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1. Introduction. Let (M, g) be a Riemannian manifold. Then K-contact
Riemannian structures and Sasakian structures ( = normal contact Riemannian
structures) on M are defined by Killing vectors ξ of unit length satisfying some
conditions (cf. §2). Hence we denote by (M,ξ,g) a i^-contact Riemannian manifold
or a Sasakian manifold.

Every (My ξ, g) is odd dimensional.
In this paper, after preliminaries in §2 and §3, we first try to give conditions

for Killing vectors to be infinitesimal automorphisms of (M, ξ, g) in terms of
curvature of (M,ξ,g) in § 4 ^ §8.

THEOREM A, Let (M, ξ, g) be a 3-diτnensional K-contact Riemannian
manifold which is not of constant curvature. Then every Killing vector is an
infinitesimal automorphism of (M, ξ, g).

By φ= -Vξ, we have a (l,l)-tensor field on M. φ satisfies φφX= -X+g(ξ,X)ξ
for each vector field X on M.

THEOREM B. Let (M, ξ, g) be a 7'-dimensional compact Sasakian manifold
which is not of constant curvature. Assume that φ-holomorphic sectional
curvature H(X) < 3. Then every Killing vector is an infinitesimal automorphism
of(M,ξ,g).

For general (4r+3)-dimensional cases, we need stronger conditions on curvature
than those in Theorem B, r being an integer ̂ 1 .

THEOREM C. Let(M,ξ,g) be a (kr+ZYdimenύonal compact Sasakian
manifold which is not of constant curvature. Assume that curvature is positive
(more generally', φ-holomorphic special bisectίonal curvature is positive). Then
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every Killing vector is an infinitesimal automorphism of (M, ξ, g).

The remaining cases are (4r + l)-dimensional, r being an integer grl .

THEOREM D. Let (M,ξ,g) be a (4r + l)-dimensional complete Sasakian

manifold which is not of constant curvature. Then every Killing vector is an

infinitesimal automorphism of (M, ξ, g).

As we have seen in [22], discussions on these problems concern Sasakian

3-structures on (M, g).

In §9, we give slightly general statements of the above theorems.

Analogously to the Hopf fibrations of spheres and the Boothby-Wang's fiberings
of regular contact manifolds, we consider ήbrations of (M, g) admitting a K-contact
3-structure in §11 and §12.

THEOREM E. Let [M, g) be a complete Riemannian manifold admitting

a Sasakian 3-structure (f ( 1 ) , ^ ( 2 ) , ̂ ( 3 ) ) . / / one of the Sasakian structures, for

example f(1), is regular, then (M,ξζl»ξω,ξw, g) is a 53[1]- or RP\l\-principal

bundle over an Einstein manifold (B,h).

In §13 we show that in many cases results on ^-contact 3-structures are

generalized to results on 3-iC-contact structures.

The author is grateful to Professor S. Sasaki for his kind criticism and

suggestions.

2. Preliminaries. Let (M, g) be a Riemannian manifold. By V and R we

denote the Riemannian connection and the Riemannian curvature tensor (R{X> Y)

= V u , r r [ V i ) Vr])> respectively. Let ξ be a unit Killing vector on (M, g), which

satisfies

(2.1) R(X,ξ)ξ=g(X,ξ)ξ-X

for any vector field X on M. Define a (1,1)-tensor field φ by φ = — Vf and

a 1-form (= contact form) η by η = g(ξ, ). Then (φ>ξ>V,g) is a i^-contact

Riemannian structure (cf. [5], etc.). We denote this i^-contact Riemannian manifold

by (M,ξ,g). On (M,ξ,g) we have

(2.2) φξ= -

(2.3) φφX= -X+g(ξ,X)ξ,
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(2. 4) g(φX, φY) = g(X, Y) - g(ξ, X)g{ξ, Y).

If a unit Killing vector ξ satisfies

(2.5) R(X,ξ)Y=g{X,Y)ξ-g(ξ,Y)X, or

(2.5)' - VΛVξ)Y = g(X, Y)ξ - g(ξ, Y)X

for any vector fields X and Y on M, then (M, ξ, g) is called a Sasakian manifold
(^normal contact Riemannian manifold) (cf. [12], [13], etc.). A Sasakian manifold
is a K-contact Riemannian manifold.

On a Sasakian manifold (M,ξ,g)> by the Ricci identity, we have the follow-
ing relation (cf. for example, Lemma 3. 2 in [21]):

(2. 6) φR(X, Y)(φZ) = - R(X, Y)Z - g(Y, Z)X + g(X, Z)Y

+ g(φY, Z)φX - g(φX, Z)φY.

We define the distribution D by Dp = [Xp g(ξ, Xp) = 0, Xv € Mp}, where Mp

denotes the tangent space to M at p. By Xz D we understand that X is a vector
field on M such that Xpz Dp for every p of M. By X ζ Dp, we understand that
X is a tangent vector belonging to Dp. By K{X,Y) we denote the sectional
curvature for a 2-plane determined by X and Y. By H(X)9 Xz Dp(or Xe D) we
denote the sectional curvature K{X,φX), called φ-holomorphic sectional curvature.

Let X and Y be an orthonormal pair in Dp and put g(X,φY) = cos oί. Then
by a direct calculation we have (cf. E. M. Moskal [8])

(2. 7) K(X, Y) = (1/8)[3(1 + cos rt)2if (X + φY) + 3(1 - cosa)2H(X- φY)

- H(X + Y) - H(X - Y) - H(X) - H{Y) + 6 sin2a].

Furthermore we have (for (2. 7) and (2. 8), see also [18])

(2. 8) K(X, Y) + sin2

3. ^-contact 3-structures and Sasakian 3-structures. Let I
be three i^-contact structures on (M, g). Define φ(O(z* = 1,2,3) by φ ( i )

Assume that

(3.1) ^c*),fcj>) = 8< i, i , i = 1.2,3,
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(3. 2) ξa y = φa)ξ(j) = —

(3. 3) φα>X = φwφc»X — 9(ξw

where (i,j,k) is an even permutation of (1,2,3). Then we say that (ξn^ξa^ξw)

is a X-contact 3-structure on (M, g). Similarly, if fα)> fc2» fcs> are Sasakian

structures and satisfy (3.1)^(3.3), then (fCi>> fC2>» fca>) is called a Sasakian

3-structure on (M, #).

( i ) If [My g) admits a X-contact 3-structure, then dim M = 4 r + 3 for some

integer r ^ O (Y. Y. Kuo [7]).

(ii) (Af, g) admitting a Sasakian 3-structure is an Einstein manifold (T.

Kashiwada [6]).

(iii) Let £ α ) and £ ( 2 ) be two Sasakian structures on (M, g) such that

g(ζti)> 1(2)) = 0. Then fc3) = ( 1 / 2 ) [ | ( D , ξ^] is also a Sasakian structure and orthogonal

to Id) and ξ^. Hence (ξa^ξ^>ζw) is a Sasakian 3-structure (Y. Y. Kuo [7]).

If the inner product g(ξ9ξ') of two Sasakian structures ξ and ξ on (Af, g) is

constant (=£1, =£—1), we can find Sasakian structure £ ( 2 ) so that f(1) = ^ and ξC2>

are orthogonal. Hence (M, ̂ ) admits a Sasakian 3-structure.

In the case where g(ξ, ξ') is not constant, we have

LEMMA 3.1. (S. Tachibana and W. N. Yu [15]) Let (M, g) be a complete

Riemannian manifold of m-dimension. If (M, g) admits two Sasakian structures

ξ and ξ' with g(ξ,ξ') = non-constant, then [My g) is of constant curvature 1.

Originally, Lemma 3.1 was proved for complete and simply connected (M, g)

with conclusion that (M, g) is isometric to a unit sphere Sm.

Let (£ci)>!c2)>fc3)) be a ^-contact 3-structure on [M, g). By E we denote the

distribution defined by (putting £ α ) = ξ)

(3.4) Ep = {XΏz Dp; g(Xp,ξc») = g(XP,ξw) = 0} .

Since dim M= 4 r + 3 , we have dim Ep = 4r. If Xz Ep, we have

(3. 5) φa)X — ΦtoΦu)X — "~ Φu)Φ(t)X >

where [k,i,j) is an even permutation of (1,2,3).

We define φ(ί)-holomorphic sectional curvature for Xz Ep by

Hi2)[X) = K[X, φwX), H{3)[X) = K(X,
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In the remainder of this section we assume that (|(i), £(2), £(3)) is a Sasakian
3-structure.

P R O P O S I T I O N 3.2. For Xz Ep, we have

(3. 6) Ha)(X) + H(2)(X) + HW(X) = 3 .

PROOF. In (2. 6) we put φ=φa) and take X, Y, Z (of unit length) € 2£p and
consider the inner product with Wz EΌ. Then we get

(3. 7) g(R(X, Y)φwZ, φ{i)W) = g(R(X, Y)Z, W) + g(Y, Z)g(X, W)

- g(X, Z)g[Y, W) - g(φ{i)Y, Z)g(φ(i)X, W)

+ g(φ(i)X,Z)g(φ(i)Y,W),

where we have used (2. 3) and (2. 4), and i = 1,2,3. If we put i = 1, Z = X, and
Y=W=φi3)X in (3.7), we get

(3.8) g(R(X, φ(3)X)φα)X φ(i)Φ(3)X) = g(R(X, Φ<*>X)X,

that is,

(3. 9) - g(R(X, φ

Then we have two relations by even permutations of (1,2,3) from (3.9). Hence,
(3. 6) follows from the Bianchi identity.

PROPOSITION 3.3. For XzEp and for real numbers a, b (a2+b2 = l),
we have

(3.10) Hα )(X) = H(1)(φ(2)X) = H(1)(αφ(2)X + bφwX).

PROOF. By a permutation (l->2-»3->l) in (3.9), we have

(3.11) Hω(X) - 1 = - g{R(X, φ(1)X)φ(2)X, φ(3)X)

= g(R(φi2)X, φ(3)X)φ(3)φ(2)X> φ(3)Φ(3)X) by (3.5).

On the other hand, in (3. 7) we put i=3 and replace X,Y,Z,W by φ(2)X,φ(3)X,φ(2)X>
φ(3)X. Then we have
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(3.12) g(R(φ(2)X, φ{3)X)φ(3)φi2)Xy φ(3)φ(3)X) = g(R(φi2)X,φ{3)X)φi2)X,φ(3)X) — 1.

By (3.11) and (3.12), we have

= g(R(φ(2)X, φa)Φ(2)X)Φ(2)X> Φd)Φ(2)X) = H(1){φ{2)X).

Since aφi2)X + bφi3)X = aφ{2)X + bφa)φ{2)X, we have (3.10).

LEMMA 3.4. Let XzEp. For real numbers a, b (α2 + 62 = l) we have
(£=2,3)

(3.13) H{1)(aξ«) + bx) = a" + 2α2έ2 + b*H(1)(X).

PROOF. By a straightforward calculation using (2. 5) for £(2) and ξ(3) = φξ(2)>
we have

g(R(aξ{2) + 6X, αφ^(2) + bφX)(aξi2) + 6X), α ^ ( 2 ) + bφX)

w)ξ<», φξ<») + b'g(R(X9 φX)X, φX)

, φX)ξ{2), φX) + aWg(R(X, φξi2))X, ξφw

from which we have (3.13) for i = 2, and the case of £ = 3 is similar.

REMARK. Since cξ{2) + dξ{Z) for constant c, d (c2 + d2 = l) is also Sasakian,
Lemma 3. 4 shows that

(3.13)' ff(1)(flfe, + dξ{3)) + 6X) = α4 + 2aV + δ4H(1)(X).

4. Theorem A. A 3-dimensional ^-contact Riemannian manifold (M, ξ, g)
is necessarily Sasakian and it is a D-Einstein manifold, i. e.,

(4.1) RAX, Y) = ag(X, Y) + bg(ξ, X)g(ξ, Y),

where a and b are functions on M and i?x denotes the Ricci curvature tensor (cf.
[16], [17]). Consequently the scalar curvature S is given by S = 3a + b.

THEOREM A. Let (M, ξ, g) be a ^-dimensional K-contact Riemannian
manifold which is not of constant curvature. Then every Killing vector is an
infinitesimal automorphism.

To prove Theorem A, it suffices to show the following.
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PROPOSITION 4.1. Let(M,ξ,g) and (M',ξ',g') be two 3-dimensional

K-contact Riemannian manifolds. If they admits an isometry φ{φ*g' = g) such

that φξΦξ' and φξΦ—ξ\ then [M, g) is of constant curvature.

PROOF. Let x be an arbitrary point of M and put y = φx. Since φ is an

isometry, we have Sx = Sy' and

(4.2) Rlx(X, Y) = (φ*R,')x(X, Y) = R'ιv(φX, φY).

By (4.1) we get

(4. 3) 3ax + bx = 3ay + by,

(4.4) axgx(X9Y) + bxgx(ξ,X)gx(ξ,Y) = ay gy'(φX,φY)+by'gy[ξ\φX)gy'(ξ\φY).

Since dimM=3, we have Ze Dx such that gv'(ξ9φZ) = 0. Putting X=Y=Z in

(4.4), we get ax = ay. Then (4.3) implies bx=by\ If we put X=Y=ξ in (4.4),

we have bx = by'[gy'(ξ9φξ)γ. Hence, if bxΦθ, we have [gy'{ξ',φξ)]2 = l. If (M,g)

is not of constant curvature, we have a non-empty open set U where b is non-

vanishing. Then we have φξ = ξ' on U or <pξ = —ξ' on U. Since <pξ> ξ'(oτ —ξ') are

Killing vectors on (M\ g')9 and since they coincide on U, they coincide on M\

This contradicts the assumption of φ, and hence, b=0 on M. Consequently, (M, g),

(M\ g) are of constant curvature 1.

By 7(M, g) and A(M ,ξ, g), we denote the isometry group and the automorphism
group of (M,ξ,g), respectively.

COROLLARY 4. 2. Let (M, ξ, g) be a 3-dimensional K-contact Riemannian

manifold. Then we have either

( i ) (M, g) is of constant curvature, or

(ii-1) I(M, g) = A(M, ξ, g) or

-2) I(M,g)=A(M,ξ,g)ΌA'(M,ξ,g),

where A'(M, ξ, g) = [φf fe A(M, ξ, g),φz I(M, g): φξ = -ξ}.

5. Einstein-Kahlerian manifolds. Let (N, J, G) be a 2rc-dimensional

Kahlerian manifold with (almost) complex structure tensor J and Kahlerian metric

tensor G. Holomorphic sectional curvature is denned by Ή(σ) =Ή(u) = 'K(u,Ju),

where σ denotes the holomorphic section determined by u. For two holomorphic

sections σ and σ', holomorphic bisectional curvature Ή(σ,σ) is defined in [4]. In

this paper we consider holomorphic special bisectional curvature Ή{σ,σ), where

the word "special" means σ_Lσ\ In this case

Ή(σ, σ) = *K(u, v) + *K[u, Jv) ,
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where ue σ and v£ σ. Generalizing a result of M. Berger [1], S. I. Goldberg and

S. Kobayashi [4] proved the followings : On an Einstein-Kahlerian manifold (N,J,G)

assume that the maximum value ΉΊ of holomorphic sectional curvature is attained

at x of N. Let u be a unit tangent vector at x such that Ήχ — 'Ή.{tί).

( i ) For an orthonormal basis (u19 , un, u1* = Juu , un*=Jun) at x such

that

(5.1) uλ = u, and

(5. 2) 'Λii^ = GCRfa, Jux)uiy ua) = 0

for all i and a such that [aΦi*\ 2^i^ny2^a^n or n + 2^a^2ri\9 if ']{„.«.

(holomorphic special bisectional curvature) is positive, then (N, J, G) has constant

holomorphic sectional curvature Ήx.

Especially,
(ii) If (N,J,G) is of positive holomorphic bisectional curvature, then it is

of constant holomorphic sectional curvature.

6. Local fiberings. Let p be a point of a K-contact Riemannian manifold

(M,ξ,g). We have a sufficiently small coordinate neighborhood U of p, which is

cubical and flat with respect to ξ (cf. [10]). Then U is a regular ^-contact

Riemannian manifold with the induced structure and we have a fibering

(6.1) 7t: U^U/ξ = N.

Since U is a K-contact Riemannian manifold, N is an almost Kahlerian manifold.

We denote the almost Kahlerian structure tensors by J and G. Then we have

(6.2) φu*=(Ju)*9

(6.3) g = x*G

where u* on U is the horizontal lift of a vector field u on N with respect to the

contact form η. Further

(6.4) dη{u*9 v*) = 2g{uk

y φv*) = 2G{u, Jv) τr.

Denoting by 'R the Riemannian curvature tensor on N, we have

(6. 5) R(u*> v*)** = {'R(u, v)z)* + 2g(u*9 φv*)φz*

+ g(u*9 φz*)φv* - g(v*, φz*)φu* + < u, v, z > ξ ,
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where <u,v,z> denotes some function depending on u,v,z and u, v, z are vector

fields on N (cf. [9], [17], [18], etc.). The relation between holomorphic sectional

curvature Ή(u) on N and φ-holomorphic sectional curvature H{u*) on U is

(6.6) H(u*) = Ή(u) π-3.

The relation between φ-holomorphic special bisectional curvature H(p,ρ') = K(X,Y)

-\-K{X, φY) (Xz pdD,Y £ p'cD) onU and holomorphic special bisectional curvature

Ή{πp. 7tρ) on N is

(6.7) H(p,p') = Ή(πp,πp').7r.

U is a D-Einstein space if and only if N is an Einstein space ([17]). If (M,ξ, g)

is Sasakian, then (N, J, G) is Kahlerian.

7. Theorem B. Now we prove the following Proposition.

PROPOSITION 7.1. Let (ξ = f(1), £(2), | ( 3 )) be α Sαsαkiαn 3-structure on α

compact Riemannian manifold {M, g) of dimension 7. / /

H(X) = H(1)(X) = K(X, φX) < 3

for any non-zero vector Xe E, then (M, g) is of constant curvature.

PROOF. Let Λ:bea point of M. Put

f/ x *= max{H(X) = H{1)(X),Xz Ex}.

Case I, where Hx*^ 1 for any Λ: of M. Let X e Ex be any unit vector. Take

a φ-basis (ξ = ξii),ξi2)>ξwz=i'ξw> X,φX,Y=φ(2)X,φY=φ(3)X). Since coscί=g(X,φY)

= 0, by (2.8) we have

A{K(X, Y) + K(X, φY)) = H(X + φY) + H(X - φY)

H(X - Y) - H(X) - H(Y1 + 6.

Noticing K(X9Y)=HW(X) and K{X,φY)=Hi3)(X), and applying (3.6) and (3,10),
we have

6 - H{X + φY) + H{X-φY) + H{X + Y) + H(X- F) + 2H(X).

Since H x * ^ 1, we have H(X-hφY) = H(X-φY) = H(X+Y) = H(X-Y) = H(X)
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= 1. By (3.13)', (M9ξ9g) has constant φ-holomorphic sectional curvature 1. Therefore
(M9 g) is of constant curvature 1 (cf. [18]).

Case II, where 1<HP* for some p. Since M is compact, we can assume that
Hp* is the maximum value on M. Let V € Ep such that HP*=H(V). Let U be a
regular neighborhood of p and let n: U->U/ξ=N be a (local) fibering. Let
#i = TTpV.Then, by (6.6), we see that Ή(uι)q = Hp* + 3 is the maximum on N,
where q = πp. We define a vector u3 by u3 = τrpξ(2). Then Jw3 = τtpφξ(2) = 7Cpξ(3). In
(6. 5), if we replace u, v, z by ul9 Ju19 u3y we have

= ('R{u1,Ju1)u3)*+2g{u1*,φφu1*)φξi2)

+ 0 — 0 + <u19 Ju19 u3> ξ{1)

at p. Projecting this, we have

"R(uX9 Jux)u3 = 2Ju3.

This shows that u3 and Ju3 are characteristic vectors of a symmetric bilinear form
cίUί defined by dUι(y9z)='G^R(u19Ju1)y9Jz). Hence, a J-basis :

satisfies the conditions (5.1) and (5. 2). We define three holomorphic sections by
cr = (ul9 Juι)9 σ = (u2, Ju2) and σ" = (uZ9 Ju3). Then, by (6. 7), we have

Ή(σ, σ) it =

( φ(2)«l

= 3 - H α ) ( M l * ) by (3.6).

Therefore, Ή"(σ,σ ' )>0, which implies 'i?n*22 > 0 in §5. Next, by (2.1), we have

Ή(σ, σ") 7t = K(ux*9 ξ{2)) + K(ux*> |(3)) = 2 ,

which implies 'i?ii*33* = 2 > 0 in §5. Since (U9 g) admits a Sasakian 3-structure, it
is an Einstein manifold and (N,J,G) is an Einstein-Kahlerian manifold. By (i) of
§5, (N,J,G) is of constant holomorphic sectional curvature Hp* + 3. Therefore
(U> ξ, g) is of constant φ-holomorphic sectional curvature Hp*. In particular we
have Hp* = K(ξ{2)9φξ(2)) = 1, which is a contradiction.

Hence, only case I is possible, and (M, g) is of constant curvature.
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LEMMA 7.2. (Theorem 4.4, [22]) Let (M, £, #) fo a complete Sasakian
manifold which is not of constant curvature. Then we have either

(i) dim I(M, g) = dim A(M, ξ, g)

7~~^ (M, g) admitting no Sasakian 3-structure, or

(ii) dim I(M, g) = dim A(M, ξ, g) + 2

< *~ (My g) admitting a Sasakian ^-structure.

THEOREM B. Let (M, ξ, g) be a Ί-dimensional compact Sasakian manifold
which is not of constant curvature. Assume that φ-holomorphic sectional
curvature H(X) < 3. Then every Killing vector is an infinitesimal automorphism
of (M,ξ,g), i.e.,

dim I(M9 g) = dim A(M, ξ, g).

PROOF. By Lemma 7. 2, if dim I(M, g) Φάϊm A{M, ξ, g)9 we have a Sasakian
3-structure such that ξa) = ξ. By the assumption H ( X ) < 3 , Theorem B follows
from Proposition 7.1.

8. Theorems C and D. By a theorem of E. M. Moskal [8] (for proof, also
see [23], §7) we see that every compact Einstein-Sasakian manifold with positive
curvature (or positive φ-holomorphic special bisectional curvature) is of constant
curvature 1. Therefore, Lemma 7. 2 and the fact that (M, g) admitting a Sasakian
3-structure is an Einstein manifold imply the following theorem.

THEOREM C. Let (M,ξ,g) be a (4r + 3)-dimensional compact Sasakian
manifold which is not of constant curvature. Assume that every sectional
curvature is positive (more generally, every φ-holomorphic special bisectional
curvature is positive). Then we have

dim I(M, g) = dim A(M, ξ, g).

For d i m M = 4 r + l (r: an integer ̂ 1 ) , there is no Sasakian 3-structure on
(M,g). Hence,

THEOREM D. Let (M,ξ,g) be a (4r+1)-dimensional complete Sasakian
manifold which is not of constant curvature. Then

dim I[M, g) = dim A(M, ξ, g).
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9. Infinitesimal translations. In this section, we give more general

statements of Theorems B and C. The Riemannian curvature tensor of (M, g) of

constant curvature k satisfies

(9.1) R(X, Z)Y = k[g(X, Y)Z- g(Z, Y)X].

A Killing vector of constant length is called an infinitesimal translation (cf. for
example, K. Yano [24]).

THEOREM 9.1. Let (M, g) be a compact Riemannian manifold. Assume

that on (M, g) there are two [non-proportional) infinitesimal translations ξ and

ξ, satisfying

(9. 2) R(X, ξ)Y = k[g(X, Y)ξ - g(ξ, Y)X],

(9. 3) R(X, ξ)Y = k[g(X, Y)ξ - g(ξ, Y)X]

for a positive constant k.

(i) If dim M= 7 and sectional curvature is smaller than 3 k, then (M, g)

is of constant curvature k.

(ii) J / d i m M = 4 r + 3 and sectional curvature is positive, then (M, g) is

of constant curuature k.

(iii) If dim M— 3 or dim M— 4r+l, then (M, g) is of constant curvature k.

Proof. By a homothetic deformation, we can assume that k — 1. Since (9. 2)

and (9. 3) are linear homogeneous in ξ and ξ\ we can assume that they are of unit

length. Then, if g(ξ,.ξ') is constant, (M, g) admits a Sasakian 3-structure, and ( i ) ,

(ii), (iii) hold by Theorem 7. 1, etc. If g{ξ,ξ') is not constant, {M9g) is of constant

curvature by Lemma 3.1.

10. The Hopf-fibrations. Let S2n+ί[l] be a unit sphere with the natural

Sasakian structure of constant (φ-hoίomorphic sectional) curvature 1. Since ξ on

S2n+ι[l] is regular, we have the fibering:

(10.1) n : S2n+ί[l] S2n+1[l]/ξ = CPn[4],

where CPn[4] denotes a complex ^-dimensional projective space with Fubini-Study

metric of constant holomorphic sectional curvature 4. The map n : S3—>S2 = CP1

is the classical Hopf map.

For 5 4 r + s [ l ] , we have a Sasakian 3-structure (ξ(1), ξ(2), ξi3)). The 3-dimensional

distribution defined by (£(1), £(2,, ξ{3)) is completely integrable. Each maximal integral
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submanifold is isomorphic to 53[1]. In this case, the Hopf ήbration is :

(10. 2) n : S^[l] — S

where QPr denotes the quaternionic projective space (cf. N. Steenrod [14], p. 105-).

(10.1) and (10. 2) are principal bundles with group S1 and *S3, respectively. A

generalization of (10.1) for regular contact manifolds is the Boothby-wang's fiberings

[2].
In the next section, we give a generalization of (10. 2).

11. Fiberings of (M, g) admitting a ϋi-contact 3-structure. Let (£(i)>?(2)>£(3))

be a X-contact 3-structure on (M, g) (cf. §13). We define the 3-dimensional

distribution by (£(D> £(2)> £(3)). Since we have

etc. by (3. 2), etc., it is completely integrable. Each maximal integral submanifold

(leaf) L is totally geodesic and of constant curvature 1. By the restriction, L

admits a iC-contact 3-structure (and hence, a Sasakian 3-structure, since dim L = 3).

Now we assume that | ( D is regular and that (M, g) is complete. Then we show

that all leaves are isomorphic. To begin with,

LEMMA 11.1. In the classification of 3-dimensional space forms (M, g)

admitting a Sasakian 3-structure (ξ(i),ξ(2)>ξ(3)) (cf. S. Sasaki [11]), only S3[l] and

RP*[l] are regular with respect to ξ{1).

PROOF. Each (M, g) of the classification is of the form 53[1]/Γ, where Γ

is a finite subgroup of the automorphism group of the Sasakian 3-structure. By I

and —I(IA and — 7Δ, resp.) we denote the identity and the anti-podal map of 53[1]

(of S2, resp.). Assume that (M, g) is neither S3[l] nor a real projective space

RP3[l] = S3[l]/{I, -I}. Then, Γ contains φ such that φΦl and φφ-l. Since φ

is an automorphism of (S 3[l], ξ, g), it induces an automorphism φA of the Kahlerian

manifold S\l\/ξ = CPι[A] == S2, where ξ = ξω.
( i ) If ψA = IA, we have φ = exprξ for some r. Since [fα), ?(2>] = 2£(3) and

[£<!» £<3)1 = -2£ ( 2 ), we have

(exp rξ)ξw = (cos 2r)ξ(2) - (sin 2r)ξ (3)

^ | ( 2 ) = f(2) implies r = TT and 9> = exp πξ = —1 on 53[1], which is a contradiction

to the assumption of φ.
(ϋ) If ^A = _ 7 Δ ? a n d if 5 3 ^ / p i s regular with respect to f, then (5

is Kahlerian and orientable. However, since ξ is invariant by Γ, we have
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**) = RP*/(

Because every complete Riemannian manifold of even dimension with constant

curvature ( > 0) is Sm or RPm, (**) = (identity). Since RP2 is not orientable, this

is a contradiction.

(iii) If φAΦlΔ and φAΦ-IA, then φA has fixed points. Since Γ is a finite

group, the set of all such points is composed of finite number of points. Therefore,

on 53[1]/Γ, ξ is not regular (cf. also, S. Tanno [20]).

LEMMA 11. 2. Assume that a complete Riemannian manifold (M, g) admits

a K-contact ^-structure (£(i),£(2)>f(3)). If £α) is regular, then ξ{2) and £(3) are

regular, and all leaves L are homorphic to S3[l] or RP3[1].

PROOF. This follows from Lemma 11.1.

REMARK. S3[l] and RP3[1] are Lie groups (cf. [14], p. 37, p. 115). In fact, let

Q be the space of quaternions (q=x1+x2i + x3j + xik) and let S3= [qz Q\\q\ =1}.

Then the right translation Rq and the left translation Lq by q £ S 3 are defined by

RqQ—Q'Q and LQq' = q q, respectively. We define a Sasakian 3-structure

(ξ°(D> ξϊv> £U) such that

(exp tξ{1))q' = (cos t)q + (sin t)q ί, q £ S3

etc. (|(2) for j , ̂ 3 ) for k). Then ξ°{1)9 ξ°{2), ξ°{3), are left invariant vector fields. We

denote by g the Lie algebra of 53[1] or i?P 3 [ l ] .

THEOREM 11. 3. Let (M, g) be a complete Riemannian manifold admitting

a K-contact 3-structure (f(i),£(2)>£(3)). Assume that ξa) is regular. Then

(My ξa), ξ(2), f(3), g) is a S3[l]- or RPz\\\-principal bundle over a Rie?nannian

manifold (B,h). h and g are related by

(11.2) g(X,Y) = Σ

A Q-valued 1-form w defined by

(H.3) w(X) = ΣJUg(ξ{i),X)ξ\i)

is an infinitesimal connection form.

PROOF. By Lemmas 11.1 and 11.2, we see that (M,ξ(ί),ξi2),ξ{3),g) is a

53[l]-or i?P3[l]-principal bundle over a manifold B. First we show that w defined

by (11. 3) is an infinitesimal connection form. Since *S3[1] or RP3[1] acts to the
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right, ξω are considered as the fundamental vector fields corresponding to ξ°iφ

respectively. Clearly, w{ξU)) = ξ\ί). To prove Ra*w = ad(a~1)w, it suffices to show-

it for α = expr|; ( 1 ). For this a we have 2?α~
1^(i) = f(i)> and

— λf (2) "" /*£(3)> Raζ%) — /*£(2) + λf (3)

where λ and /x are constants depending on α (λ2 + /A2 = 1). Then we have

Hence, w is an infinitesimal connection form on the principal bundle. Let x and y
be vector fields on B and let α:1* and 3>* be their horizontal lifts with respect to
w. We define a (0,2)-tensor h on B by h[x,y) = ^(.r*,,)/*). Since f(ί) are Killing
vectors, A is well defined and satisfies (11. 2).

REMARK. The map n :(M, f ( D, (̂2)> ̂ (3), ̂ ) —• (β, Λ) is harmonic in the sense
of Eells-Sampson [3] (cf. Proposition, p. 127). This is the same for the Boothby-
Wang's ήberings.

12. The Riemannian curvature tensors. We consider the fibering of

Theorem 11.3. By 'V we denote the Riemannian connection of (B,h). Let x,y,z

be vector fields on By and let x*,y*,z* be their horizontal lifts. First we note

that

(12.1) Bu)^*] = A ^ * = 0 ,

because the horizontal distribution is invariant and x* is the horizontal lift of x.

Now we have

(12.2) 2g(V*-y*> Z) = x* g(y\ Z) +y* g(χ*, Z) - Z* g(χ*,y*)

+ g([x*,y% Z) + g([Z,x%y*) - g(a*, [y* Z\).

Putting Z = z*9 projecting this identity on B, and noticing τc[x*9y*] = [x9y]9 we

have
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(12.3) 2h{π(Vx y*),z) = x h(y,z) + yh{x,z) - z-h{x,y)

+ h{[x,y], z) + h{[z, x],y) - h(x, [y, z])

= 2h('X7xy,z).

Therefore, we have

(12.4) V , :y* =

where α, = g(ξ«), Vx-y*). Putting Z=ξ(i) in (12.2), we have

(12. 5) 2α£ = -ξU) g(x*,y*) + g([x*,y*], ξω)

(12.6) = -2g(x*,φωy*).

By (12. 4), (12. 5) and (12. 6), we have

(12. 7) [x*,y*] = \x,y\* - 2ΣiU

By 'R we denote the Riemannian curvature tensor of {B, h).

Cv.'v,*)* = v« ('

By (12. 4), etc., we get

+ Σ [5(v, / , Φωz*) + giy*, v,.φ(i) •**)

+ 0ίy*> Φ(ί) Vχ.2*) + g(χ*,

On the other hand, we get

Therefore, using V{(,)2* = V 2 f(« = — <£«£*> we have

(12.8) ('R(x,y)z)* = R{χ*,y*)z* + Σίg(y*. Φ^z*)φU)x* - g{x*,
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PROPOSITION 12.1. In the fibe?~ing of Theorem 11.3, let x, y be an
orthonormal [local) vector fields o?ι B [or tangent vectors at a point of B).
Then we have

(12. 9) 'K(x,y) π = K[x*,y*) + 3 £*8-i [g(y*9 φωx*)γ.

PROOF. Putting z = x in (12.8) and taking the inner products of 3;* and
the both sides of (12. 8), we get

h('R(x,y)x,y) n = g(R(x*,y*)x*,y*) + 3 £ [g[y\ φU)x*)γ,

from which we have (12. 9).

THEOREM 12.2. In the fibering of Theorem 11.3, assume that {ξw,ξw>ξw)

is a Sasakian ^-structure and dimM=7. Then (M, g) is of constant curvature

1 if and only if (B, h) is of constant curvature 4.

PROOF. Let x, y be any orthonormal pair in Bq, qz B. Then x*>y* are

orthonormal and 3/* is expressed by

Since £ b } = 1, (12.9) implies 'K(x,y) π = K(x*,y*) + 3. Hence, if (M, g) is

of constant curvature 1, (B,h) is of constant curvature 4. Conversely, if (B,h)

is of constant curvature 4, we have ί/(1)(X) = 1 for any non-zero X^EP. This

implies that (M, g) has constant φ(1)-holomorphic sectional curvature 1 by (3.13)'.

Thus, {My g) is of constant curvature 1.

EXAMPLE. The Hopf fibration of S7 is π : S7-^QP1 = S\

THEORFM 12. 3. In the fibering of Theorem 11. 3, (M, g) is an Einstein

manifold if and only if (B, h) is an Einstein manifold such that

'Rι{x,y) = (4r + 8)h(x,y), Ar = dim B .

PROOF. Let ^>be an arbitrary point of Mand put q=7tp. Let (ξ{φXu, φ{i)Xu

m

9

i = 1,2,3, u = 1, , r) be an orthonormal basis at p. If we denote 7tvXu by πXn>
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etc., (πXu, πφU)Xu) is an orthonormal basis at q. By (12. 8), we have

(12.10) hQ('R(χ, 7tXu)y, TtXu) = gP(R(**> Xu)y*> X«)

+ 3 Σ gp(φωχ*> Xu)gP{Φωy*> Xu) >

(12.11) hq('R(x, τrφθ)Xu)y> τrφυ)Xu) = gP(R{x*, φiMy*, Φu)Xu)

+ 3 ^ ί gP(Φ«)χ*y Φa)Xu)gP(Φ«)y*, Φo)Xu)

for j = 1,2,3. On the other hand, by (2.1). we have

(12.12) 0 = Σ g9(R(**> f ( « ) ^ f ω) " 3 ^ ( ^ , 3 ^ ) .

First we notice that

Σ«0(**> x . ) ^ ( ^ x.) + Σ J . « ^ ( ^ Φu)^)^(y f

? Φ(i,x.) = g[χ*>y*).

Then by (12.10) - (12.12), we have

(12.13) 'Ri*{χ,y) = RUχ*,y*) + 6gP(χ*,y*).

If (M, 0) is an Einstein manifold, we have R1 = (m—l)g = (4r+2)g (cf. (2.1)).

Therefore, we have 'Rλ{x,y) = (4r + 8) h(x,y). Conversely, if (B9h) is an Einstein

manifold such that 'Rλ= (4r+8)Λ, then R1{x*,y*) = (m-l) g{x*,y*) holds. Since

(cf. (1.6) of [21]), (M, g) is an Einstein manifold.

In the fibering of Theorem 11.3, if (fα)>f(2)>f(s)) i s a Sasakian 3-structure,

then [By h) is an Einstein manifold. Hence, we have

THEOREM E. Let (M, g) be a complete Riemannίan manifold admitting

a Sasakian Z-structure (f<i),£(2)>|:(3)). / / one of the Sasakian structures is

regular, then (Myξ^yξ^yξ^y g) is a S3[l]- or RP3[l]-princtpal bundle over an

Einstein manifold (B9h) such that 'Rχ= (4r+8)A, 4r=dimβ.

13. 3-ΛΓ-contact structures. We define a 3-K-contact structure on (M, g)

by three K-contact structures ξ^^ξ^.ξ^) satisfying (3.1) and (3.2). Some results

on X-contact 3-structures are generalized to results on 3-i£-contact structures.

LEMMA 13.1. Let ξ{ι) and ξ{2) be two K-contact structures on (M, g) such

that g{ξa)>ξ(2)) = 0. Then (£(1), f(2), ξi3) = [l/2)[ξω,ξw]) is a 3-K-contact structure.

P R O O F . Since
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f (2) ~" Vf(«)f (1) = 2Vf(,)?(2) = "" 2φ(2)^(l)

£ ( 3 ) = φ ( 1 ) £ ( 2 ) is also a unit Kill ing vector. T h e n we have

(13. 1) [f(l)>£<S)] = Lξ(i)ξ(3) = A(ι)(Φ(I)f(2)) = Φ(1)K

(13. 2) [f ( 1 ), f (s)] = £,«,,( - φ ( l ) f α )) = 2f a).

Hence, f(t), ί = l , 2 , 3 , satisfy (3.1), (3.2) where φ ( s ) = -Vf(s>.We show that f(s) is

a i^-contact structure. Since f(1) satisfies

(13. 3) R(X, f α))f α> = ^(X f «)f α>

operating the Lie derivation Lξ(t) to (13.3), we have

(13. 4) R(X, f w ) f α ) + Λ(X, £(1))£(3) = flr(X f w ) f & ) + g[X9

Oprating L f ( l ) again to (13.4), and using (13.3), we have

(13.5) R(X, ξ<»)ξm = g(X, ξm)ξ(3) - X

Therefore, ξ{3) is a iC-contact structure.

PROPOSITION 13.2. A 3-K-contact structure on (M, g) is a K-contact

^-structure if and only if

(13.6)

PROOF. Operating Vz to φ(i)£(2) = ?(s)> we have

Viφ(l) ' f (2) ~~ Φ(X)Φ(2)X = "" Φ(3)-X"

Since V^a> = -Vz(Vfa>) a ^ W V ^ D H ^ X ^ D ) = 0, we have

(13. 7)

Hence, if (13. 6) holds, we have (3. 3)^,3. If we oprate L f ( l ) to (13. 6), we have

w)ξ(i)9 and then we get (3.3) f c = 2. Similarly, we get (3. 3)Λ=i.
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REMARK. In the above discussion, if ξ(ι) and f ( 2 ) are Sasakian, then replacing

(13.3) by (2.5) for f(1) we see that f(3) is Sasakian. Since we have (13.6) for

Sasakian f(i), we have (ϋi) in §3.

PROPOSITION 13. 3. Theorem 11. 3, Proposition 12.1 and Theorem 12.3

are true far a 3-K-contact structure.

In fact, in proofs of Propositions listed above, (3. 3) are not used. Only two

points we must notice here are:

( i ) we have a basis of the form [ξ{φXhφ{i)Xj) at each point. If d i m M = 3 ,

this is clear. If dim M> 3, we have a unit Xi € Mp, which is orthogonal to
ξiφi=l,2,3. If we put X=X1 in (13.4), we get R{X19ξw)ξa) + R(X19ξ{1))ξia) = O.

Similarly, we have

(13.8) R(XU f(1))f(i) + R(X» f(1))f(ι) - 0

By (13.7) and (13. 7)'(<-φ (2)£ (1) = -ξw):

(13. Ί)' R{X, £(2))f (1) — Φ(2)Φ(1)X = Φ(3)X 9

(13. 8) is written as

(13. 9) φ(1)φ(2)Xi + φ(2)φ(i)Xi = 0 .

By (13.9), (13.9)', (13.9)", we see that (ξ(1)9XlfφωX1) is orthonormal. These

steps complete a basis stated above.

(ii) With respect to (12.11) ->(12.13), it is required that (ξU),X3,φωφi2)Xj9

φa)φ(3)Xj, φ(2)φ(s)Xj) is also an orthonormal basis. This is also assured by (13.9).
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