on M.

THEOREM B. Let (M, &, g) be a 7-dimensional compact Sasakian manifold
which is not of constant curvature. Assume that ¢-holomorphic sectional
curvature H(X) <3. Then every Killing vector is an infinitesimal automorphism

of (M,E, g).

For general (474 3)-dimensional cases, we need stronger conditions on curvature
than those in Theorem B, 7 being an integer =1.

THEOREM C. Let (M,%, g) be a (4r+3)-dimensional compact Sasakian
manifold which is not of constant curvature. Assume that curvature is positive
(more generally, ¢-holomorphic special bisectional curvature is positive). Then
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314 S. TANNO
every Killing vector is an infinitesimal automorphism of (M, &, g).

The remaining cases are (4r+1)-dimensional, 7 being an integer =1.

THEOREM D. Let (M,§, g) be a (4r+1)-dimensional complete Sasakian
manifold which is not of constant curvature. Then every Killing vector is an
infinitesimal automorphism of (M,E, g).

As we have seen in [22], discussions on these problems concern Sasakian
3-structures on (M, g).

In 89, we give slightly general statements of the above theorems.

Analogously to the Hopf fibrations of spheres and the Boothby-Wang’s fiberings
of regular contact manifolds, we consider fibrations of (M, g) admitting a K-contact
3-structure in §11 and §12.

THEOREM E. Let (M, g) be a complete Riemannian manifold admitting
a Sasakian 3-structure (E¢, Ears Ecsy). If one of the Sasakian structures, for
example &5, is regular, then (M, £y Ecy, £y, 9) @5 a S*[1]- or RP*[1]-principal
bundle over an Einstein manifold (B, h).

In §13 we show that in many cases results on K-contact 3-structures are
generalized to results on 3-K-contact structures.
The author is grateful to Professor S.Sasaki for his kind criticism and

suggestions,

2. Preliminaries. Let (M, g) be a Riemamian manifold. By ¥V and R we
denote the Riemannian connection and the Riemannian curvature tensor (R(X,Y)
=Vwrn—IVr Vrl) respectively. Let £ be a unit Killing vector on (M, g), which
satisfies

(2.1) RX, £ =9(X, 8- X
for any vector field X on M. Define a (1,1)-tensor field ¢ by ¢=—V§E and
a l-form (=contact form) 7 by n=g(£ ). Then (¢, & 7, g) is a K-contact

Riemannian structure (cf. [5], etc.). We denote this K-contact Riemannian manifold
by (M,£,g9). On (M, &, g) we have

(2.2) ¢t = —-ViE=0,

(2.3) opX = —X+g(§ X)¢,
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(2.4) 9(pX, ¢Y) = 9(X.Y) — 9(€, X)9(£,Y).
If a unit Killing vector £ satisfies
(2.5) RX, §)Y = g(X,Y)§ — g(€,Y)X, or
(2.5) —Vx(VEY = 9(X,Y)E - g(£,Y)X

for any vector fields X and Y on M, then (M, &, g) is called a Sasakian manifold
(=normal contact Riemannian manifold) (cf. [12], [13], etc.). A Sasakian manifold
is a K-contact Riemannian manifold.

On a Sasakian manifold (M, &, g), by the Ricci identity, we have the follow-
ing relation (cf. for example, Lemma 3.2 in [21]):

(2. 6) $R(X,Y)($Z) = — R(X,Y)Z — g(Y, Z)X + 9(X, Z)Y
+ 9(¢Y, Z)¢pX — g(¢X, Z)¢Y .

We define the distribution D by D,={X,; 9(§ X,) =0, X, € M,}, where M,
denotes the tangent space to M at p. By Xe D we understand that X is a vector
field on M such that X, D, for every p of M. By Xe D,, we understand that
X is a tangent vector belonging to D,. By K(X,Y) we denote the sectional
curvature for a 2-plane determined by X and Y. By H(X), Xe D,for Xe D) we
denote the sectional curvature K(X, ¢X), called ¢-holomorphic sectional curvature,

Let X and Y be an orthonormal pair in D, and put g(X,$Y)=cosa. Then
by a direct calculation we have (cf. E. M. Moskal [8])

(2.7 K(X,Y)= (1/8)[3(1 + cos a)*H(X + ¢Y) + 3(1 — cosa)*H (X — ¢Y)
—HX+Y)—-HX-Y)—H(X)— H(Y) + 6sin’a] .
Furthermore we have (for (2.7) and (2. 8), see also [18])

(2.8) K(X,Y) +sin*a K(X, ¢Y) = (1/4)[(L + cosa)*H(X + ¢Y)
+(1—cos)H (X —¢Y) + H(X+Y)+ H(X—Y)— H(X)— H(Y) +6 sin’a] .

3. K-contact 3-structures and Sasakian 3-structures. Let £, £ Eo
be three K-contact structures on (M, g). Define ¢»(i=1,2,3) by ¢uy = —VEw.
Assume that

(3.1) 9(Ewrs Epy) = 855 4,7 =1.2,3,
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(3- 2) f(!c) = ¢'<t)";:<1) = - ¢mf<t> s
(3.3) ¢‘<k)X = ¢wpnX — g€y X)éwy = — bnPwX + g€ X)Es »

where (7,7, k) is an even permutation of (1,2,3). Then we say that (£¢5, £csys Ecs)
is a K-contact 3-structure on (M, g). Similarly, if &y, Ecoys &y are Sasakian
structures and satisfy (3.1)~(3.3), then (£q) EcarsEcsy) is called a Sasakian
3-structure on (M, g).

(1) If (M, g) admits a K-contact 3-structure, then dim M = 4r+3 for some
integer 7=0 (Y. Y. Kuo [7]).

(ii) (M, g) admitting a Sasakian 3-structure is an Einstein manifold (T.
Kashiwada [6]).

(iii) Let &, and £, be two Sasakian structures on (M, g) such that
g€ E)=0. Then &, =(1/2)[£q» Eco] is also a Sasakian structure and orthogonal
to £uy and Eca. Hence (£¢15, Ecoys Ecsy) is a Sasakian 3-structure (Y.Y. Kuo [7]).

If the inner product g(£, &) of two Sasakian structures £ and £ on (M, g) is
constant (#1, #—1), we can find Sasakian structure £, so that &, =& and £,
are orthogonal. Hence (M, g) admits a Sasakian 3-structure,

In the case where g(§, £') is not constant, we have

LEMMA 3.1, (S. Tachibana and W.N. Yu [15]) Let (M, g) be a complete
Riemannian manifold of m-dimension. If (M, g) admits two Sasakian structures
& and & with g(&, &')=non-constant, then (M, g) is of constant curvature 1.

Originally, Lemma 3.1 was proved for complete and simply connected (M, g)
with conclusion that (M, g) is isometric to a unit sphere S™,

Let (Ecys £y Esy) be a K-contact 3-structure on (M, g). By E we denote the
distribution defined by (putting &, = £)

(3.4) E,={X,e Dy; 9(XpEw) = 9(XppErs) = 0} .
Since dim M = 4r+3, we have dim E,= 4. If X< E,, we have

(3.5) dwX = ddpnX = — dundnX

where (%,7, 7) is an even permutation of (1,2, 3).
We define ¢)-holomorphic sectional curvature for X e E, by

H(X) = Hu)(X) = K(X’ ¢<1)X) ’
H(ﬂ)(X) = K(X, ¢<2)X) ’ H(3>(X) = K(X, ¢<3)X) .
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In the remainder of this section we assume that (£q), £qyp £s) is a Sasakian
3-structure,

PROPOSITION 3.2. For Xe E,, we have

(3.6) Hy(X) + Hoy(X) + Hgy(X) = 3.

PROOF. In (2.6) we put ¢=¢, and take X, Y, Z (of unit length) <€ E, and
consider the inner product with We E,. Then we get

(3.7) IR(X,Y)puyZ, pyW) = g(R(X,Y)Z, W) + g(Y, Z) g(X, W)
—-9(X,Z)9(Y, W) — 9(¢w)Y, Z)g(¢, X, W)
+ 9(¢wX; 2)9(p0Y, W),

where we have used (2.3) and (2.4), and 1 =1,2,3. If we put i=1, Z=X, and
Y=W=¢(3)X in (3 7)’ we get

(3.8) I(R(X, ¢ X)p0 X paypeX) = 9(R(X, ¢ X)X, p5X) — 1,
that is,
(3.9) — 9(R(X, 0 X)p0yX> 0 X) = Hp(X) —1.

Then we have two relations by even permutations of (1,2,3) from (3.9). Hence,
(3.6) follows from the Bianchi identity.

PROPOSITION 3.3. For X< E, and for real numbers a, b (a*+b2=1),
we have

(3.10) Hy(X) = Hy(¢paX) = HylapeX + bpuX) .
PROOF. By a permutation (L—2—3—1) in (3.9), we have

(3.11) Hy(X)—1=— g(R(X, ¢0X)pX; pX)
= — 9(R(¢paX; ¢ X)X, pnyX)
= 9(R(paX; ¢ X)budeX> pudsnX) by (3.5).

On the other hand, in (3. 7) we put =3 and replace X,Y,Z,W by ¢u,X, X, X,
¢ X. Then we have
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(3.12)  9(R(px X, puX)pepaX: bupwX) = g(R(paX:peX)peXpeuX) —1.

By (3.11) and (3.12), we have
Hy)(X) = 9(R(¢p X, p0,pa X )pa X, paypeX) = Huy(dpeX) .
Since a¢(2)X + b¢(3)X = a(i)(z)X + b¢(1)¢(2)X, we haVe (3. ].0).

LEMMA 3.4, Let X< E, For real numbers a, b (a*+b*=1) we have
(t=2,3)

(3. 13) H(l)(af(i) + bX) =at + 2a2b2 + b4H(1)(X) .

PROOF. By a straightforward calculation using (2.5) for £, and £ = ¢,
we have

9(R(akq) + bX, aplp) + bpX)(ab ) + bX), adb + bpX)
= a*g(R(En), PpEw)Ea) PpEw) + 0'g(R(X, $X)X, $X)
+ @b’ g(R(E ), pX)E ), 9X) + a’b*g(R(X, pE0) X Ebe) »

from which we have (3.13) for /=2, and the case of i =3 is similar,

REMARK. Since c§o + di, for constant ¢, d (c*+d?=1) is also Sasakian,
Lemma 3. 4 shows that

(3. 13)’ H(l)((l(CE(z) + dg(g)) -+ bX) =a*+ 2d2b2 + b4H(1)(X) .

4. Theorem A. A 3-dimensional K-contact Riemannian manifold (M, ¢, g)
is necessarily Sasakian and it is a D-Einstein manifold, i.e.,

(4.1) R(X,Y) = ag(X,Y) + bg(¢, X)g(§,Y),

where a and b are functions on M and R, denotes the Ricci curvature tensor (cf.
[16], [17]). Consequently the scalar curvature S is given by S=3a+b.

THEOREM A. Let (M,§ g) be a 3-dimensional K-contact Riemannian
manifold which is not of constant curvature, Then every Killing vector is an

infinitesimal automorphism.

To prove Theorem A, it suffices to show the following.
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PROPOSITION 4.1. Let (M,£,9) and (M',E,9') be two 3-dimensional
K-contact Riemannian manifolds. If they admits an isometry @(p*g’'=g) such
that @E+E and pE+ —&, then (M, g) is of constant curvature,

PROOF. Let x be an arbitrary point of M and put y=@x. Since @ is an
isometry, we have S,=.S," and

(4.2) R (X,Y) = (*R/).(X,Y) = R'y,y(pX, pY) .

By (4.1) we get

(4.3) 3a,+b, =3a, +b/,

(4.4) a,9.(XY)+b0.9.66 X)9.(6Y) = a9/ (9X, 9Y)+b,9,/ (£, 9X) 9/ (€, #Y).

Since dim M =3, we have Ze D, such that ¢, (£, 9Z) =0. Putting X=Y=Z in
(4.4), we get a,=a,’. Then (4.3) implies b,=b,". If we put X=Y=¢ in (4.4),
we have b,=b,'[g, (£, p€)]®. Hence, if b,#0, we have [g, (£, p£)1*=1. If (M, g)
is not of constant curvature, we have a non-empty open set U where b is non-
vanishing. Then we have @£=§" on U or ¢f =—§ on U. Since @£, £ (or —&') are
Killing vectors on (M, g'), and since they coincide on U, they coincide on M.
This contradicts the assumption of @, and hence, 5=0 on M. Consequently, (M, g),
(M’, g°) are of constant curvature 1.

By I(M, g) and A(M .£, g), we denote the isometry group and the automorphism
group of (M, &, g), respectively.

COROLLARY 4.2. Let (M,E, g) be a 3-dimensional K-contact Riemannian
manifold. Then we have either
(i) (M, g) is of constant curvature, or
(ii-1) I(M, g) = A(M, &, g) or
-2) IIM, g) = A(M, &, g) UA' (M, §, g),
where A'(M.£, g) = {of s f< ADMLE g), < I(M, g): @ = —E}.

5. Einstein-Kédhlerian manifolds. Let (N, J,G) be a 2n-dimensional
Kihlerian manifold with (almost) complex structure tensor J and Ki#hlerian metric
tensor G. Holomorphic sectional curvature is defined by ‘H(o) ="H(u)="K(u, Ju),
where o denotes the holomorphic section determined by #. For two holomorphic
sections ¢ and o', holomorphic bisectional curvature ‘H(s,o”) is defined in [4]. In
this paper we consider holomorphic special bisectional curvature 'H(s,s’), where
the word “special” means ¢ Lo, In this case

'Hlo, o) = 'K(u,v) + Klu, Jo) ,



320 S. TANNO

where u€ o and ve ¢’. Generalizing a result of M. Berger [1], S. 1. Goldberg and
S. Kobayashi [4] proved the followings : On an Einstein-Ké#hlerian manifold (N,J,G)
assume that the maximum value ‘H, of holomorphic sectional curvature is attained
at x of N. Let u be a unit tangent vector at x such that "H,="H (u).

(i) For an orthonormal basis (2, + ¢« , %y, pp=Juy, + + + , u,o=Ju,) at x such

that
(5.1) u, =u, and
(5.2) ‘Rytrta = G(R(tty, Juy )t 1) = 0

for all < and @ such that [a+:*; 2=i=n,2=a=nor n+2=a=2n), if 'Ry«
(holomorphic special bisectional curvature) is positive, then (N,J, G) has constant
holomorphic sectional curvature "H,,

Especially,

(i) If (N,J,G) is of positive holomorphic bisectional curvature, then it is
of constant holomorphic sectional curvature,

6. Local fiberings. Let p be a point of a K-contact Riemannian manifold
(M, €, g). We have a sufficiently small coordinate neighborhood U of p, which is
cubical and flat with respect to & (cf. [L0]). Then U is a regular K-contact
Riemannian manifold with the induced structure and we have a fibering

(6.1) 7: U-U/f=N.

Since U is a K-contact Riemannian manifold, N is an almost Kihlerian manifold.
We denote the almost Kéhlerian structure tensors by J and G. Then we have

(6.2) pu* = (Ju)*,
(6.3) g=n"G+17Qn,

where #* on U is the horizontal lift of a vector field # on N with respect to the
contact form 7. Further

(6.4) dn(u*, v*) = 29(u*, pv*) = 2G(u, Jv)- = .
Denoting by ‘R the Riemannijan curvature tensor on N, we have

(6.5) R(u*, v¥)2* = (R(u, v)2)* + 29 (u*, pv¥)p2z*
+ g(u*, p2*)pv* — g(v¥, Pp2¥)pu* + <u,v,2>E,
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where <u,v,z>> denotes some function depending on %, v,z and u, v, g are vector
fields on N (cf. [9], [17], [18], etc.). The relation between holomorphic sectional
curvature "H(«) on N and ¢-holomorphic sectional curvature H(«*) on U is

(6.6) Hw*) = "H(u) n—3.

The relation between ¢-holomorphic special bisectional curvature H(p,p")=K(X,Y)
+K(X,¢Y) (XepcD,Yep'CcD) onU and holomorphic special bisectional curvature
‘H(ap. np") on N is

(6,7) H(p, p') = "H(np, np’) - 7 .

U is a D-Einstein space if and only if N is an Einstein space ([17]). If (M, &, g)
is Sasakian, then (N, J, G) is Kihlerian.

7. Theorem B. Now we prove the following Proposition.

PROPOSITION 7.1. Let (E=E&q), &0 Es) be a Sasakian 3-structure on a
compact Riemannian manifold (M, g) of dimension 7. If

H(X) = Hy(X) = K(X, ¢X) <3

for any non-zero vector X € E, then (M, g) is of constant curvature.

PROOF. Let x be a point of M. Put
H,*= max{H(X) = Hy(X), X< E,}.
Case I, where H,*=<1 for any £ of M. Let X< E, be any unit vector. Take
a ¢-basis (E=Ea» £y En=9Ear X; ¢X, Y =0, X, pY = X). Since cosa= g(X,¢Y)
=0, by (2.8) we have
4K(X,Y)+ K(X,¢Y)) = HX+¢Y) + HX —¢Y)
+HX+Y)+HX-Y)—H(X)—H(Y)+6.

Noticing K(X,Y)=Hy(X) and K(X,¢Y)=Hy(X), and applying (3.6) and (3,10),
we have

6=H(X+¢Y)+HX—¢Y)+HX+Y)+H(EX-Y)+2H(X).

Since H,*=<1, we have H(X+¢Y) = H(X—¢Y) = H(X+Y) = H(X-Y) = H(X)
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=1. By (3.13)’, (M,&, g) has constant ¢-holomorphic sectional curvature 1. Therefore
(M, g) is of constant curvature 1 (cf. [18]).

Case II, where 1<H,* for some p. Since M is compact, we can assume that
H,* is the maximum value on M. Let V€ E, such that H¥=H(V). Let U be a
regular neighborhood of p and let n: U—-U/E=N be a (local) fibering. Let
u,=m,V.Then, by (6.6), we see that "H(u,), = H,*+3 is the maximum on N,
where ¢ = zp. We define a vector w; by u; = m,£q). Then Ju; = m,p€q = m,fe. In
(6.5), if we replace u, v, 2 by u;, Ju;, us, we have

R(w,*, pu*)Eay = (Rluy, Juy)us)*+2g(ur*, ppoey* )k

+0—0+ Uy, Jul, U > E(l)
at p. Projecting this, we have
R(uy, Juy)us = 2Jus .

This shows that #; and Jus are characteristic vectors of a symmetric bilinear form

a,, defined by a,, (¥, z) = G(R(uy, Ju,)y, Jz). Hence, a J-basis :

uy, Juy, 4y = wpan™®, Ju, = wupatn ™, us, Ju,

satisfies the conditions (5.1) and (5.2). We define three holomorphic sections by
o= (uy, Ju,), & = (uy, Ju,) and o = (us, Jus). Then, by (6.7), we have
"H(o, ") w = H((,*; ¢pur*), (peyta™; poter™))
= K(w* pa*) + K™, dpyr™)
= Hey(u,*) + He(u,*)
= 3 — Hy(u,*) by (3.6).

Therefore, "H(o, ¢") > 0, which implies "Rjjse >0 in §5. Next, by (2.1), we have
‘H(o,6") w = K(u,*, o) + K(u,*, E) = 2,

which implies "Ry =2>0 in §5. Since (U, ¢) admits a Sasakian 3-structure, it
is an Einstein manifold and (N, J,G) is an Einstein-K#hlerian manifold. By (i) of
§5, (N, J,G) is of constant holomorphic sectional curvature H,*+3. Therefore
(U, & g) is of constant ¢-holomorphic sectional curvature H,*. In particular we
have H,* = K (£, p€@)) = 1, which is a contradiction.

Hence, only case I is possible, and (M, g) is of constant curvature,
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LEMMA 7.2. (Theorem 4.4, [22]) Let (M, g) be a complete Sasakian
manifold which is not of constant curvature. Then we have either

(i) dim I(M, g) = dim A(M, €, g)
—— (M, g) admitting no Sasakian 3-structure, or
(ii) dim I(M, g) =dim A(M, &, g) + 2

— (M, g9) admitting a Sasakian 3-structure.

THEOREM B. Let (M,&, g) be a 7-dimensional compact Sasakian manifold
which is not of constant curvature, Assume that ¢-holomorphic sectional
curvature H(X) < 3. Then every Killing vector is an infinitesimal automorphism

Of (ME, g), 1 €.,
dim I(M, g) = dim A(M, &, g) .

PROOF. By Lemma 7.2, if dim I(M, g)#dim A(M, &, g), we have a Sasakian
3-structure such that £,, = £. By the assumption H(X) <3, Theorem B follows
from Proposition 7.1,

8. Theorems C and D. By a theorem of E. M. Moskal [8] (for proof, also
see [23], §7) we see that every compact Einstein-Sasakian manifold with positive
curvature (or positive ¢-holomorphic special bisectional curvature) is of constant
curvature 1. Therefore, Lemma 7.2 and the fact that (M, g) admitting a Sasakian
3-structure is an Einstein manifold imply the following theorem.

THEOREM C. Let (M,§, g) be a (4r + 3)-dimensional compact Sasakian
manifold which is not of constant curvature. Assume that every sectional
curvature is positive (more generally, every ¢-holomorphic special bisectional
curvature is positive). Then we have

dim I(M, g) = dim A(M, &, g) .

For dim M =4r+1 (r: an integer =1), there is no Sasakian 3-structure on
(M, g). Hence,

THEOREM D. Let (M,E g) be a (4r+1)-dimensional complete Sasakian
manifold which is not of constant curvature. Then

dim I(M, g) = dim A(M, €, g) .
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9. Infinitesimal translations. In this section, we give more general
statements of Theorems B and C. The Riemannian curvature tensor of (M, g) of
constant curvature k satisfies

(9.1) R(X,Z)Y = klg(X,Y)Z—9(Z,Y)X].

A Killing vector of constant length is called an infinitesimal translation (cf. for
example, K. Yano [24]).

THEOREM 9.1. Let (M, g) be a compact Riemannian manifold. Assume
that on (M, g) there are two (non-proportional) infinitesimal translations & and

&, satisfying
(9.2) R(X, E)Y = klg(X,Y)E— 9(6,Y)X]1,
(9.3) RX, &)Y = kg(X,Y)E — g(£,Y)X]

for a positive constant k.

(i) If dim M=7 and sectional curvature is smaller than 3k, then (M, g)
is of constant curvature k.

(ii) If dim M =4r+3 and sectional curvature is positive, then (M, g) is
of constant curuature k.

(iii) If dim M =3 or dim M= 4r+1. then (M, g) is of constant curvature k.

Proof. By a homothetic deformation, we can assume that 2= 1. Since (9. 2)
and (9.3) are linear homogeneous in £ and &, we can assume that they are of unit
length. Then, if g(£, &) is constant, (M, g) admits a Sasakian 3-structure, and (i),
(ii), (iii) hold by Theorem 7.1, etc. If g(§,£") is not constant, (M, g) is of constant
curvature by Lemma 3. 1.

10. The Hopf-fibrations. Let S?"*![1] be a unit sphere with the natural
Sasakian structure of constant (¢-holomorphic sectional) curvature 1. Since £ on
S2*1[1] is regular, we have the fibering :

(10.1) w: STH1] — S*[1]/€ = CP"[4],

where CP"[4] denotes a complex 7-dimensional projective space with Fubini-Study
metric of constant holomorphic sectional curvature 4. The map =: S*—.S?=CP!
is the classical Hopf map.

For S**3[1], we have a Sasakian 3-structure (£q), £q), £). The 3-dimensional
distribution defined by (£q), £e,» ) is completely integrable. Each maximal integral
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submanifold is isomorphic to S°[1]. In this case, the Hopf fibration is:
(10.2) w: SYP[1] —— S 1) /(Ews £y En) = QP

where QP” denotes the quaternionic projective space (cf. N. Steenrod [14], p. 105-).

(10.1) and (10. 2) are principal bundles with group S' and S?, respectively. A
generalization of (10.1) for regular contact manifolds is the Boothby-wang’s fiberings
[2].

In the next section, we give a generalization of (10.2).

11. Fiberings of (M, g) admitting a K-contact 3-structure. Let (£),&0), &)
be a K-contact 3-structure on (M, g) (cf.§13). We define the 3-dimensional
distribution by (Equy, £y ). Since we have

Ews ol = Ve fo — Vepto = 2¢0fe = 28w »

etc. by (3.2), etc., it is completely integrable. Each maximal integral submanifold
(leaf) L is totally geodesic and of constant curvature 1. By the restriction, L
admits a K-contact 3-structure (and hence, a Sasakian 3-structure, since dim L=3).
Now we assume that &,, is regular and that (MM, g) is complete. Then we show
that all leaves are isomorphic. To begin with,

LEMMA 11.1. 1In the classification of 3-dimensional space forms (M, g)
admitting a Sasakian 3-structure (Eq), £y i) (cf. S. Sasaki [11]), only S*[1] and
RP31] are regular with respect to &g.

PROOF. Each (M, g) of the classification is of the form S°[1]/I', where I’
is a finite subgroup of the automorphism group of the Sasakian 3-structure. By I
and —I(I* and —1I%, resp.) we denote the identity and the anti-podal map of S*[1]
(of S2, resp.). Assume that (M, g) is neither S°*[1] nor a real projective space
RP:[1]1=S*[1]/{I, —I}. Then, I" contains @ such that @+#1I and @+ —1. Since @
is an automorphism of (S®[1], &, g), it induces an automorphism ¢* of the Kahlerian
manifold S®[1]/€ = CP'[4] = S, where £ =§,.

(i) If @* =1I%, we have @ =expré for some 7. Since [Eq) Er] =2, and
[Eay Ew] = —2Eq), we have

(exp 7€) = (cos 2r)Em — (sin 2r), .

@Eq) = £ implies r =7 and @ =exp 7€ = —1 on S*[1], which is a contradiction
‘to the assumption of @.
(ii) If @*=—T1%, and if S?[L]/T is regular with respect to £, then (S°[1]/I")/€

is Kihlerian and orientable, However, since £ is invariant by I', we have
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(S[LI/T)/E = (S°[11/€)/T* = (S°[11/€)/(9*, **) = RP?/(*¥).

Because every complete Riemannian manifold of even dimension with constant
curvature (>0) is S™ or RP™, (**) = (identity). Since RP? is not orientable, this
is a contradiction.

(iii) If @*#1I* and @*»+—1I*, then @* has fixed points. Since I' is a finite
group, the set of all such points is composed of finite number of points, Therefore,
on S*[1]/T’, £ is not regular (cf. also, S. Tanno [20]).

LEMMA 11, 2. Assume that a complete Riemannian manifold (M, g) admits
a K-contact 3-structure (£, Eqy E). If Ew ts regular, then Eu and & are
regular, and all leaves L are isomorphic to S*[1] or RP[1].

PrROOF. This follows from Lemma 11.1.

REMARK. S?%[1] and RP?[1] are Lie groups (cf. [14], p. 37, p. 115). In fact, let
Q be the space of quaternions (q=x,+ x,i +x;j+x,k) and let S*={qec Q;|q|=1}.
Then the right translation R, and the left translation L, by q < S*® are defined by
Rqg=q-q and L,g'=q-q’, respectively. We define a Sasakian 3-structure
(£, £y, £Yy)) such that

(exptéw))q” = (cost)q’ + (sint)q’ - i, qgeS?

etc. (£ for j, &, for k). Then &%), &%), &%), are left invariant vector fields. We
denote by g the Lie algebra of S*[1] or RP[1].

THEOREM 11.3. Let (M, g) be a complete Riemannian manifold admitting
a K-contact 3-structure (Euyp&q)Ewn). Assume that Eqy is regular. Then
(M, Eqys Eap Eip ) is a SP[L]- or RP[1]-principal bundle over a Riemannian
manifold (B,h). h and g are related by
(11.2) 9(XY) = h(zX,nY) 7+ 3 1190 X)9(Ew Y) .
A g-valued l-form w defined by
(11.3) w(X) = 2 1 9(Ew X)E
is an infinitesimal connection form.

PROOF. By Lemmas 11.1 and 11.2, we see that (M, &), Ewyp €y g) is a

S?|1]- or RP?*[1]-principal bundle over a manifold B.First we show that w defined
by (11.3) is an infinitesimal connection form. Since S?[1] or RP?[1] acts to the
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right, &) are considered as the fundamental vector fields corresponding to &%,
respectively. Clearly, w(€;;))=£%,. To prove R *w=ad(a"!)w, it suffices to show
it for a=expr€,,. For this a we have R, '§,,=£,, and

R0 = Ny + pEiy Ri7'Eq = — pkoy + N »
R.EGy = NGy — p€lsy,  R.El = pEly + NEY

where A and p are constants depending on a (A*+pu?=1). Then we have

(Ra*w)p(X) = wpa(RaX) = ZLI gpu(f(i)’ RaX)fl(]i)
= > g,(R.Ew X)EY
= g€y X)W + go(AEw) + pyy X)E + 9o — py + Ny, X)E

= > 9oy X)REY = ad(a " )w,(X).

Hence, w is an infinitesimal connection form on the principal bundle, Let £ and y
be vector fields on B and let x* and y* be their horizontal lifts with respect to
w. We define a (0, 2)-tensor 2 on B by hk(x,y) = g(z*, y*). Since &;, are Killing
vectors, h is well defined and satisfies (11.2).

REMARK. The map = :(M, &y Esy £y 9) — (B, h) is harmonic in the sense
of Eells-Sampson [3] (cf. Proposition, p.127). This is the same for the Boothby-
Wang’s fiberings.

12. The Riemannian curvature tensors. We consider the fibering of
Theorem 11.3. By '/ we denote the Riemannian connection of (B, A). Let x,y, 2
be vector fields on B, and let x*,y¥,2* be their horizontal lifts. First we note
that

(12.1) [Ews x*¥] = Lex* =0,

because the horizontal distribution is invariant and x* is the horizontal lift of =x.
Now we have

(12.2) 29(Vay*, Z) = a%- g(y*, Z) + y*- g(a*, Z) — Z- g(z*, y¥)
+9([z* ¥*1, Z) + 9([Z, *], y*) — g(z*, [y*, Z]) .

Putting Z = 2*, projecting this identity on B, and noticing z[x*,y*]=[x,y], we

have
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(12.3) 2h(7(V 2:9%): 2) = z-h(y, 2) + ¥+ hlz; 2) — 2 h(z, y)
+ A([x, 5], 2) + hllz x], ) — h(z, [y, 2])
= 2h("V.y, 2).

Therefore, we have

(12.4) VoY *+ 2 akw

where a;, = g(£u) Vy¥). Putting Z=§, in (12.2), we have

(12.5) 2a; = —&u 9(x* %) + g([2*, y*), Ew)
= g([=* ¥*, £w)

= n([2%, y*]) = — dng (2, y¥)
(12.6) = —29(2%, y¥) .

By (12.4), (12.5) and (12.6), we have
(12.7) [2*, y*] = [2,y]* — 23t 9(2% puy®)éq .
By ‘R we denote the Riemannian curvature tensor of (B, h).
(Vi Vi2)* = Val'Viz)* + 3 g(a®, ¢ (" Viz)*)Ew .
By (12.4), etc., we get
(VV2)* = VaVpz* + 3 900" ¢z Vata

+ Z [9(Vay™, ¢(i)z*) + g(y*, Vb - 2%)
+ g% by Vaez®) + g(x*, ¢y Vrz*) o .

On the other hand, we get

(Vizn2)* = Viewz® + 2 g(lz y1% pwz*)éq
= Vi, 'y']z* + 22 g(x*’ (Il-’(i)y*)Vg‘Z* + Z g([x*’ y*]> ¢(i)z*)§(i)°

Therefore, using V;,2* = V.4 = —pwz*, we have

(12.8)  (R(zy)2)* = R(z* y*)2* + 2 [9(5* pwz*)pwz™ — 9(x*; dw2™)pwy™*
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—29(x*, o y*)pwz*] + D [9(x*, Vyetpyy + 2%)

- g(y*’ v:c’(ﬁ(t) ° z*)]fu) .

PROPOSITION 12.1. In the fibering of Theorem 11.3, let x, y be an
orthonormal (local) wvector fields on B (or tangent vectors at a point of B).
Then we have

(12.9) ‘Kz, y):mw = K(x* y%) + 333, [9(y* dopx®)]2.

PROOF. Putting 2 =z in (12.8) and taking the inner products of y* and
the both sides of (12.8), we get

h(R(x,y)x,y)-m = g(R(x*, y*)x*, y*) + 33 [9(y*, pwx®)1?,
from which we have (12.9).
THEOREM 12. 2. In the fibering of Theorem 11.3, assume that (£, £y Es))
is a Sasakian 3-structure and dim M="7. Then (M, g) is of constant curvature

1 if and only if (B,h) is of constant curvature 4,

PROOF. Let x, y be any orthonormal pair in B,, g€ B. Then z*,y* are
orthonormal and y* is expressed by

y* =2 "libppxt, b= g(y*, pux™).

Since > b2=1, (12.9) implies 'K(x,y). 7 = K(«*, y*)+3. Hence, if (M, g) is
of constant curvature 1, (B,h) is of constant curvature 4. Conversely, if (B,h)
is of constant curvature 4, we have H,(X)=1 for any non-zero Xe E, This
implies that (M, g) has constant ¢,-holomorphic sectional curvature 1 by (3.13)".
Thus, (M, g) is of constant curvature 1.

EXAMPLE. The Hopf fibration of S7 is; n: ST—QP'=S"

THEORFM 12. 3. In the fibering of Theorem 11.3, (M, g) is an Einstein
manifold (f and only if (B, h) is an Einstein manifold such that

‘Ri(x,y) = (4 + 8)h(x,y), 4r =dim B.

PROOF. Let p be an arbitrary point of M and put ¢==p. Let (£ Xu Py Xus
i=1,2,3,u=1,++-,7) be an orthonormal basis at p. If we denote #,X, by 7X.,
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etc., (X mp,X,) is an orthonormal basis at q. By (12.8), we have
(12.10) h('Rlz, nXu)y, 7X.) = g,(R(x*, Xu)y*, X.)
+32 95lbwr®, Xu) g5 b0y* Xu) »
(12.11) A (R(x> 75 Xu)ys 75 Xu) = go(R(x¥; 5, Xu)™; 5 Xu)
+3 22 95bwx® 1 Xu) 9o(Pwy*s d5 Xa)
for j=1,2,3. On the other hand, by (2.1). we have
(12.12) 0 =2 g,(R(x*, £0)y* Ewy) — 3g,(x* %) .
First we notice that
2ou 9@, Xu)g(v% Xu) + 20 5,09(2% 60, Xa) 9(0%, b0y Xu) = g(2% %) .
Then by (12.10) ~ (12.12), we have
(12.13) ‘Rij(x,y) = Ry(x¥, y*) + 6g,(x*, y¥).

If (M, g) is an Einstein manifold, we have R,=(m—1)g=(4r+2)g (cf. (2.1)).
Therefore, we have ‘R;(x, y) = (4r+8) h(x, y). Conversely, if (B, h) is an Einstein
manifold such that ‘R,= (4r+8)h, then R,(x*,y*)=(m—1) g(x¥, y*) holds. Since

Ri(X, €)= (m—1)n,,(X) (cf. (1.6) of [21]), (M, g) is an Einstein manifold.

In the fibering of Theorem 11.3, if (£u), £@)sEm) is a Sasakian 3-structure,
then (B, h) is an Einstein manifold. Hence, we have

THEOREM E. Let (M, g) be a complete Riemannian manifold admitting
a Sasakian 3-structure (£uy,EwsyEw). If one of the Sasakian structures is
regular, then (M, £y, o) Eis), 9) @5 a S*[1]- or RP3[1)-principal bundle over an
Einstein manifold (B, h) such that ‘R,= (4r+8)h, 4r=dim B.

13. 3-K-contact structures. We define a 3-K-contact structure on (M, g)
by three K-contact structures £, £qy, £, satisfying (3.1) and (3.2). Some results

on K-contact 3-structures are generalized to results on 3-K-contact structures.

LEMMA 13.1. Let &, and &, be two K-contact structures on (M, g) such
that g(Eqy &) = 0. Then (Eq), £y ) = (1/2)[E0), £)]) s a 3-K-contact structure.

PROOF. Since
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[Eay ] = ViwEe — Vinfon = 2Vine = — 20aéqw
= — 2Viwfw = 2¢0méwe) »

£6) = pw€w is also a unit Killing vector. Then we have

(1. 1) Eap o]l = Linés = Lf<1>(¢<x)§<2)) = ¢'(1>[fa)» £w]
= 2¢0fs = 200Pwte = — 26w

(13. 2) [Eerén] = Lem( ‘¢(2>fu)) =28q.

Hence, &), 1=1,2,3, satisfy (3.1), (3.2) where ¢u= —VEy.We show that £, is
a K-contact structure. Since &, satisfies

(13.3) R(X, Ep)éa = 9(X En)Ewy — X »

operating the Lie derivation L., to (13.3), we have

(13.4) R(X, Ep)ew + R(X, Eww = 9(X: En)Ew + 9(X ) -
Oprating L;, again to (13.4), and using (13.3), we have

(13.5) R(X,€x)fw = 9(X E)ée — X

Therefore, £ is a K-contact structure,

PROPOSITION 13.2. A 3-K-contact structure on (M, g) is a K-contact
3-structure if and only if

(13.6) R(X,Ew)w = 9(X, Ew)én .
PROOF. Operating Vx to ¢puée = £z, we have
Vo Eo — dodaX = —peX.
Since Vxpw = —VaVEw) and VxVEw)+R(X, Ew) =0, we have
(13.7) R(X, €l — dupaX = — puX.

Hence, if (13.6) holds, we have (3.3);-s. If we oprate L, to (13.6), we have
R(X, En)Ew = 9(X, E))Ew» and then we get (3. 3)i-;. Similarly, we get (3.3)g-.
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REMARK. In the above discussion, if &y, and £, are Sasakian, then replacing

(13.3) by (2.5) for £y we see that £ is Sasakian. Since we have (13.6) for
Sasakian &4y, we have (iii) in §3.

PROPOSITION 13.3. Theorem 11.3, Proposition 12.1 and Theorem 12.3

are true for a 3-K-contact structure.

In fact, in proofs of Propositions listed above, (3.3) are not used. Only two

points we must notice here are:

(i) we have a basis of the form (£, X, ¢,X;) at each point. If dim M=3,

this is clear, If dim M >3, we have a unit X, € M,, which is orthogonal to
£w,7=1,2,3. If we put X=X, in (13.4), we get R(X,,&w)éw+R(X,, Ea))E=0.
Similarly, we have

(13.8) R(X1, Eqy)Ee + R(X, E)Eay = 0

By (13.7) and (13.7)(«¢wéa) = —£s):

(13.77 R(X,¢0)Ewy — popnyX = ¢ X »

(13.8) is written as

(13.9) PP X1 + ddn X, = 0.

By (13.9), (13.9), (13.9)", we see that (£u) X1, ¢X:) is orthonormal. These
steps complete a basis stated above,

(ii)

With respect to (12.11) —(12.13), it is required that (£, X, ¢paybe X

b1yPs) X1 PP X;) is also an orthonormal basis, This is also assured by (13.9).
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