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ON THE DISTRIBUTION OF VALUES OF FUNCTIONS
IN SOME FUNCTION CLASSES IN THE ABSTRACT

HARDY SPACE THEORY
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In this note we shall study some properties of functions in some
function classes in the abstract Hardy space theory, developed by Kδnig
[2], especially the distribution of values of functions in such a class. We
shall give first a generalization of a classical Lowner's lemma and its
precise form (Theorem 1). From it follows a generalization of a theorem
of R. Nevanlinna on inner functions in the unit disc U of the complex
plane Cto abstract Hardy spaces (Corollary 1). Using the real-analyticity
of a function arising in Theorem 1 we shall investigate the distribution
of values of bounded functions in abstract Hardy spaces (Theorem 2 and
its corollaries). One of them can be stated in the classical case as fol-
lows: Let f(z) be a bounded holomorphic function in U such that | /(z) |<l
in U and its boundary function value f(eiθ) is real or | f(eiθ) | = 1 a.e.
on T, the boundary of U with the normalized Lebesgue measure L. Then
it holds L{eiθ: f(eiθ)eEljE*} > 0 for every measurable set EaT with
L(E)>0 or f(z) is a constant, where E* = {te T: t* e E). In Section 6
corresponding results are given for the class H+: a class of functions
with nonnegative real part, which is defined in the next section. We
improve also a uniqueness theorem for functions in H+ (Satz 7 in [9]).
Some applications to domains in the ^-dimensional complex vector space
are given in Section 7. The author would like to acknowledge several
helpful conversations with Professor Heinz Konig.

1. Let (X, Σ, m) be a probability measure space and L(m) be the
set of all measurable functions on X. We assume further H is a weak*

closed subalgebra of L^im) with 1 and φ; φ(u) = \ u(x)dm(x) (u e H) is

multiplicative on H. Let L* be the set of all functions feL(m) such
that there exists a sequence of functions uneH with | un \ <̂  1, un —> 1
and unf e L°°(m). Let ϋΓ* be the set of all functions u e L(m) such that
there exists a sequence of functions uneH with un —> u and | un \ ̂  some

* This work was supported by the Alexander von Humboldt Foundation.
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FeL*. Thus F* c L* c L(m) is a complex subalgebra of L* with HczH*.
One proves that for ueH* there exists a sequence of functions uneH
with un-+u and \un\ ^ | w |. Therefore if* Π L~{m) = H. Further u e L(m)
and uneH with un—>u and | M J <; some F e L * implies that %eHK
Furthermore there exists a unique extension of φ; H-+C to a multipli-
cative linear functional φ; H*-+C which is continuous in the sense that
fnJzH\fn-+f and \fn\ ^ some FeU implies that <P{f%)-+φ{f). We
define next a subclass of £Γ*. Let

H+ = {fe L(m); Re / ^ 0 a.e. and e~tf e H for all t > 0} .

It is already known that H+ c iϊ* and

H+ = {fe L(m); R e / ^ 0 a.e. and l/(/ + t)eH for all ί > 0}

= {/ = (1 + u)/(l - u); ueH wi th \u\^l,uΦl}

and if feH+ and / ^ 0 , 1// is also in H+. We state the following
lemma, whose proof is due to Konig.

LEMMA 1.

(i) Let f, g e H+ and Έefg ^ 0 a.e.. Then fg is in H+.
(ii) Let ffgeH+ and 0 < a < 1. Then fagι~a is also in H+.

PROOF, i) We may assume g Φ 0. Clearly we have / + tg~ι e H+ and
9̂ 0 for every t > 0. Hence we have flΓ7(/ + tg~ι) e H*. Since Refg ^ 0,
we see that g~ι/(f + tg~ι) = l/(/gr + ί) is bounded. Hence it is in H, which
shows that fg e H+. ii) It is known that fa, gι~" are well-defined and
in H+ ([9] Satz 3). Clearly we have R e / V ~ α ^ 0 a.e.. We apply i).

q.e.d

2. We shall state a precise form of a generalization of the classical
Lowner's lemma**.

THEOREM 1. Let ueH with \u(x) \ ̂  1 a.e. and uφeia (a: real). Let

\ udm = b. Then for any Lebesgue measurable set EaT, we have

(1) ( <faφ)( /-"" f f dβ=\ iβ\

- j .
(χ)eu}\eiθ — u(x) I

1 - l δ l 2

eiθ - b |2

particular we have

— 2πm {x; u(x) e E}.

( 2 ) m

*) Cf. [7] p. 322.
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PROOF. We have first

1 — r21 u(x) |2 _ eiΘ reiθu(x)
I eiθ — ru{x) |2 eiθ — ru(x) 1 — reiθu(x)

= Σ (re~iθu(x))n + Σ (reί<9ΰ(i))w

for 0 ^ r < 1, eiθeT .

Since ueH, by integrating the above equality, we have

(3) ; ( M 8 )

Hence, letting r—>1 we see by Fatou's lemma that

\ { ) \ = | β w - 6 1 2 ~ 1 - | 6 |
for all eiθeT.

Therefore, since the Lebesgue measure on T is outer regular, it suffices
to show 1) or 2) for open sets on T. Now let A be an open set on T.
Then we have A = \J5Aά{Aό\ open arc on T, A, Π Afc = 0 if j V &). Put

(0

Then we see easily by the properties of the Poisson kernel that

\gr(u(x))\^2π(xeX),

lim gr{u(x)) = 2π (u(x) e A) ,
r-*ί

= π or 2π (u(x) e \J {As — AM ,

= 0 (u(x) eΓ-gi,),

' (u(x)eU).\ e%θ — u(x) |2

Hence, integrating the equality 3) with respect to θ on A and letting
r —•> 1, we have

2;rm {α; tφ) eA}£ ^l^JjLdθ ^ 2π

This shows the inequality 2). Hence we have

m <x; u(x) e \J (As — AM = 0 .

Therefore, by the dominated convergence theorem we have the equality
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1) for open sets, which completes the proof.
As immediate consequences of this theorem we have the following

corollaries.

COROLLARY 1. Let u(x), b be the same as in Theorem 1. Further
suppose \u(x) I = 1 a.e.. Then we have for any measurable set Ed T

and hence

' % L(E) ^ m {x; u(x) eE}^ ] + j \ \ L{E) .

In particular, if I udm = 0, we have

m{x; u(x) G E) =

COROLLARY 2. Lei ΐφj), & δe the same as in Theorem 1. Further
suppose u(x) e T or real a.e. T%ew we have for any measurable set
Ea T

m{x;u(x)eE}-m{x;u(x)eE*} =
2π

where E* = {β"; e" w e J&}.

COROLLARY 3. Let u{x), b be the same as in Theorem 1. Further
suppose u(x) e T+ or real a.e., where T+ = {eiθ; 0 ^ θ ^ π}.
/or α ί̂/ measurable set Ed T+

m{x; u(x) e E ) = 1~\bf [ (| e
iθ - b \'2 - | e~iθ - 6

2π JE

We state next a lemma which we need in the next section.

LEMMA 2. Let u{x), b be the same as in Theorem 1. Then, if

m{x; u(x) e E) = 0

/or some measurable set Ed T of positive measure, we hive

| ()| |e » -
PROOF. We have already seen that

β.β. e- s E .

f 1 1 ^ ) 1 ' dm(x) ^ 1 ,Λ I 6 ! ' for all eiθ e T.
J {x u(χ) e u) I e%θ — u(x) I \e%0 — o \

Combining this with 1) of Theorem 1 we have the desired conclusion.
q.e.d.
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3. We investigate next some properties of the integrated function

LEMMA 3. Let f{θ) = eiθ/(eiθ — a) and \ a \ φ 1. Then f is indefinitely
differentiate in θ and we have

(* ) I f-HΘ)\ <\Tn' W α | i l e « l < 1 . * = 0 . 1 . 2 ,

In particular, f(θ) is real-analytic in (— °o, ex?), i.e., /(^) can be expanded
in Taylor series at any θQe{— oo, oo) and its convergence radius is larger
than I eiθ° — a |/2

PROOF. We have first the following formula

d einθ

 = . / β*»g _ ei{n+1)θ \ = ., 2

d^ (ew - α)% V (e*« - α ) % (ew - α) +1/ '

Using this formula, we see easily that f{n)(θ) is the sum of 2n terms of
the form ceikθ(eiθ — a)~k (c: complex number, k: integer, 0 < k ^ n + 1)
such that \c\ ^ n\. Hence we have the inequality (*). Since

Ann\ \eiθ°- a\~n

if I eiθ - eiθ° I ̂  | eiθ° - a |/2, we see that

£ U ^ ) γ in I 5 - θ01< I β̂ o - α |

Clearly the Taylor series converges in | θ — θ0 \ < | eiθ° — a |/2. Hence we
have the last assertion. q.e.d.

LEMMA 4. Lei u(x) e L(m). Let 0 < δ < 1 αraί

ϋ , W = {« e Z7; I « — e*^ | > «} .

Lei

= Σ.J—ψ1 {θ - θoγ for \θ - θo\< a/2 .

PROOF. An easy calculation shows that

I e" - u(x) |2 " eie - u{x) + 1 - eiβu(x) ^ S U) '
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In the same way as in the proof of Lemma 3 we have similar inequalities
for the differential coefficients of the last term to the inequalities (*) for
the first term. Hence for any fixed θ: \eiθ — eiθ<> | < δ we have

dn 1 - I u(x) Γ 2n+1nl eiθ - eir\~n

dθn I eiθ - u(x) |2

(n = 0,l,2, -- ,u(x)eU9(θ0)),

where | eir — eiθ° | = δ and | eίθ — eir | < δ. Hence, since m is a probability
measure, we have

I /<•>(£) I ̂  2«+ίnl I eiθ - & \~n (n = 0,1, 2, . •)

The rest of the proof follows along the same lines as that of Lemma 3.
q.e.d.

By the above lemma we can state the following fundamental lemma.

LEMMA 5. Let u(x) e L{m). Let A = {eiθ e T; a < θ < β) and W be

an open set in C containing A. Let V = Uf] Wc and F = {x; u(x) e V}.
Then the function

\ 1 1 ^ ) 1 2 dmjx)\

)F\e%° - u(x)\2

is real-analytic in (a < θ < β).

PROOF. This follows immediately from Lemma 4.

4. Combining the results in Sections 2 and 3, we can investigate the
distribution of values of bounded functions in H.

THEOREM 2. Let A, W, V be the same as in Lemma 5. Let ue H,
u(x) 6 ΓU V a.e. and uΦeir(y: real). Then, if for some measurable set
Ed A (L(E) > 0) we have m{x; u(x) eE} = 0, it follows that

m{x; u(x) e A} = 0 .

PROOF. Put

I e x θ — 6 I ){u(χ)BV}\etθ

where b = \ u dm. Then by Lemma 2 we have f(θ) = 0 a.e. on E. Since

E is of positive measure, E contains a non-empty perfect set F. Hence
we have

fωψ) = 0 (eiθeF,n = 0,1,2, ...) .

By Lemma 5 we see that f{θ) is real-analytic in a < θ < β. Hence
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f(θ) = 0 in a < θ < β. Combining this with the equality 1) in Theorem
1, we have m {x; u(x) e A) = 0. q.e.d

Combining this theorem with the corollaries to Theorem 1 we have
the following result.

THEOREM 3. Let ueH. Further suppose u(x) e Γ(J(—1,1) a.e.. Let

\ u dm = b. Then we have

1) // m{x; u(x) e E) = m{x; u(x) e F} = 0 for some measurable sets
EczT+ and FczT^ = T — T+ (L(E), L(F)>0), then u is constant.

2) Let Im 6 = O Then if m {x; u(x) e E} = 0 for some measurable
set EdT (L(E) > 0), u is constant.

3) Let Im b > O Then if m {x; u(x) e E) — 0 for some measurable
set EaT+ (L(E) > 0), u is constant.

4) // m{x; u(x) e E) = 0 for some measurable set EaT+ (L(E) > 0),
we have m{x; u(x) e T+} = 0 and that m{x; u(x) e F) > 0 for any measur-
able set Fa T_U [—1,1] of positive measure or u is constant.

5) // m{x; u(x) e E} = 0 for some Ea [—1,1] of positive measure,
then we have m{x; u(x) e F} > 0 for any measurable set FczT with
L{F) > 0 or u is constant.

PROOF, 1) By Theorem 2 u is a real-valued function. From the
equality

I (u — b)2 dm = I u2 dm — 26 I u dm + b2 = 0

it follows that u — b.

2) By Corollary 2 we have m{x; u{x) e E*} = m{x; u(x) eE} = 0.
Hence u is constant by 1).

3) If u is not constant, we have by Corollary 2

0 ^ m{x; u(x) e J?*} < m{x; u(x) e E) ,

which is a contradiction.
4) The first assertion follows immediately from Theorem 2. Suppose

next that u is not constant and m{x; u(x) e F} = 0 for some measurable
set F c Γ - U [ - l , 1] of positive measure. Let f(z) be a holomorphic
function in U- = {|« | < 1; Im z < 0} mapping tL on ?7 conformally.
Then we see by the Lemma 6 below that f(u) is well-defined, in H and
I f(u(x)) I = 1 a.e.. By a theorem of F and M. Riesz F is mapped on a
subset of T of positive measure. Hence f(u) is constant by Corollary 1,
and so u is also constant. It is a contradiction.

5) If there exists a measurable set FczT of positive measure such
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that m {x; u(x) e F} = 0, then by 4) u is constant. q.e.d.

LEMMA 6. Let A, D2 be simply connected domains in C bounded by
Jordan curves Γu Γ2 respectively. Let ueH and u(x) G A a.e . Let f(z)
be a conformal mapping function from A on D2. Then f(u) is well-
defined, in H and f(u(x)) e A a.e..

PROOF. We see that f(z) is continuous on A and maps A onto A
one-to-one and topologically. Hence f(u) is well-defined and f(u(x)) e D2

for x; u(x) e A By a theorem of Walsh there exists a sequence of
polynomials Pn(z) which converges to f(z) uniformly on A Since Pn{u)
is clearly in H and H is weak* closed, f(u) is also in H. q.e.d.

REMARK. By Lemma 6, Theorem 2 holds if we replace T by any
closed rectifiable Jordan curve and Lebesgue measure by the measure
defined by means of the arc length of that curve. 4) and 5) of Theorem
3 hold if we replace ϊ7, (—1,1) and Lebesgue measures by any closed
rectifiable Jordan curve, any rectifiable Jordan arc and the measures
defined by means of the arc length of their arcs respectively.

Combining Lemma 6 and Theorem 2 we shall prove

THEOREM 4. Let A and B be two disjoint compact sets in C such
that (A U B)° is connected. Let Γ be a Jordan arc joining a boundary
point a of A with a boundary point b of B such that Γf](A[jB) = {a, b}.
Then if ueH and u(x)eA{jB{jΓ a.e., u(x)eA a.e. or u(x)eB a.e. or
u is a constant.

PROOF. We suppose first u is not constant. Let A be a Jordan arc
joining a with b such that A does not intersect A[jB and the jointed
curve of Γ and A surrounds A\jB. Let f(z) be a conformal mapping
function from the simply connected domain bounded by Γ and A on the
rectangle {0 < Imz < 1, — 1 < Re z < 1} such that a point ceΓ (c Φ α, 6)
is mapped to the origin and f{a) < 0 < f(b) or f(a) > 0 > f(b). We may
assume f(ά) < 0 < f(b), say. We map further that rectangle by g(z) = z2.
Then there exists a point deR such that d = a2 = β2 for some a, βef(Γ)
(a < 0 < β). Let Γ2 be a Jordan arc joining the origin with d such that
(0, d) and Γ2 surround f\A) U f\B) U (f{Γ) - (0, d)) and Γ2 does not
intersect f\A){jf2{B){jf\Γ). Let D be the simply connected domain
bounded by (0, d) and Γ2. We map conformally D on U by an h{z).
Then by Lemma 6 we see that f{u) e H and f\u) is clearly in H and
again by Lemma 6 we have h{f\u)) e H. The image of Γ2 by h{z) is a
non-empty arc / on T. Since m {x; h{f{u{x))) e /} = 0, we have
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m{x;h(Γ(u(x)))eh((0,d))} = 0,

by Theorem 2. Since h maps D on U one-to-one, we have

m{x; f\u{x)) G (0, d)} = 0 .

This shows that m{x; f(u(x)) e (a, β)} = 0. By the remark above we
have m {x; f{u(x)) e (f(a), f(b))} = 0. Again by Lemma 6, we have

m{x; u(x) G Γ] = 0 .

Next suppose m{x; u(x) e A} m{x; u(x) e B} > 0. Let 7 = ess inf Re u(x).
Considering u + y + 1, A + y+1, 2? + 7 + 1 in place of u, A, B respectively,
we may assume Reu(x) ^ 1 a.e.. By the assumption for A, B there is a
sequence of polynomials Pn(z) converging to 0 uniformly on A and to z
uniformly on B in virtue of a theorem of Runge. Since clearly PJv) is
in H, we see thus that the function u2: u2 = u on B\ =0 on A! is in H,
where B' — {x; u(x) e B) and A! = {x; u(x) e A}. Hence we have

uλ — u — u2 G H .

Let \ Uidm = s and I u2dm = t. Then since Re u ^ 1 a.e., we have
J j

st Φ 0. Now since uί9 u2 e H, we have

sn + ίΛ = I %j dm + I u2 dm = \ (^ + u2)
% dm = (s + ί)% (n = 1, 2, •) >

which is clearly not true. q.e.d.

As a special case of the above theorem we have

COROLLARY 4. Let Γ be a Jordan arc with end points a, b in C
(a Φ 5). Then if ueH and u(x) eΓ a.e., u is a constant.

We conclude this section with the following easy consequence of
Theorem 2.

COROLLARY 5. Let ueH. Further suppose \u(x)\ = 1 or \u(x)\ <; r
(for some 0 < r < 1) a.e.. Then we have m{x; u(x) e E] > 0 for any
measurable set EaT with L(E) > 0 or \ u(x) \ <; r a.e..

5. EXAMPLES. We shall give some example functions satisfying the
assumptions in the preceding propositions.

( i ) . Let X = T, m — L and H be the set of all bounded functions
which are the limit functions l iπw f{reiθ) of bounded holomorphic func-
tions in U. Let g(z) = (z - i/2)/(l + is/2) and put f(z) = (l + s)/(l-s)
(l+g(z)/(l - g(z)). Then we have f(eiθ) = -cot (9/2cot (θ + τ)/2, where
eίr — (1 — i/2)/(l + i/2). Hence we see easily that /(e**) is real-valued
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and {f(eiθ); 0 ^ θ < 2π} = [- «,, .00]. Let_w(s) = (τ//M - 1)/(V7M + 1),

where we take the branch of V as V 1 = 1 . Then we have |u(e^)l = l

or real a.e. and Im 1 u dL = Im u(0) < 0. This shows that the discussion

in 3), 4) of Theorem 3 is meaningful.

(ii). Let X = T U Γ/2, where Γ/2 = {z e C; \ z | = 1/2}. Let m be the
harmonic measure for z = 3/4 and H be the set of all limit functions of
bounded holomorphic functions in {1/2 < \z\ < 1} as in (i). Let u(t) = t
for teX. Then we have u e H and | u(t) \ = 1 or 1/2. This shows that
Corollary 5 has a sence.

6. The case H+. We can extend all results in Section 4 to the
case H+.

THEOREM 5. Let I be an open interval on the imaginary axis and
Ed I be a Lebesgue measurable set of positive measure and V be an open
set in C containing I. Let feH+, f Φ ia(a: real) and f(x)eiR\J(S\V)
(S = {Rez > 0}) a.e.. Further let m{x; f(x)eE} = 0. Then it follows
that m{x; f(x) e 1} = 0.

PROOF. The function g = (f - l)/(/ + 1) is in W n L~(m) = H.
Hence by the conformal mapping w — (z — ΐ)/(z + 1) we can apply Theorem
2 and we have the desired result. q.e.d.

THEOREM 6. Let feH+, f2(x) be real a.e. and φ(f) = a + iβ. Then
we have

1) // m {x; f(x) e iE) = m {x; f(x) e iF} = 0 for some two measurable
sets ECLR+ — [0, 00), FczR^ = (—°°, 0] of positive measure, f is a
constant.

2) Let β — 0. Then if m{x; f(x) e iE} = 0 for some measurable set
EdR of positive measure, f is a constant.

3) Let β > 0. Then if m{x; f(x) e iE} = 0 for some measurable set
E c JR+ of positive measure, f is a constant.

4) Let β < 0. Then if m{x; f(x) e iE} = 0 for some measurable set
EaR+ of positive measure, we have m{x; f(x) eiR+} = 0 and that f is a
constant or m{x; f(x) e F} > 0 for all measurable set FaR+{J iR_ of posi-
tieve measure.

5) If m{x; f(x) eE} = 0 for some measurable set EczR+ of positive
measure, then f is constant or m{x; f(x) e F} > 0 for any measurable
set FaiR of positive measure.

PROOF. We apply Theorem 3 to the function (/—l)/(/+l), which is
in H. q.e.d.



ON THE DISTRIBUTION OF VALUES OF FUNCTIONS 99

The following corresponds to Corollary 4.

PROPOSITION 1. Let Γ be a Jordan arc in {Re z > 0} one of whose
end points lies on {Re z ^ 0} and another end point may be the point at
infinity. Then, if feH+ and f(x)eΓ a.e., f is a constant.

As an application of Theorem 5 we have

COROLLARY 6. Let f, g, heH+. Further let fgh(x) real a.e. and
m{x; fgh(x) e E} = 0 for some measurable set E on (— °o, 0] of positive
measure. Then it follows that fgh is a constant.

PROOF. We see by using Lemma 1 twice that k = fWgWfi11* is well-
defined and in H+. By the assumption we have

k(x) eiRU R+ϋ eiπlBR+ U e~i7:l3R+ a.e.

and there exist four measurable sets E5 (j = 1, 2, 3, 4) such that
m{x; k(x) e Ej} = 0 and JBi c iR+, E2 c i/?_, Ez c eiπlzR+, E, c e~iKl*R+ of
positive measure respectively. By using Theorem 5 we see that

m {x; k(x) e iR] = 0 .

Since clearly u(z) = eiπl6 e H+ and Re eiπlβk(x) ^ 0 a.e., we see by Lemma 1
that eiπl6k e H+. Using Theorem 5 again, we have m{x; k(x) e eiπ'5R+} = 0.
In the same way we see that m{x; k(x) e e~~iπl3R+} = 0. Hence we have
k(x)eR+ a.e.. From Proposition 1 it follows that k is constant, and so
fgh is also constant. q.e.d.

REMARK. For more than three functions Corollary 6 does not hold.
An example is given in the case of the disc algebra. Let fό{z) = f(z) =
(l+z)/(l-z)(j = l, 2, 3, 4). Then we see easily that feH+ and f\z) is
positive-valued on T.

As a special case of Corollary 6 we have

COROLLARY 7 (Uniqueness theorem for H+). Let fe H+, Φ 0. Further
suppose g e H+, g/f(x) be real a.e. and m {x; g/f(x) e E} = 0 for some
Lebesgue measurable set E on (— oo, 0] of positive measure. Then it fol-
lows that g = af for some real constant a.

PROOF. From the assumption it follows that l/feH+. Clearly the
constant function 1 is in H+. We apply Corollary 6. q.e.d.

We have thus improved our former result (Satz 7 in [9]) completely
in the abstract setting.

7. Some applications. Let H = {f*(w) =limr^1 f(rw); feH°°(Un)}
(n^l). This function class on Tn satisfies the conditions for H in
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Section 1. In this case we get

H+ = {f*(w); f(z) holomorphic and Re/(s) > 0 for ze Un) .

Hence Theorem 5 in [8] is improved as follows.

PROPOSITION 2. If the ranges of f and g, holomorphic in Un, are
contained in some open [wedge of angular measure aπ (0 < a < 2) with
vertex at the origin, then the proposition f*/g* is real a.e. on Tn and
mn{we Tn; f*/g*(w) eE} = 0 for some measurable set E on (—°°, 0] of
positive measure implies that f = ag for some real constant a.

PROOF. We see easily that we may assume | &rgf/g(z) | ^ π in Un.
We may also assume | arg f/g(z) \ < π in Un. Otherwise f/g is trivially
constant. We consider the function h = fll2g~112, where we take the
branch of z1/2 as Γ/2 = 1. Then we see that heH+ and h*\w) is real-
valued and there exists a measurable set FaiR+ of positive measure
such that mn{we Tn; h*(w)eF\J (-F)} = 0. By Theorem 5,1) we see
that h is constant. Hence f/g is constant and is clearly real. q.e.d.

For Un a consequence of Theorem 3 is as follows.

PROPOSITION 3. Let f(z) be a bounded holomorphic function on Un,
bounded by 1 and its boundary value f*(w) be real or \f*(w)\ =1 a.e.
on Tn. Then it holds mn {w; f*(w) e E\J E*} > 0 for every measurable
set Ecz T with L(E) > 0 or f is a constant.

This proposition is in a sense sharp. Indeed, let f(z) be a conformal
mapping function from U onto the upper half disc {z e U; Im z > 0}. Then
Arg f(eiθ) does not take any value on (—TΓ, 0). Hence we can not replace
E U E* for instance by E. However as a consequence of 3) in Theorem
3 we have

PROPOSITION 4. Let f(z) be a bounded holomorphic function on Un

such that I f(z) \ < 1 in Un and /(0) is real. Then if f*(w) is real or
\f*(w)\ = 1 a.e. on Tn, we have mn {w; f*(w) e E) > 0 for every measur-
able set Ecz T with L(E) > 0 or f is a constant.

These results above can be formulated also for other domains in the
complex plane or in the w-dimensional complex vector space Cn, for
example the unit ball in Cn etc.

8. Localization in the classical case. Unfortunately we have no
strong result as for inner functions in Seidel [6]. We shall state, however,
the following weak proposition.
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PROPOSITION 5 Let f(z) be a bounded holomorphic function, bounded
by 1 in U. Further suppose f{eiθ) is real or \ f{eiθ) | = 1 a.e. on an
open arc AaT and L {eiθ eA;u<\ Arg f{eiθ)\ < v) = 0 for some u,v>0.
Then (1 + f(z))2/(l — f(z))2 can be continued meromorphically across the
arc A and has poles of order at most 2 only on A.

This is clearly equivalent to the following.

PROPOSITION 5'. Let f(z) be holomorphic in U so that | arg f(z) | < π
in U. Further suppose f{eiθ) is real a.e. on an open arc

A = (eia,eih)aT(a<b)

and L {eiθ eA;u< f(eίθ) < v} = 0 for some u < v < 0. Then f(z) can be
continued meromorphically across A and has poles of order at most 2
only on A.

PROOF. Consider the function g(z) = (f(z) — (u + v)/2)~\ Then we
see that | arg g{z) | < π in U and g{eiθ) is real a.e. on A and | g{eiθ) | <
2/(v—u) < oo on A. Let h(z) = gll3(z), where we take the branch of z1/3

as Γ/3 = 1. Then we see easily that heH^U) and h(eiθ) is bounded on
A. This shows that h(z) is bounded in any set D = {z e U; c < arg z < d)
(a <c <d < 6). Hence g(z) is also bounded in D and real a.e. on (eic,eid).
Therefore g(z) can be continued analytically across (eίc, eid) and so across
A. Hence f(z) can be continued meromorphically across A so that f(z) =
f(l/z). So f(z) has poles only on A. If f(z) has a pole of order more
than 2, we see easily that | arg f(z) \ > π for some z sufficiently near that
pole. q.e.d.

REMARK. In Proposition 5 f{z) may have branch points on A.

Example: Let g(z) = (l+z2)/(l-z)\ h(z) = gιι\z) and

f(z) = (h(z)

Then we have h(eiθ) > 0 on (βίπ/2, eiπ) and h{eiθ) is pure-imaginary with
0 < —ih(eiθ) < 1 on (eίίr/3, eί7Γ/2). Hence f(z) satisfies the assumption in
Proposition 5. But f(z) has a branch point at z = i, i.e. f(z) can not be
continued meromorphically across the arc (eiπβ, eiπ).
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