Tôhoku Math. Journ. 23(1971), 147-153.

ON POINTWISE APPROXIMATION OF FOURIER SERIES BY TYPICAL MEANS

HUBERT BERENS

(Received February 2, 1970)

1. Notations and results. Throughout the paper f(x) will be a real-valued, 2π -periodic, *L*-integrable function on the real line such that $\int_{-\pi}^{\pi} f(x)dx = 0$. We denote the Fourier series of f by

$$S(f) \sim \sum_{k=1}^{\infty} A_k(f; x), \quad A_k(f; x) = a_k \cos kx + b_k \sin kx,$$

where a_k and b_k are its Fourier coefficients.

Let $X_{2\pi}$ be one of the function spaces $C_{2\pi}$, or $L_{2\pi}^p$, $1 \leq p < \infty$, of the functions in question; the spaces are endowed with their usual norms. Let γ be a positive constant. If for an f in $X_{2\pi}$ the associated series

$$\sum_{k=1}^{\infty} k^{\gamma} A_k(f; x)$$

is the Fourier series of some function g in $X_{2\pi}$, we say that f has a *Riesz* derivative of order γ in $X_{2\pi}$ and we write

$$D^{[\gamma]}f := f^{[\gamma]} = g$$
.

It is well known (see e. g., P. L. Butzer-K. Scherer [3, Ch. 4]) that the operator $D^{(\gamma)}$ is closed with domain

$$X_{2\pi}^{[\gamma]} = \{ f \in X_{2\pi} : \sum_{k=1}^{\infty} k^{\gamma} A_k(f; x) \text{ is the Fourier series of a function } g \text{ in } X_{2\pi} \}$$

dense in $X_{2\pi}$. Since for an $f \in X_{2\pi}^{(\gamma)}$, $D^{(\gamma)}f = 0$ implies f = 0, $D^{(\gamma)}$ has an inverse $I^{(\gamma)}$. Its extension to the whole space $X_{2\pi}$ is the so-called *Riesz potential of order* γ . With $I^{(\gamma)}f := f_{(\gamma)}$ (or $:= f^{(-\gamma)}$) we have

$$S(f_{\gamma}) \sim \sum_{k=1}^{\infty} \frac{A_k(f; x)}{k^{\gamma}}.$$

H. BERENS

The typical means of order γ

$$P_{n,\gamma}(f; x) = \sum_{k=1}^{n} \left(1 - \frac{k^{\gamma}}{(n+1)^{\gamma}} \right) A_k(f; x) \quad (\gamma > 0, \ n = 1, 2, \cdots)$$

of the Fourier series of a function f are closely related to its Riesz derivative $f^{(\gamma)}$. Indeed, the following theorem holds true.

THEOREM A. Let $\gamma > 0$. If for the functions f and g in $X_{2\pi}$

$$\lim_{n \to \infty} \| (n+1)^{\gamma} \{ R_{n,\gamma} f - f \} - g \|_{X_{2\pi}} = 0$$

then $f \in X_{2\pi}^{\{\gamma\}}$ and $f^{\{\gamma\}} = -g$, and vice versa. If in particular g = 0, then f is the zero-function.

The theorem is a modification of the saturation theorem for the typical means in $X_{2\pi}$. It has its roots in results due to A. Zygmund and B. Sz.-Nagy in the 1940's. The theorem itself was first formulated and proved by S. Aljančić for the space $C_{2\pi}$ and by G. Sunouchi-C. Watari for the spaces in question in the late 1950's. In the form of Theorem A it is due to P. L. Butzer-E. Görlich. For details we refer to P. L. Butzer-K. Scherer, loc. cit. Finally, we have to mention that G. Sunouchi [4] studied local versions of Theorem A.

It is the aim of this note to prove the following pointwise analogue of Theorem A.

THEOREM B. Let $f \in L_{2\pi}$ be such that

(1)
$$\lim_{n \to \infty} R_{n,\gamma}(f; x) = f(x)$$

finitely for all x in some interval (a, b). If there exists a finitely-valued, L-integrable function g(x) in (a, b) such that

(2)
$$\lim_{n \to \infty} (n+1)^{\gamma} \{ R_{n,\gamma}(f; x) - f(x) \} = g(x)$$

pointwise for all x in (a, b), then $f^{(r-2)}$ belongs to L_{2x} and for almost all x in (a, b)

(3)
$$f^{(\gamma-2)}(x) = Ax + B + \int_a^x dt \int_a^t g(u) du,$$

148

where A and B are some constants.

For $0 < \gamma < 1$, (3) remains true even if (1) is violated in a denumerable set E of points, supposed that

(4a)
$$|R_{n,\gamma}(f; x)| = o(n^{1-\gamma})$$
 (for all $x \in E$).

For $\gamma = 1$, (3) remains true even if (2) is violated in a denumerable set E of points.

For $\gamma > 1$, (3) remains true even if (2) is violated in a denumerable set of points E, supposed that

(4b)
$$|R_{n,\gamma}(f; x) - f(x)| = o(n^{1-\gamma})$$
 (for all $x \in E$).

For $\gamma = 1$ (Fejér means) and g(x) = 0, Theorem B is due to V. A. Andrienko [1].

The following corollaries are obvious consequences of Theorem B.

COROLLARY 1. Let f and g be finitely-valued functions in $L_{2\pi}$ such that the conditions (1) and (2) of Theorem B are satisfied for all x except in a denumerable set E of points at which (4) holds, then $f \in L_{2\pi}^{(\gamma)}$ and for almost all x, $f^{(\gamma)}(x) = -g(x)$.

COROLLARY 2. Let f and g belong to $C_{2\pi}$ such that

$$\lim_{n \to \infty} (n+1)^{\gamma} \{ R_{n,\gamma}(f; x) - f(x) \} = g(x)$$

pointwise everywhere, then $f \in C_{2\pi}^{(\gamma)}$ and $f^{(\gamma)} = -g$, and vice versa.

The second corollary substantially weakens the statement of Theorem A for the space $X_{2\pi} = C_{2\pi}$.

REMARK. The function f_{γ} given by

(5)
$$S(f_{\gamma}) \sim \sum_{k=1}^{\infty} \frac{\cos kx}{k^{\gamma}} \qquad (\gamma > 0)$$

shows that if there is only one exceptional point $x_0 \pmod{2\pi}$ in R for which (4) is violated then the statement of Corollary 1 is wrong. Indeed, the series (5) converges for all $x \neq 0 \pmod{2\pi}$ and the associated function f_{γ} belongs to

H. BERENS

 $L_{2\pi}$. Moreoevr, for all $x \neq 0 \pmod{2\pi}$

$$\lim_{n\to\infty} (n+1)^{\gamma} \{ R_{n,\gamma}(f_{\gamma}; x) - f_{\gamma}(x) \} = \frac{1}{2},$$

while for $x_0 = 0 \pmod{2\pi}$

$$|R_{n,\gamma}(f_{\gamma}; x_0)| = \begin{cases} \Omega(n^{1-\gamma}) \ (n \to \infty), & 0 < \gamma < 1, \\ \\ \Omega(\log n) \ (n \to \infty), & \gamma = 1, \end{cases}$$

and

$$|R_{n,\gamma}(f_{\gamma}; x_0) - f(x_0)| = \Omega(n^{1-\gamma}) \ (n \to \infty), \ \gamma > 1.$$

We conclude this section with the formulation of a third theorem although it seems to be known, see G. Sunouchi [4]. The proof follows directly from relation (11) and the Fejér-Lebesgue theorem.

THEOREM C. Let f be a function in $L_{2\pi}^{(\gamma)}$. For almost all x

$$\lim (n+1)^{\gamma} \{ R_{n,\gamma}(f; x) - f(x) \} = -f^{[\gamma]}(x) + f^{[\gamma]}(x) + f^$$

2. **Proof of Theorem B.** The proof is based on two lemmas. Lemma 1 is a uniqueness theorem for (C, 1)-summable trigonometric series. It can be obtained out of Verblunsky's uniqueness theorems for Abel summable trigonometric series (cf. A. Zygmund [6, p. 352ff]). Moreover, Lemma 1 is a very special form of results due to F. Wolf [5] about (C, λ) -summable series. In Lemma 2 we rewrite condition (2) so that Theorem B can be concluded directly out of Lemma 1.

LEMMA 1. Let $\sum_{k=1}^{\infty} A_k(x)$ be a trigonometric series. If in some interval (a, b) the limit

(6)
$$\lim_{n \to \infty} \sigma_n(x) := \lim_{n \to \infty} \sum_{k=1}^n \left(1 - \frac{k}{n+1} \right) A_k(x) = g(x)$$

exists finitely, except in a denumerable set E, with g(x) L-integrable, and if for all $x \in E$

(7)
$$\sigma_n(x) = o(n) \qquad (n \to \infty),$$

150

then $\sum_{1}^{\infty} A_k(x)/k^2$ is the Fourier series of some function F in $L_{2\pi}$ and for almost all x in (a, b)

(8)
$$F(x) = Ax + B + \int_a^x dt \int_a^t g(u) du.$$

If, moreover, the interval (a, b) contains $[0, 2\pi)$ then $\sum_{1}^{\infty} A_k(x)$ is the Fourier series of g.

LEMMA 2. Let f in $L_{2\pi}$ be such that for some x, $R_{n,\gamma}(f; x) \rightarrow c(x)$ finitely as $n \rightarrow \infty$. The limit

$$\lim_{n \to \infty} (n+1)^{\gamma} \{ R_{n,\gamma}(f; x) - c(x) \}$$

exists finitely if, and only if, the limit

(9)
$$\lim_{n \to \infty} -\sigma_n^{(\gamma)}(f; x) := \lim_{n \to \infty} \sum_{k=1}^n \left(1 - \frac{k}{n+1} \right) (-k^{\gamma}) A_k(f; x)$$

exists, and both limits are equal.

PROOF. By the use of the identity

$$R_{n-1,\gamma}(f; x) - R_{n,\gamma}(f; x) = \left\{\frac{1}{n^{\gamma}} - \frac{1}{(n+1)^{\gamma}}\right\} \sum_{k=1}^{n} (-k^{\gamma}) A_{k}(f; x) \ (n = 1, 2, \cdots),$$

see P. L. Butzer-S. Pawelke [2], we obtain the relation

$$R_{n,\gamma}(f; x) - c(x) = \sum_{k=n+1}^{\infty} \left\{ \frac{1}{k^{\gamma}} - \frac{1}{(k+1)^{\gamma}} \right\} \sum_{j=1}^{k} (-j^{\gamma}) A_{j}(f; x) .$$

Introducing the abbreviations $s_n = \sum_{k=1}^n (-k^{\gamma})A_k(f; x)$ and $t_n = R_{n,\gamma}(f; x) - c(x)$, the latter equation simply reads

(10)
$$t_n = \sum_{k=n+1}^{\infty} \left\{ \frac{1}{k^{\gamma}} - \frac{1}{(k+1)^{\gamma}} \right\} s_k.$$

H. BERENS

It is appropriate to use two additional notations: $\tau_n = (n+1)^{\gamma} t_n$ and $\sigma_n = \left(\sum_{k=1}^n s_k\right) / (n+1)$.

To prove the "if"-part, we have to show that $\sigma_n \to s$ as $n \to \infty$ implies $\tau_n \to s$ as $n \to \infty$. Indeed, by partial summation of the sum on the right-hand side of (10) we have

(11)
$$\tau_{n} = (n+1)^{\gamma} \sum_{k=n+1}^{\infty} (k+1) \left\{ \frac{1}{k^{\gamma}} - \frac{2}{(k+1)^{\gamma}} + \frac{1}{(k+2)^{\gamma}} \right\} \sigma_{k}$$
$$-(n+1)^{1+\gamma} \left\{ \frac{1}{(n+1)^{\gamma}} - \frac{1}{(n+2)^{\gamma}} \right\} \sigma_{n},$$

and the result follows by taking into account that

$$1 = (n+1)^{\gamma} \sum_{k=n+1}^{\infty} (k+1) \left\{ \frac{1}{k^{\gamma}} - \frac{2}{(k+1)^{\gamma}} + \frac{1}{(k+2)^{\gamma}} \right\}$$
$$- (n+1)^{1+\gamma} \left\{ \frac{1}{(n+1)^{\gamma}} - \frac{1}{(n+2)^{\gamma}} \right\}$$

identically in $n = 0, 1, 2, \cdots$ and that

$$\lim_{n \to \infty} (n+1)^{1+\gamma} \left\{ \frac{1}{(n+1)^{\gamma}} - \frac{1}{(n+2)^{\gamma}} \right\} = \gamma .$$

On the other hand, by (10)

$$t_{n-1}-t_n=\left\{\frac{1}{n^{\gamma}}-\frac{1}{(n+1)^{\gamma}}\right\}s_n:=\frac{1}{C_n}s_n\quad (n=1,2,\cdots).$$

Setting s_0 as well as the constant C_0 equal to zero, we obtain again by partial summation

$$\sum_{k=0}^{n} s_{k} = s_{0} + \sum_{k=1}^{n} C_{k}(t_{k-1} - t_{k})$$
$$= s_{0} + \sum_{k=0}^{n} (C_{k+1} - C_{k})t_{k} - C_{n+1}t_{n},$$

or

152

(12)
$$\sigma_n = \frac{1}{n+1} \sum_{k=0}^n \frac{C_{k+1} - C_k}{(k+1)^{\gamma}} \tau_k - \frac{C_{n+1}}{(n+1)^{1+\gamma}} \tau_n \,.$$

Since

$$1 = \frac{1}{n+1} + \frac{1}{n+1} \sum_{k=0}^{n} \frac{C_{k+1} - C_k}{(k+1)^{\gamma}} - \frac{C_{n+1}}{(n+1)^{1+\gamma}}$$

identically in $n = 0, 1, 2, \dots$, and since $\lim_{n \to \infty} C_{n+1}/(n+1)^{1+\gamma} = \frac{1}{\gamma}$ (see above), it is easy to conclude that $\tau_n \to s$ as $n \to \infty$ implies $\sigma_n \to s$ as $n \to \infty$. This proves the "only if"-part.

The proof of Theorem B now follows by setting the coefficients $A_k(x)$ in Lemma 1 equal to $(-k^{\gamma})A_k(f; x)$, $k = 1, 2, \dots$, i.e., $\sigma_n(x) = -\sigma_n^{(\gamma)}(f; x)$.

With respect to the conditions upon $R_{n,\gamma}(f; x)$ at the points x in the exceptional set E, we have to mention that for $0 < \gamma < 1$ (4a) is equivalent to (7), for $\gamma = 1$ (1) implies (7), and for $\gamma > 1$ again (4b) is equivalent (7).

REFERENCES

- A. V. ANDRIENKO, Approximation of functions by Fejér means, Siberian Math. J., 9 (1968), 1-8.
- [2] P. L. BUTZER AND S. PAWELKE, Ableitungen von trigonometrischen Approximationsprozessen, Acta Sci. Math. (Szeged), 28(1967), 173-183.
- [3] P. L. BUTZER AND K. SCHERER, Approximationsprozesse und Interpolationsmethoden. B-I-Hochschulskripten Bd. 826/826a. Mannheim, 1968.
- [4] G. SUNOUCHI, On the class of saturation in the theory of approximation II, III. Tôhoku Math. J., 13(1961), 112-118; 320-328.
- [5] F. WOLF, On summable trigonometric series : An extension of uniqueness theorems, Proc. London Math. Soc. (2), 45(1939), 328-356.
- [6] A. ZYGMUND, Trigonometric Series. Vol. I. Camibrdge, 1959.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA SANTA BARBARA, CALIFORNIA