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1. Notations and results. Throughout the paper f(x) will be a real-valued,

2τr-periodic, L-integrable function on the real line such that I f(x)dx = 0. We

denote the Fourier series of / by

oo

f> x)> At(/; x) = ak cos kx + bk sin kx,

where ak and bk are its Fourier coefficients.
Let Xλκ be one of the function spaces C2π, or Lξπ, l^p<oo, of the functions

in question the spaces are endowed with their usual norms. Let γ be a positive
constant. If for an / in X2π the associated series

* ( / ; x)

is the Fourier series of some function g in X2π, we say that / has a Riesz
derivative of order y in X2π and we write

It is well known (see e. g., P. L. Butzer-K. Scherer [3, Ch. 4]) that the operator
D[7] is closed with domain

-Xj? = ί/€ Xu- ΣkyAk(f; x) is the Fourier series of a function g in X2π]
k=l

dense in X2π. Since for an/eXJ*1, D[y]f = 0 implies / = 0, D { τ l has an inverse
/ ί 7 }. Its extension to the whole space X2π is the so-called Riesz potential of
order Ύ. With I{7] f: = / { γ } (or: =/ l ^ ] jwe have

\ v̂  Ak(f; x)
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The typical means of order Ί

PnJf; x) = Σ U - (n + 1 Γ W / ; x) (v>o, n = i,2,...j

of the Fourier sereis of a function / are closely related to its Riesz derivative
/ ί 7 ί . Indeed, the following theorem holds true.

THEOREM A. Let f y>0. If for the functions f and g in X2κ

Km ||(n + l)M#n,?/-/} - ff\Uπ = 0,
n—><»

then fa X[l] and f[yi = —g, and vice versa. If in particular g = 0, then f is
the zero-function.

The theorem is a modification of the saturation theorem for the typical
means in X2π. It has its roots in results due to A. Zygmund and B. Sz.-Nagy in
the 1940's. The theorem itself was first formulated and proved by S. Aljancic
for the space C2π and by G. Sunouchi-C. Watari for the spaces in question in
the late 1950's. In the form of Theorem A it is due to P. L. Butzer-E. Gorlich.
For details we refer to P. L. Butzer-K. Scherer, loc. cit. Finally, we have to
mention that G. Sunouchi [4] studied local versions of Theorem A.

It is the aim of this note to prove the following pointwise analogue of
Theorem A.

T H E O R E M B. Let fz L2π be such that

(1) lim RnJf; x) =f(x)

finitely for all x in some interval (a,b). If there exists a finitely-valued,
L-integrable function g(x) in (a,b) such that

(2) lim (n + ir{RnJf; x) -fix)} = g(x)
n-*oo

pointwise for all x in (a,b), then f{r~2] belongs to Llπ and for almost all x
in (α, b)

f[Ύ-2](x) =Ax + B+ Γdt Γ g(u)du,
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where A and B are some constants.

For 0 < γ < 1, (3 ) remains true even if (1) is violated in a denumerable

set E of points, supposed that

(4a) \RnMf> x)I = o(nι~η (for all xzE).

For γ = 1, ( 3 ) remains true even if (2) is violated in a denumerable

set E of points.

For 7 > 1, ( 3 ) remains true even if (2) is violated in a denumerable

set of points Ey supposed that

(4b) \RnMf; x) -fix) I = o(nι~η (for all xzE).

For 7 = 1 (Fejer means) and g(x) = 0, Theorem B is due to V. A. Andrienko

[ 1 ] .

The following corollaries are obvious consequences of Theorem B.

COROLLARY 1. Let f and g be finitely-valued functions in L2π such

that the conditions (1) and (2) of Theorem B are satisfied for all x except

in a denumerable set E of points at which (4) holds, then feL[l] and for

almost all x, fiΎ}(x) = -g(x).

COROLLARY 2. Let f and g belong to C2π such that

lim (n + iy{RnJf; x)-f(x)} = g{x)
n->oo

point-wise everywhere, then f ^ C& and f{Ύ] — —g, and vice versa.

The second corollary substantially weakens the statement of Theorem A for

the space X2π — C2π.

REMARK. The function fΎ given by

5)

shows that if there is only one exceptional point x0 (mod 2τr) in R for which

(4) is violated then the statement of Corollary 1 is wrong. Indeed, the series

(5) converges for all x φ 0 (mod 2τt) and the associated function fΊ belongs to



150 H. BERENS

L2π. Moreoevr, for all x Φ 0 (mod 2π)

1
lim (n + ljγ{i?niT(/γ x) —fΊ(x)} = o- >

while for x0 = 0 (mod 27r)

lil(logn)i/i->oo), γ = l ,

and

\RnJfy , Xo)-f(xo)\ = Ω,(nι-η (n->ooj, 7 > 1 .

We conclude this section with the formulation of a third theorem although it
seems to be known, see G. Sunouchi [ 4 ]. The proof follows directly from relation
(11) and the Fejer-Lebesgue theorem.

THEOREM C. Let f be a function in Liy

π\ For almost all x

lim (n + lΓ{Rn.y(f; x) -fix)) = -f[Ύ](x) .
n—•oo

2. Proof of Theorem B. The proof is based on two lemmas. Lemma 1
is a uniqueness theorem for (C, l)-summable trigonometric series. It can be obtained
out of Verblunsky's uniqueness thoerems for Abel summable trigonometric series
(cf. A. Zygmund [6, p. 352ff]). Moreover, Lemma 1 is a very special form of
results due to F. Wolf [5] about (C, λ)-summable series. In Lemma 2 we rewrite
condition (2) so that Theorem B can be concluded directly out of Lemma 1.

LEMMA 1. Let ^Ajx) be a trigonometric series. If in some interval

(a, b) the limit

( 6 ) lim σn(x) : = lim £ ( 1 - —^T")Ak(x) = g(x)

exists finitely, except in a denumerable set E, with g(x) L-integrable, and if
for all xzE

(7) σjx) = o(n) (n-+oo),
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then ^2A,c(x)/k2 is the Fourier series of some function F in Llπ and for
1

almost all x in (a, b)

f*f
J a J a

(8 j F(x) = Ax + B+ I dt I g(u)du .
Ja Ja

If, moreover, the interval (a,b) contains [0,2π) then ^2,Ak(x) is the Fourier
1

series of g.

LEMMA 2. Let f in LZπ be such that for some x, Rnt7(f; x)->c(x) finitely
as n—>oo. The limit

lim (n + lΓ{RnJf; x) - c(x)}

exists finitely if, and only if, the limit

( 9 ) lim - σn^f x): = lim £ f 1 - —~](-k>)Ak(f x)

exists, and both limits are equal.

PROOF. By the use of the identity

Rn-rJf; x)-Rn>y(f; x) = j ^ r - ̂ y γ j JZ(-k^)Ak(f',x) (n = 1,2,...),

see P. L. Butzer-S. Pawelke [ 2 ], we obtain the relation

RnJf; x) - c{x) = jgj-έ" -

n

Introducing the abbreviations sn = Σ(~kΊ)Ak{f\ x) and tn = RnJf; x) — c(x),
k=l

the latter equation simply reads
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It is appropriate to use two additional notations : τ n = (n + l)ytn and σn =

To prove the "if'-part, we have to show that σn-+s as w—>oo implies τn—>s

as n—>oo. Indeed, by partial summation of the sum on the right-hand side of

(10) we have

<Tk

and the result follows by taking into account that

identically in n = 0,1, 2, and that

On the other hand, by (10)

Setting 50 as well as the constant Co equal to zero, we obtain again by partial
summation

or
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i n -

Since

1 _ i

?z + l

identically in w = 0,1, 2, , and since lim Cn+1/(n + l ) 1 + γ = — (see above), it is

easy to conclude that τn->s as n —>oo implies σw—>5 as n-^oo. This proves the

"only if"-ρart.

The proof of Theorem B now follows by setting the coefficients Ak{x) in

Lemma 1 equal to ( — kΎ)Ak(f; x)> k = 1,2, , i. e., σn(x) = — σψ(f\ x).

With respect to the conditions upon i? n > 7 (/; r) at the points x in the

exceptional set E, we have to mention that for 0 < Ύ < l (4a) is equivalent to

( 7 ), for 7 = 1 (1) implies ( 7 ), and for 7 > 1 again (4b) is equivalent ( 7 ).
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