Tohoku Math, Journ,
23(1971), 541-557.

ON THE EMBEDDING AS A DOUBLE COMMUTATOR
IN A TYPE 1 AW*-ALGEBRA

KAZUYUKI SAITO

(Rec. April 30, 1971)

The purpose of this paper is to prove the following:

THEOREM. Let M be a semi-finite AW*-algebra with center Z. If M
possesses a complete set S of Z-valued bounded positive module homomorphisms
which are completely additive on projections, then M can be embedded as a
double commutator in an AW?*-algebra of type 1 with center which is
isomorphic to Z.

One of the problems concerning AW *-algebras is: Whether or not there is a
non-trivial AW #*-subalgebra of a W*.algebra ([3], [16]) ? As an application of the
above result, we shall show the following result which is a partial answer to this
problem and is a generalization of [13, Theorem 5.2] on a problem of Feldman.

COROLLARY. Let B be an AW*-algebra of type 1 with center % and
let A be a semi-finite AW *-subalgebra of B which contains Z, then A=A’
(the double commutator of A in B) in B.

Under the finiteness assumption on M and 4, H. Widom ([14]) showed the
same result (see also [3], [4], [9] and [15]).

The main tool in this paper is a “non-commutative integration theory” with
respect to a Z-valued trace ® (a non-commutative vector measure) on the algebra of
“locally measurable operators” affiliated with the given AW *-algebra M.

This paper is devided into five sections. Section 1 is the preliminaries for the
later sections and we will introduce the notion of “&-0-convergence” in M (Definition
1.1.2) such that for any orthogonal set {e.} of projections in M with e=3,e,
and any element a € M, a*ea= 3,a¥e.a (unconditional sum of a*e.a with respect to
&-0-convergence). In section 2, we shall prove the existence of a “&-0-continuous”
natural application (Z-valued trace) ® on M, using the Goldman’s result ([4]). In
section 3, along the same lines with [10], the extension theory of ® to “locally
measurable operators” affiliated with M ([11], [12]) are discussed. In particular, we
shall show that the set LY®) of all ®-integrable locally measurable operators is a
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complete normed module over Z. Section 4 concerns with the construction of
AW*.module L%®) (the collection of all ®-square integrable locally measurable
operators) over Z. The last section is devoted to prove our main theorem, more
precisely to say, we shall show that the left regular representation =, of M on
L*®) is a *-isomorphism of M into B(L*®P)) (the set of all bounded module
endomorphisms of LY®)) such that = (M) =z (M) in HLYD)) ( =,(M)” is the
double commutator of (M) in B(L*D))).

1. Definitions and preliminary results. An AW*.algebra M means that
it is both a C*-algebra and a Baer*-ring ([7]).

The set of all self-adjoint elements, non-negative elements, projections, partial
isometries and unitary elements in M is written with M,,, M*, M,, M,, and M,,
respectively.

We will say AW*-algebra M to be semi-finite if every non-zero projection in
M contains a non-zero finite projection in M.

For other informations about AW *-algebras, in particular, the lattice structure
theory of projections, and the algebra of “locally measurable operators”, we refer
to the papers [7], [8], [11], [12], [13], [14] and [16].

Denote the collection of all finite subset of a set A by FA).

1.1. Order limits and center-valued c.a. states. Let Z be an abelian
AW*.algebra, then in virtue of the Gelfand representation, Z (resp. Z,,) can be
identified with the algebra C(Q) (resp. C,(Q)) of all complex (resp. real)-valued
continuous functions on a stonian space ). Topologized the extended real line
[— oo, +00] by the interval topology, let C¥(Q) be the set of all [—co, + co]-valued
continuous functions on , then it is a complete lattice which is lattice isomorphic
with the unit interval of the bounded complete lattice C,(Q) relative to the natural
ordering for real functions and contains C,(Q) and Z (the set of all [0, + co]-valued
continuous functions on  ([1])) as sublattices.

Let {a:} be a net in CHQ) and ac CHQ). By a:—a0), we mean that
a=limsup a;=liminf a.. In these circumstances, we say that the net {a.} order
converges to a. For any net {6} in C(Q), {b:} order-converges to & in C(Q) if
(1/2)(ba+b3F)—(1/2)6+b6*)(0) and (1/26)(ba—bF)—(1/26)b—b*)0) where i=4/—T.
If Z is a von Neumann algebra, then 6,—5(0) if and only if {b:} converges
strongly to b. In the case of an AW*-algebra, the following criterion is useful
for the later discussions.

LEMMA 1.1.1([14]). Let {a:} be a net in an abelian AW* algebra Z and
a be in Z, then a:—a(0) if and only if for amy positive real number & and a
non-zero projection e in Z, there are a N, and a non-zero projection f with
f=e such that |(a:—a)f || < & for all A=Nn,.
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Next let N be an AW*-algebra and N/ be the center of N. A center-valued
state ¢ on IN is a non-negative module homomorphism ¢ from N to N?. ¢ satisfies
the following additional properties: (1) ||¢(a)] =%|al for all ae€ N (& depends only
on @), (2) |¢(a*d)|? = d(a*a)p(b*b) for a, be N, (3) ¢(b*a*ab)= ||a*al ¢(b*b) for
a,beN. By a center-valued ca. state ¢ on N, we mean a center-valued state on
N with the property that for any orthogonal family of projections {e.} in N, with
e=3%.2. (ecN,), dle)=3.9(e.) in N¥, where Z.f(e.) is the unconditional sum of
the @le.) in N?.

LEMMA 1.1.2. Let ¢ be a center-valued c.a. state on N, then for any
ac N and any orthogonal family {e.} of projections in N with e=3.e,, ¢(a*ea)
=3.Pla*e.a) in N?.

Since N** is a bounded complete lattice, by Lemma 1.1.1, the proof is an
obvious modification of that for a similar result in [3, Lemma 3].

In the followings, let M be a semi-finite AW*-algebra with the center Z and
suppose that there is a set © of Z-valued ca. states on M such that ¢(a*a)=0
for all ¢ € & implies a=0. Let (&) be the set of finite linear combinations of
elements in {a*da, ¢ € &, ac M}, where (a*da)x)=dlaxa*) for x < M.

DEFINITION 1.1.2. A net {a.} in M &-0-converges to a in M(a,—a(S-0))
if ¢la.—a)—0(0) in Z for all ¢ € ().

REMARK. (1) Let {e.} be an orthogonal family of projections in M with
S.e.=e(€ M,), then 3. e.—€(BS-0)J € F{a})) by Lemma 1.1.2. (2) Since & is
a separating set, an &-0-limit is unique.

1.2. Existence of a trace. Let N be a finite AW*-algebra with the center
N* which has a separating set & of center-valued ca. states. Then, we have

PROPOSITION 1.2.1. There is a unique central trace ® having the
additional property that for any increasing net {a,} in N*, with a,? a(&-0)
for some ac N*, then ®a,) | Da) in N**.

PrROOF. Existence of a trace @ on N is due to M. Goldman [4]. Therefore
we have only to show that ® satisfies the continuity described above. Since & is
a separating set, by [4, Lemma 2.6], for any pe N}, there are a non-zero projection
e in N (e=p) and a non-negative mapping ¢ in _L(&') with ¢(e)x0 such that
Dla)=d(a) for all ac(eNe)*. Take a positive integer m and a non-zero central
projection (g = p) with ®{e)=(1/m)q such that there exists a projection 2 N with
®(h)=(1/m)q. Hence we can choose a family {A;}7, of mutually orthogonal
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projections in NN such that h,=<e, h;~h; and > _h;=4¢q. Let v; be in N,, such
=1

that v}v; = hy, vvf = h; and put Y(b)= quS(v;*bvj) for be N, then ¥ _[|&) and
i=

Y(1—g)=0. Now, noting that v¥bv; € eNe for each pair of 7 and j, it follows that
for each b¢e Ng,

m

Vo*b) = 2 $((vr b* vy} 6% vy)¥)

ij=1

D(vf b* v;)vf b*vy)¥)

1%
'.[\1§

1

o

= Db*b).

Hence by Zorm’s lemma there are families {g.} CN} and {¢.} C_£(&’) such that
3.96=0 (@xRB), 2:9.=1, $q.) %0, Pu(1—¢.)=0 and ¢.(6%*b)=P(b*b) for all
beNgq, for each a. If {a,} is an increasing net of N* such that a,? a(S-0)
for some a<€ N, then ¢.®a,) T ¢.Pa) in N** for each a. Therefore by Lemma
1.1.1, ®(a,) T ®(a)0). This completes the proof.

2. Existence of a natural application on M*. Let Q be the spectrum of
the center Z of the given semi-finite AW*-algebra M and Z be the collection of
all [0, + oo]-valued continuous functions on Q.

To prove the existence of a natural application, we need the following, whose
proof can be easily supplied by the reader.

LEMMA 2.1. Let {a.} be an increasing net in Z such that a,1a(0) in Z
for some ac Z, then for any beZ, ba, 1 ba(0) in Z.

Since M is semi-finite, there is a finite projection p in M such that 2(p)=1.
Let {p.}ac. be @ maximal family of orthogonal equivalent projections in M such
that p~p, for each @ and p € {p.}uc.. By the maximality of {p.}.c. there is a central
projection z such that p, = (1—3...0.)2 < pz 3 0. Therefore we can take families {z,}
CZP’ {Pﬁ} CMp and {P(aﬁ’ B)}apexpum in Mp such that 21927:0 (/83?7)7 P(aﬁ» B)P('yﬁ’ B)
=0 (s =Ys), 25 = PO, B)+ g eguio PlAs; B) 25, PO, B) 2~ pp2s for each ay € mp, 2(p5)
=z, pp is finite for each 8, pye {P(Ap, B)}azes, for each B, (1—Zu,c.,p(As B)zs
= p(0, B) TPz X0 and Sezs = 1. Noting that zpppMZﬁpp iIs a finite
AW*.algebra whose center is Zzpp if S = {(zepsPzsps) s ¢ € S} (where
(286D o)l X) = PePlzspsxzsps)y x€ M), then & is a separating set of center-
valued c.a. states on zzp,Mz;ps. By Proposition 1.2.1, for each 8, we can choose
a Zzps-valued ©;-0-continuous trace P; on 2zp,Mzsp5. Now let ¥, be the
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*_jsomorphism of Zz;p,; onto Zz; which is defined by V;%(x)= zp, for each 8 and
let (s, B) be the partial isometry such that v(a, 8)*v(cs, B)==z2sps vias, B)v(ds, B)F
= plas, B) for each ayem, and each B, 1(0, 8)* v(0,8) = zp, and (0, B)v(0, B)*
= p(0, B)for each B. Define a new linear operation ® on M* to Z as follows:

OR) = 5 (Sayenpoi Vel Delvlats, B)* hzarlay, )}, he M

where 3.,..a. is the unconditional sum of the a. in Z, then ® is a natural application
on M+, that is,

THEOREM 2.1. The operation ® on M* to Z satisfies the following
properties :

(1) If hy, hye M* and A\ is a non-negative number, ®(h;+ h,)=(h,)+D(h,)
and ®(\A)=A\DA,).

(2) If seM* and te Z*, then ®(st)=tP(s).

(3) If ae M* and ue M,, ®luau*)=(a).

(4) ®a)=0 (ae M) implies a=0.

(5) For every increasing net {a,} in M* such that a,t a(©-0) for some
ae M+, ®a,)t Pa)0) in Z.

(6) For any non-zero a in M*, there is a non-zero b in M* majorized by
a such that ®b)e Z*.

Using Lemma 2.1 and &-0-convergence instead of Lemma 2.12 and o(S)-
topology in [13], the proof of this theorem proceeds in a manner entirely analogous
to that of [13, Theorem 3.1], so we omit it.

Next let B= {se M*, Ofs)e Z*}, then since P satisfies the conditions of Lemma
1 in [2, Chapter 1 §1, 6], it follows that § is the positive portion of a two-sided
ideal M and that there is a unique linear operation & on R to Z which coincides
with ® on B with the properties; (a) ®(st)= Dies) if se M, teR; (b) Dlst)=sD(z)
if seZ and teN.

Define Rank (z)=®(LP(x)) for every x < M, where LP(x) is the left projection
of x in M, and Rank(x) has the following properties : (1) Rank(x)=0, it is=0 only if
x=0. (2) Rank(x)=Rank(x*), Rank(cx)=Rank(x) for every complex number a=0.
(3) Rank(x+y)= Rank(x) + Rank(y). (4) Rank(xy)=Rank(x), Rank(y). In fact, (1)
and the last half part of (2) are clear from definitions. By [7, Theorem 5.2],
LP(x)~LP(x¥), which implies by [13, Lemma 2. 4] &L P(x))=D(LP(x*)). An easy
calculation shows LP(x+y)=LP(x)\/ LP(y) and by the fact that LP(x)\/ LP(y)—
LP(x)~LP(y)— LP(x)ALP(y), it follows that Rank(zx+y)= Rank(x)+Rank(y).
LP(xy)=LP(x) shows that Rank(xy)=Rank(x) and Rank(zy)=Rank((xy)¥)
=Rank(y*x*) =< Rank(y*) = Rank(y). Thus (3) follows.

Therefore let F={a; ac M, Rank(a)e Z*}, then & is a two-sided ideal
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contained in N such that F,=N,. Moreover, by Theorem 2.1 (6) for any non-zero
projecection e in M, we can choose a non-zero projection in & majorized by e.

3. An extension of ® to “locally measurable operators”. We shall now
consider “locally measurable operators affiliated with M ([12]). An essentially locally
measurable operator (ELMO) is a family of ordered pairs {z.,e.}, where {z.} CC
(the algebra of measurable operators affiliated with M) and {e.} is an orthogonal
family of central projections such that S.e,=1. Two ELMO’s {x.,e.} and {vs f5}
are said to be equivalent if e.fsa. = e.fsys for all @ and B. The equivalence class
of {z.,e.} is denoted by (z.,e.) and it is called a locally measurable operator
affiliated with M(LMO), and the collection of all LMO’s affiliated with M is
denoted by M. Algebraic operations in 94 are componentwise, then it is a
*algebra in which C is naturally imbedded as a *-subalgebra. We use letters
Z,Y, 2, +++ for the elements in H.

In [12], we showed the followings: (1) K is a Baer*-ring, and (2) every element
z in Y has a polar decomposition x = w|zx|(|z|=(x*x)"/?) where w*w = RP(x)
and ww*=LP(x). The self-adjoint part of . is partially ordered by defining
x=y if x—y=z¥z for some z. The subalgebra M is characterized as {zx; x < H,
x*x=al {for some positive real number a}.

We want to extend ® to H* (the non-negative part of ). The following
definition is due to [10].

DEFINITION 3.1. For every x< M+, we define
O(x)=Sup{Pla), ac M*, a=zx},
where the supremum is taken in Z.

It is clear that the new definition agrees with the old one in case xeM*.
The following Lemma is helpful for the later discussions.

LEMMA 3.1. For every xe H*, ®(x)=Sup{®(a); ac N*, a=x} =Sup{P(a);
acF*, as=x}.

PROOF. Since ®(x)=Sup{®(a), ac N*, a=zx}=Sup{®(a), ac F*, a=x},
we have only to prove the converse. Let &=Sup{®(a); acF*,a=z} in Z
By Theorem 2.1, there is an orthogonal family of projections {e.} in &F, such that
S.=1. For any JeF({a}) and ae M*, a’*(Seccse)a’?=a,a’?(Sacses)a'’?
€ F* and a*(Secse.)a’? 1 a(©-0). Therefore again by Theorem 2.1, ®(a) =
Sup{®(a'?(Z.cse.)a?); Je F({a})}, that is, ®(a)=<b. Thus b=P(x) and the
lemma follows.
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REMARK. For any xe M, ®(a*x) = P(xx*). In fact, let = w]|x| be the
polar decomposition of x, then zx* =wzx*zrw* and w*zxx*w=zx*z. If x*x
=a,ac F*, then aw*w =w*wa=a and zx* = wa*¥zw* = waw* ¢ F*. Thus,
PD(xz*) = O(waw*) = O(w*wa) = P(a), which implies D(xrx*)=P(x*x). By
symmetry ®(x¥x) = ®(xx¥).

Relations between the algebraic operations in H* and our extended operation ®
are given in the following:

LEMMA 3.2, Let s and t be in HM*, then

) D(s+2) = D(s)+D(¢);

) ®(\E) = AD(t) for any non-negative number \;
) D(usu*) = D(s) for any ue M,
) @

as) = a®(s) for any ac Z*.

PROOF. The statements (2) and (3) are clear from the definitions. For the
assertion (1), since ®(s)+P(¢) =D(s+¢), we have only to show the converse. Let
a be in F* such that a=<s+t¢ and ¢, =a"?((1/n)1+s+2)"}(s+2£)/?(note that since
s+t=0, s+¢+(1/n)1 is invertible in H and (s+£+(1/n)1)"'e {s+¢}" for each
positive integer n), then ¢, and aV?—c,(s+£)/* are bounded elements such that
la¥?—c,(s+2)"?*|=1/n and |c,|=1 for each n. Observe that ae F*, let
x=c,s"? and y=c,t"? then xx*=c,s¢} =< c,(s+t)c¥ =a'*((1/n)l+s+2) s +¢)a'?
=a and by the same way, yy* =<a, which implies = and y are in &. Now put a,
= z*x and a,=y*y, then a,, a,€ F*, a, =sV%c}c,s"?=s and a,=t. Therefore
we have ’

—~ e~~~

1
2
3
4

Dfs) + Dt) = Dlay) + Da,) = Y(x*x) + D(y*y)
= Q(xz*) + Y yy*) = Ycascy) + Pleater)
= Dlcy(s + 2)ed).
Note that LP(a)c, = c,, it follows that {aV?— c,(s+ £)2}{a'/? — c,(s + £)/2}*
=(1/n)LP(a). On the other hand, since a'¥(s+t)Vc} = a'*(s+£)(1/n)L+s+2) 'a'/?
=ac T, a'’¥s+t)%ck = c,(s+2)2a"?, and c,(s+t)/2 e F, we get that
D(a) — Dlcy(s+it)ex) = D({a'? + cpfs + £)/2} {a'/* — cals + £)/2}¥).

Observe that |c,(s+2)2|| =< |la?||, it follows by the above arguments that

1B(a) — Bleafs + 2e)| = @t + eals+ 22| 19| a2 — (s + 22k )|
= 2||a|"*(1/n)*|LP(a)))

for each 7, that is, a=c,(s+¢)c} implies that
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Ds) + Yt) = Dca(s + t)cx)
= Da) — 2A1/n)*|a]*|HLPla))] - 1

for all positive integer n, so that ®(s)+P(t)=P(a) for all ac F* with a=s+t.
Thus by Lemma 3.1, ®(s)+P(2)=D(s+2) and (1) follows.

To prove the assertion (4 ), since it is clear, by Lemma 2.1 and Lemma 3.1,
that a®(t)=®(at) for any ¢ € F* and ae Z*, it is sufficient to show the converse,
Let ¢ be in F* with c=at, then for each positive integer n, c <a+(1/n)t, which
implies (a+(1/n)1)'a®d(c)=a P(¢) by Theorem 2.1. Since LP(a)c=c LPa)=c
and (a+(1/n)1)'at LP(a), we have ®(c)=ad(t), so that a®(t)=Dat) by Lemma
3.1. This completes the proof.

Let L*={t; t e M D(t)e Z*}, then by the above lemma, _* has the following
properties:
(@) If se £* and ue M,, then usu* e [* and ¥s) = D(usu¥).
(b) Let se L* and te H* with t=s, then te L*.
(c) For every s and te L+, s+te L* and P(s+2) = D(s)+D(2).
Let LY®) = {D>_¢t.s¥, t¥ty, sks; € .[”'}, then

i=1

THEOREM 3.1 ([10]). LY®) is a unique invariant linear system (that is,
MLY{®)McC L{®)) such that LY®)* = _L*. Moreover, there is a wunique non-

negative linear operation ® on LY®) to Z, which coincides with ® on _[*,
with the following properties:

(1) For se LY®) and a< M, ®lat) = d(ta);

(2) for aeZ and se LY®), Dat) = adt);

(3) for any te L(®), Sup{|dat)]; lla| =1, ac M} = (|¢]);
(4) #f 5, t< LYD), then D(|s+2|)=D(|s])+D(|¢]).

PROOF. The proof of the assertions except for (3) and (4) are obvious

modifications of those for similar results in section 2 for the case % and &. To
prove the assertion (3 ), we argue as follows. Observe first that from the standard
calculation, |®(st)|?=®(s*s)D(t*¢) for any s and ¢ with s*sand £¥¢ € _L*. Let t=u|t|
be the polar decomposition of ¢ in LY®), then for any ae M with |a] =1, it
follows that

|Bat)|? = |Dlau|e])|® = B|2]2u*a*au|t| )8 |t])
= ¥([z])p,
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So that |®(az)| =&(|¢|) and P(u*t)=(|¢]|) and |u| =<1 implies the statement ( 3).
Next let s, t € LY®) and s+¢=w|s+¢| be the polar decomposition of s+, then
by (3)

K| s +2]) = BeoX(s + 1)) = | Hws)| + |D(eo*t)|
=Y[s])+ K]2]),

thus the proof is completed.

REMARK. (1) The linear map @ on L(®) is an extension of @ on R which
was defined in section 2. (2) If we set ||s|l|,=®(|s])ll for s € L}(®), then L}(P)
is a normed module over Z. (3) LY (®)cC. In fact, since every element of
L' (®) is a finite linear combination of elemens in .£*, we have only to show that
L*cC. By the spectral theorem ([11,12]), for any ze _[* there exists an
increasing sequence of projections {f,} in {£}” (the double commutant of {#} in %)
such that ¢f, =(n+1)1 and (n+1)(1—f,) =t for each positive integer 7, so that
D(1—f,)=(1/(n+1))®(2), this implies that {f,} is an SDD. Thus by [11, Theorem
5.1], te C. This completes the proof.

THEOREM 3.2. LY®) is a Banach space with respect to the norm |||, |l ;.

PROOF. First of all, we shall show that for any monotone increasing sequence
{t.} of elements in _L* which is |||, |I|;—Cauchy, there is £ € * such that |||z,—
t|| ;—0(n—o0). By taking a subsequence, we can assume that || £, —%,., || ;<<1/4" for
each positive integer n without loss of generality. Note that £,,,—¢, =0 (resp. £,=0),
by the spectral theorem ([11]), we can choose a sequence {e,} in {t,.,—%,}"
(resp. {f,»} in {£,}”) of projections such that 0=(t,,,—%,)e,=2™™.1 and (t,.,—%,)
=2""(1—e,) (resp. 0=¢,/,=2".1 and t,=2"(1—f,)) for each positive integer
n. Now let p,= k/g\nek A Sfe then it follows that

(1~ ) = SB1 - AS)
=3 (®[1— ) + BlL— 1)
=5 {20t — 1) + (1/290(0))

= (1+Supllizll,)27". 1

for each n, so that p, 1 implies that ®(1—p,) | O uniformly, 1—p, < F and p, 11,
that is, {p,} is an SDD([11, Definition 3.1]). Since p,=e, A fn, if k=n=m,
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then (¢,—t,)p.€ M and ||(¢,—2,)p] <1/2"'. Moreover, &,p, =t fipr and #.f%
= 2*f,, which implies z,p,€ M. By the mathematical induction, (¢,—¢%,)p
e Mim=n=k) implies ¢,p,€ M for all m=%k  Now put a(n, k) = pit.px
+ Pt (1—pu) +(1—pu)t, pr(n=Fk), then f{a(n, k)}CM,, for all n==%.  Since
la(rn+1, k)—a(n, k)||=3. 27" for all n=%, it follows that {a(n,k)} .=, is a uniformly
Cauchy sequence in M,,. Hence there exists an element s(k) < M,, such that
a(n, k)—s(k)(n—co) uniformly. If &k, =k,, then p,, = pi, implies s(&,)pr, = s(ky)Pros
so that {s(k), p,} is an EMO ([11, Dfinition 3.1]). Since |¢;pr—t.pxl =1/2%!
for all m=k, we get that |¢,p,—s(k)pc] =1/2' for each positiye integer k.
Thus putting £ =[s(k), pil(€ Cse ([11, Definition 3.4])), by [11, Theorem 3.1]
e pr—tpe] = (tc—s(k))pil| =1/25" for all k, which implies that z,—¢(n. e.) (k—o0)
([13, Definition 3.2]). Next we shall show that t=¢#, for each n. Observe that
PitnPe ZPitnPr =0 (m=n=k) and pit,p,—pitp, uniformly (n—oo)and we have
Pt =0uS(R)pr = pitn =0 for all n=%. Thus by [11, Theorem 5. 5], it follows
that £=¢, for each n. Now we shall show that <I>(t)=87111p ®(t,). Since P(t,)=D(z)

for all n, we have only to show the converse. Since put,p, T pitpr uniformly
(1>c0), for any €<, |Dlepytypee)—Dlepitpee)]~0(n—oo), which implies by
Lemma 1.1.1, ®lepit.pie) ! Dlepitpie)(0) in Z*. Since Dt,)= Wt *prepiti®)
=®(ept,pie), it follows that

Dt) = Sup D(t,) = Dleptpre) = D/ prepit'?),

so that by the last paragraph of section 2 and Lemma 4.1, ®(V/2p.ept'/?)
1 D(eV2p,2"%) in Z. Hence ®(t)=Sup D(t,) = D(t2p,t?). Again by Lemma 4.1,

CI>(t)=Sup D(t,). Sup 12, lll y<oo implies D(t) € Z and t € L*. Since} |l tn—2a-1llls

n=1

oo

= Z 1/4™ < oo, for every positive number &, there is a positive integer %(&) such

thatht —t, 1 11 =¢& for all k= k(€), that 1s,Zd>(t =dlt,)— D) =é&-1

n=k+1
for all m=k+1=k(&). D(,)T D(t)0) 1mphes D(2)— {t,c)é&l, that is, || t—2, Il ;=€
for all k=%(€). Thus the statement described above follows.
Using this fact, we can prove the completeness of L}(®) by the similar way as
that of [10, Theorem 14], so we omit the details. This completes the proof.

4. AW*.module L*®) over Z. Let L*®)= {se M, s*se_L*}, then for
any s and ¢ in LY®), (s+&¥(s+2) =2s*s+t*t)e L+ shows by Lemma 3.2,s+¢
€ L{®). For any ae Z and se L¥®), we have ®(|a|is*s)= |a|*®(s*s)e Z*, so
that as € LY®), that is, L}P) is a module over Z.

At first, we shall give the following lemma,
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LEMMA 4.1. Let se€ M and oy(x)= ®(s*xs) for any x < M*, then for any
increasing net {a,} in M* such that a,’ e(©-0) for some e< M,, aa,)?aosle) in
Z. In particular, o, is completely additive on projections.

PROOF. Since o,(e)=Sup o,(a,), we have only to show the converse. Let
b
be F* with b=ess*e, then eb=be=> and b'*a,)b'? | b'?eb'/*S-0), so that by
the continuity of ®, ®(b'/%a,b"/?) 1 ®b%eb"?). On the other hand, since ®(b%a,b'/?)
= ®(al/*bal’) = D(a)’ss*al/?) = P(s*a,s), it follows that ®b) =Sup,s,(a,). Therefore by
Lemma 3.1, o,(€¢)=Sup oya,) and the proof is now completed.
b

LEMMA 4.2 ([10]). L¥®P) has the following properties:
1) For s and t in L¥®)", ®(st)=0;
2) if s, te LA®) with |s| = |t], then ¥|s|?)=|s| [¢])=D(|¢]*);
3) if s and t are self-adjoint elements in L*®) such that ®(s?) =D(t?), then
) =D);
4) let t be in LX) and ue M,, then ®(|t|?) = ®(|utu*|?);
5) if s, te LA®), then st< L(®D), |D(st)|? =D(|st])? =< D(s*s)D(t*2) and

(
(
(
D(s
(
(

D(s*s)/2 = Sup{|DP(st)|, Pt*t) =1} .

PROOF. Let s and ¢ be in L%P)*, then note that by the remark following
Theorem 3.2, s and t€ C*, by [11, Theorem 5. 1], we can write £ = [¢,,e,], where
tpr€n€ {t}7, the,=t,=0and ¢,7. Let u be the Cayley transform of £, I" is the
spectrum of {«}”([1]) and T, = {v; |u(y)+1| >1/n}~ where A~ is the closure of a
set A. Denote the projection in {u}” corresponding to the clopen subset I', by f.,
then £, 1 LP(t) and (< T',)>{1+u(y))! is a continuous function on I',. Thus e, f,,
e L¥®) implies e,f,< F, for each pair of positive integers m and n. Since
te,fmeSF, t'%, f,, € F and st LP), it follows that

Dle, fust) = Dlste, f) = Dlsltenfn) " (tentn)"?)
= Dlte, o) 2slten fu)”?)

— @(81/2t1/2enfmt1/281/2) .

By Lemma 4.1, ®le, f,.st) 1 D(s*/%57/2)0) in Z. On the other hand, by Lemma
1.1.1, Dle,f,st)—P(st)(0) in Z, therefore D(st) = Bs?s"?)=0, so that the,
statement (1) follows. To prove (2), we argue as follows. Let s, #zeL*®) such
that |s| =|¢|, then by (1), |s|¥%(|¢]—]|s|"2)=0 implies that ®(|s|(|z|—]s|))
=®(|s|2(|¢]— |s])|s|2)=0, that is, D(|s||¢])=P(|s|?). By the same way,
D(|£]2)=D(|s]]¢]). Next let st LY®D),, such that B(s?)=D(¢), then 0=D(t—s})
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= O(f*)— 2D(st)+ D(s?) = 2 D(t*) — 2 D(st) and this completes the proof of the statement
(3). Let te LY®) and u < M,, then |utu*|*w*, which implies by Lemma 3.2 (3)
that the assertion (4) follows. Now we shall show the statement {5). Let s, ¢
be in L%®) and st=w|st| be the polar decomposition of st, then it follows, by the
argument used in the proof of Theorem 3.1, that

|B(st)|* = |Dluw|st])|* = (]| D(|st] )} = D |5t}
= (Dlw*sz)f = Df(w*s)¥(w*s))D(e*z)
= P(s*s)D(t*¢) .

Now let a=Sup{|®(st)|; ®t*t)<=1} in Z, then by the above inequality
a=®P(s*s)"%, Let t,=(D(s*s}+(1/n)1)"s*(e L(P)) for each positive integer n,
then ®(trt,) = (B(s*s) + (1/n)1)1D{s*s) = (B(s*s) + (1/n)1)'D(s*s) =<1 and D(st,)
= (P(s*s)+ (1/n)1)*®(s*s), so that

(B(5%5)+(1/n) 1) B{s%s) " D{s*s) " = a

for all n, that is, a=®(s*s)”* and the statement (5) follows. This completes the
proof.

Now for any pair @ and & in LY®), we define (a,b)y= D(b*a), then (, o
satisfies the following properties :

(1) (ab)y = (b,a)s,
(2) (a,a)e=0,(a,a)y =0 only if a =0,
(3) (sa+b,c)p = sla,c)g +1b,0)p»

for all a, b, ce L ®) and se Z. If we define |||a |l .= |{a, a)s||'* for a € L{D), then
by ([9, §2]), L*®) is a normed module over Z with respect to ||, |l ,. Moreover, we
have the following :

(1) Let {e;} be an orthogonal family of projections in Z such that >_.e,=e{ € Z,)
and if a € L¥®) such that ¢,a =0 for all 7, then ea = 0.

(2) Let{e} be an orthogonal family of projections in Z such that Y e, =1,
and let {a,} be a bounded subset of L*®), then there exists in L{®P) an element a
such that e,a = e,a, for each i.

In fact, by the Baer*-ring property of ¥ ([12, Theorem 3.1]), we can easily
show the statement (1). On the other hand, since ([12, Theorem 4. 1]), there exists
a unique a € H such that e,a =e,a,, to prove the assertion (2 ), it suffices to show
that a € LY®). e;a*a=e,a}a; implies e,a¥*a < LY(®) for each i. Denote Sup |||l a,lll.
by k and we have ®le,a*a) = e D(a*a) = e, Dla,a,) = ke, for all i, that is, Pla*a)
=k-l,ac L(®) and ||al|,=*%. The statement (2) follows.
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The rest of this section is devoted to prove that L(®) is complete with respect
to the norm |||, |||, that is, LY®) is an AW *-module over Z. To prove this, we
need the following lemma.

LEMMA 4.3. Let {t,} be an increasing sequence in ILX®)* such that
2, =2, | ;e—>0(m, n—o0), then there is an element t € LAD)* such that ||t,—t]| .

—0(n— ).

PROOF. By passing to a subsequence if necessary, we can suppose ||| £,+1—% lll
<1/16" for each n. By the spectral theorem ([11]) we can choose sequences of
projections f{e,} in {t,.1—%}" and {f,} in {£}” such that 0=(t,., — t.)e.
=(1/5%)+1, (s —2a) = (1/5"L— ), £, fn =27+ 1 and £,=2"(1—f,) for each n. Now

put p,= /\ek /\f x» by the same arguments as in the proof of Theorem 3. 2, {p,}

k=n
is an SDD and there exists a sequence {s(k)} in M,, such that ¢,p,— s(k)py
uniformly and {s(k), p,} is an EMO. Denote [s(k),p:] by ¢t Let £2—t,t,
=uy, |2 —tnt, | (resp. tht,—to =1, |t,t,—1%|) be the polar deccmrosition of #,—¢,¢,
(resp. t,t,—t%), then by Theorem 3.1 (4) and Lemma 4.2, we get that

D |tr—ta|) = V|th — tatn|) + V| Lt — tn])
= D(ukty(tn — 1)) + POk(ts — t)tn)

=(Mealllat Men ) Nta—2n lll 2+ 1

for each pair of integers m and »n. Thus {£} isa ||, ||,—Cauchy sequence in LYP).
By Theorem 3.2, there exists an se LY ®} such that [|z2—s|||; —>0(n—c0) and

ti—s nen—oo). Let 7= /\ ((tass — to)7'[pal) /\ @'[£a)) and gu=pn /\ 7w,

nzk

then by [11, Lemma 3.1], {g.} is an SDD. For any pair £ and » with n=%,

(ﬂm - tzl)qk = tn+1‘(tn+1 - tn)qk + (tn+1 - tn)thk

= tn+1Pn(tn+1 - tn)qk + (o1 — tn)pnthk’

therefore (£2,,—t2)g, € M and |(£,,—%2)q:]|<<2-(2/5)", so that by the similar reason
to that of Theorem 3.2, there is a sequence of elements {s(k)} in M,, such that
8.9, —> s|k) g, uniformly (m—oo) and {s(k), q,} is an EMO. Let ¢#=[s(k), q:] €C,
then 2 —>¢'n.e. (n— o). Thus q,s(k)q,=q.s(k)q; for all k, so that by the Baer*-
ring property of M, there is an SDD {qi} such that s(k)q. = s(k)q: for each %,
while £, —s(n.e.), by the unicity of n.e. limit, it follows that £2=¢ =se LY®),
that is, £€ L¥®). On the other hand #=¢, implies by Lemma 4. 2,
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Dt — ta)?) = Dt?) — 2D(tt,) + D(E2)
= O(*) — D(t3)

=ds—2)=|ls—2All,-1.

Thus |||£—2, | ;— 07— oo) and £, —#(n. e.)(n — oo). This completes the proof.

THEOREM 4.1. L¥®) is a faithful AW *-module over Z([9]) with respect
to the norm ||, | ..

PROOF. The proof of that L¥®) is an AW *-module is an obvious modification
of that for Theorem 3.2, thus it is sufficient to show that L¥®) is faithful. In
fact if ae Z with at=0 for all ¢#e L%®), then the semi-finiteness of ® and the
Baer*-ring property of C show the desired property that a=0. This completes the
proof.

5. Proof of the main theorem. In the followings, we always denote L*®)
by M. By [9, Theorem 7], the set B M) of all bounded module homomorphisms of
M into M is an AW *-algebra of type 1 with the center Z. The left (resp. right) regular
representation m,(resp. w,) of M is a *-homomorphism (resp. *-antihomomorphism)
of M into BIM) which is defined by m(x)t=xt(resp.my(x)t=tx) for any x € M and
t € M. Since FCM, m,(x) = O(resp. m,(x)=0) implies that there exists an orthogonal
family {e.} of projections in M such that xe,= O(resp. e.x=0) for each a and
> «€.=1. By [7, Lemma 2.2], =0, that is, m(resp. m,) is a *-isomorphism (resp.
*.antiisomorphism).

LEMMA 5.1. m(M) and ny(M) are AW *-subal gebras of BM).

PrROOF. We have only to prove the first of these statements, the second
follows similarly. By [8, Definition], it suffices to show that for any orthogonal set

{e} ;<1 of projections in M with e=3",.,e, m (thet) 1 mle) in BM)J e F1).

In fact, since (m(e)— 02 (Z ei)x, x)q, = q)(x*(e—ZiEJet) x), therefore from Lemma

ied

4.1 and [14, Lemma 1.4] > ;e m(e;) T mi(e) in B(MM). This completes the proof.

LEMMA 5.2. For any ac WM, there is a sequence {a,} in MNM such that
NMall :=lall; and |a,—als —0(0) in Z*, whre |x|s=(x.2)¥*® for any xeM.

PROOF. Let a=u|a| be the polar decomposition of a in C, then for any
beF*, |u(la|—b)|s=||a| —b|s so that we have only to prove the assertion for
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the case when a=0. Let v be the Cayley transform of a, then from the spectral
theorem ([11)), there are an SDD {e,} in {v}” and a sequence of projections {f,}
in {v}” such that n(1—e,)=a, ae, and (1+v)f, is invertible in .f,Mf, for each =.
Since a, = ae.fr € F* and a*=ai=da’, if m<n, then

0 = Dfa’) — Plar) = la’(L—enfs)) = Dla’(l—enfn))

so that by Lemma 4.1, 0=0—lim(®P(a?)—P(a)) = D(a*(1—fn)) for all m, which
implies by Lemma 1.1. 1, ®a2) 1 ®(a?)0). While from Lemma 4. 2, it follows that
D((a—a,)?) = P(a?)— P(a)). This shows that |a—a,|,—0(0) and the proof is completed.

LEMMA 5.3. (M) = n(M) and n,(M)" = n,(M) in BIMM) where A is
the commutant of N in BM).

PROOF. The methods which will be used here are patterned after those of
[2, Chapter 1, Section 5]. Since (M) Day(M) and 7y(M) D m(M), we have only
to prove the converse inclusion. Let x be a left (resp. right) bounded element in M,
that is, an element x such that there is B,(x) (resp. Byx)) in B(M) such that
Bi(x)a = my(a)z(resp. By(x)a = mi(a)x) for all MNIM. First of all, we shall show
that the set M, = {B,(x); = is left bounded} is a left ideal of 7,(M ). In fact, for any
aand b in MNM, an easy calculation shows that (Bi(x)w,(a)b, ) =(ms(a@)Bi(x)b,y)e
for any ye L¥®). Therefore, by Lemma 1.1.1, Lemma 5.2 and the Schwarz’
inequality, (¢, (Bi(x)my(a))*y)s = (¢, (msla)Bi(x))*y), for any c € M, that is, Bi(x)w.(a)
=my(a)B,(x) for any ae MNM. The semi-finiteness of ® implies that there is an
increasing family of projections f{e.} in M NI such that for any ac M, ae.€c M
and 7(ae.)— ms(a) weakly ([14, p. 311]). Thus B(x)w.(a)=msa)B,(x) for all ae M,
that 15,3, C (M. Since for any T € 7,(M), TB\(x)a=T - wy{a)x=msa)Tx for all
asMNM, Tx is left bounded and B,(Tx)=TB,(x). Hence the assertion follows.
From the same reason, M,= {B,(x); x is right bounded} is a left ideal of (M.
Let M;=M,NnM¥ and M,=M, DM}, where U*={x*,x< A} for any subset A
of BM), then My C 7 ,(M) and M, C (M) . Next we shall show that My ==,(M)'.
In fact, for any T € zo(M) and T, € Mo, T 171(b)Tw(a) = m:(0)T + mi(@)Ty, for any a
and & in MNM, so that from the above argument, we have T,1T =TT, that is,
(M) =M. By the same way, =,(M) =MW" To prove Lemma 5. 2. it suffices to
show M, C M. In fact, let B,(a) e M; and B,(d) € M,, then B,(a)*=B,(c)(resp. By(b)*
= B,(d)) for some left (resp. right) bounded element c¢ (resp. d). Therefore, by a
standard calculation shows that for any x and y in MNM, (@xy)e = (c*, xy)s. By
lemma 5. 2, it follows that a=c¥*. By the same way b=d*. Again by Lemma 5. 2,
there exist sequences {x,} and {¥,} in MNM such that |x,—a|,=|xF—c|—0(0),
|¥n=ble = |¥i—dls —00), llz:ll.=llall, and [ly.ll.;=Il&]l, for each =.
Therefore, by Lemma 1.1.1, from the similar arguments ([2, p.68,Lemma 3]) it
follows that (Bi(a)B(b)x, ¥)e = (By(b)Bi(a)x, ¥)s for any £ and y in MNM. From
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Lemma 5. 2, we have B,(a)B,(b)= B,(b)B,(a), which Implies M; C M;. This completes
the proof.

For any ae M, let \ {m,(M)a} be the AW*-submodule generated by {z,(M)a}
and E, be the projection on V {m(M)a} ([9, Theorem 3]), then E, € #,(M)". In
fact, for any Aem(M), A{mi(MYa}CV {m(M)a}. Let {e.} be an orthogonal
family of projections in Z with Z,e,=1 and let {y.} be a uniformly bounded
subset of {m(M)a}, then [9, p. 842, Definition], A(S.€.¥.)=3.€.Ay. in M, so
that A(S.e.y.)e V{m(MYa}. The continuity of A implies A(V {m(M)a})C
V {m(M)a}, that is, AE,=E,AE, for all A< n(M), so that E,c m(M)’. E, is
called a cyclic projection relative to a.

Now we are in the position to state

THEOREM 5.1. m(M)’ = m(M), that is, M can be imbedded as a double
commutator in a type 1 AW*.algebra B(M) with the center which is
*.isomorphic with Z.

PROOF. By the spectral theorem, it suffices to show that =,(M); = =,(M)).
For any Pe m(M),, let {E,} be a maximal family of orthogonal cyclic projections
in m(M)" majorized by P. By the definition of E,, the standard argument shows
that P=3_E, in B(M). Since m{M) is an AW#*-subalgebra of B(M), by [14,
Lemma 4.5], in order to prove Pe< m(M),, we have only to show that E, € m,(M)
for all z< M.

Let x=u|x| be the polar decomposition of x in C, then E,=m(u)E,, m(w)*.
In fact, observe that x=m(u)|z| and |x|=m(w)*x, Ax=m(u)A|zx| and m(uw)*Ax
=A|z| for any Aem(M), so that V {m(M)z} D)V {m(M) |x|}). For any
ye V{m(M)z} and for any positive real number & we can choose an orthogonal
set {e.} of projections in Z and a family {B.} in m(M) such that S.e.=1,
S:Jp Nl Bez|ll ;<< o0 and ||| y—Z.€.B.xlll <& Since e,m(u)m(u)*B.x = e.B.x for

each a, we have ||| y—m(w)m(e)*y ||| . <28, that is, y=m () m(«}*y. On the other
hand, =(«)*B.x2=B.|x| and ||B.|x|||.= |l B.xlll, for each a implies that
Il mi(e)*y —Se€a B.| x| |l .<< & and mi(w)*y € V {m(M) |x|}. Therefore combining the
above results, ¥ € m(u)V {m{M) |x|}), that is, V {m(M)x}=mle)V {m(M) |x|}).
By the same way, it follows that = (Rp(x)) (V {m(M) |z|)=V {m(M) |zx|}. From
these facts, we get that E,=m(u)E, ;m(w)*. Hence to prove that E, € n (M), we
may assume x=0 without loss of generality.

Let xeM with £=0, then there exist a projection e, and f, in {x}”
satisfying the properties described in the proof of Lemma 5.2. Let a,=xe.fu( € F),
then @, 1,2, =z and |a,—x|;,—00). Since a,=m(e.fr)x = myenfr)r, Eos, = E,
and E, 1. Moreover |a,—x|s—0(0) implies E, TE, in BM). Thus by [14,
Lemma 4.5], to prove E, € m;(M), we have only to show that E, € m,(M) for each
n.
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Now we shall prove that E, < 7(M) for all ac &F. Since =(M) is an AW*-
subalgebra of B(M), it is sufficient to show that E,=LP(B(M)) m(a)) ([8, Lemma
2]). Observe that for any be MNM, =yb)a=ab= m(a)be V {m(a)M}, let E be
the projection in B(M) corresponding to V {m(a)M}, then Enxyb)a=mn,b)a for all
be MNM. The semi-finiteness of @ implies that for any A € x,(M), there is a net
{a.} in MNM such that [zy(a.)l| = Al for each a and =y(a.)—>A strongly in
B(M). Therefore Exyb)a= myb)a for all be M. For any A € (M) (=m(M)),
since w,(M) is an AW*-subalgebra of B(M), by [14, Lemma 4.2], there is a bounded
net {A:} Cwo(M) such that A;—A strongly in B(M), thus EAa= Aa, which
implies V {m(M)a} C V {m(a) M}, that is E,=<E. For any x< M, by Lemma 5.2,
there is a sequence {b,} in MNM such that |x—5,|,—0(0) and ||| &, 1l .=l z|ll o
for each n, so that E,m(a)b, = m(a)b, implies E,m(a)x = m(a)zx, that is, E=E,.
An easy calculation shows that E=LP(B(M))(m(a)) and the proof is now completed.

COROLLARY. Let B be an AW*-algebra of type 1 with center % and
let A be a semi-finite AW*-subalgebra of B which contains Z&, then A=A’
n B.

By Theorem 5.1, the proof proceeds in entire analogy to that of [14, Theorem
4.4], so we omit the details.
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